1
|
Li A, Zhao D, Li J, Qian J, Chen Q, Qian X, Yang X, Zhao J. Authenticating the Geographical Origin of Jingbai Pear in Northern China by Multiple Stable Isotope and Elemental Analysis. Foods 2024; 13:3417. [PMID: 39517201 PMCID: PMC11544955 DOI: 10.3390/foods13213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The Jingbai pear is one of the best pear species in China with high quality and nutrition values which are closely linked to its geographical origin. With the purpose of discriminating the PGI Mentougou Jingbai pear from three other producing regions, the stable isotope ratios and elemental profiles of the pears (n = 52) and the corresponding soils and groundwater were determined using isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results revealed that δ15N, δ18OJ, and Li were significantly different (p < 0.05) in samples from different regions, which indicated their potential to be used in the geographical origin classification of the Jingbai pear. The nitrogen isotopic values of the pear pulp were positively correlated with the δ15N value and nitrogen content of the corresponding soils, whilst the B, Na, K, Cr, and Cd contents of the pear pulps were positively correlated with their corresponding soils. Orthogonal partial least squares discriminant analysis (OPLS-DA) was performed in combination with analysis of the stable isotopes and elemental profiles, making it possible to distinguish the cultivation regions from each other with a high prediction accuracy (a correct classification rate of 92.3%). The results of this study highlight the potential of stable isotope ratios and elemental profiles to trace the geographical origin of pears at a small spatial scale.
Collapse
Affiliation(s)
- An Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (A.L.)
| | - Duoyong Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Jiali Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Qian
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiusheng Chen
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
| | - Xun Qian
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China
| | - Xusheng Yang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (A.L.)
| | - Jie Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (A.L.)
| |
Collapse
|
2
|
Liang L, Li Y, Mao X, Wang Y. Metabolomics applications for plant-based foods origin tracing, cultivars identification and processing: Feasibility and future aspects. Food Chem 2024; 449:139227. [PMID: 38599108 DOI: 10.1016/j.foodchem.2024.139227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.
Collapse
Affiliation(s)
- Lu Liang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China
| | - Yuhao Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China.
| |
Collapse
|
3
|
Wang F, Fan J, An Y, Meng G, Ji B, Li Y, Dong C. Tracing the geographical origin of endangered fungus Ophiocordyceps sinensis, especially from Nagqu, using UPLC-Q-TOF-MS. Food Chem 2024; 440:138247. [PMID: 38154283 DOI: 10.1016/j.foodchem.2023.138247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Ophiocordyceps sinensis (OS), known as "soft gold", played an important role in local economic development. OS from different producing areas was difficult to be discriminated by the appearance. Nagqu OS, a distinguished and safeguarded geographical indication product, commands a premium price in market. The real claim of OS geographical origins is urgently required. Here, 81 OS samples were collected from Tibetan Plateau in China to explore markers for tracing origins. OS from Xigazê can be distinguished by dark color of head of caterpillar. Then 57 samples, a fully representative training-sample set, were used to set up OPLS-DA models by nontargeted metabolomics from UPLC-QTOF-MS. Certain markers were successfully identified and validation using 21 blind test samples confirmed that the markers can trace the geographical origin of OS, especially Nagqu samples. It was affirmed that UPLC-QTOF-MS-based untargeted metabolomics coupled with OPLS-DA was a reliable strategy to trace the geographical origins of OS.
Collapse
Affiliation(s)
- Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junfeng Fan
- Nagqu City Inspection and Testing Center, Nagqu City, Tibet Autonomous Region 852000, China
| | - Yabin An
- Nagqu City Inspection and Testing Center, Nagqu City, Tibet Autonomous Region 852000, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bingyu Ji
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Díaz-Galiano FJ, Murcia-Morales M, Fernández-Alba AR. From sound check to encore: A journey through high-resolution mass spectrometry-based food analyses and metabolomics. Compr Rev Food Sci Food Saf 2024; 23:e13325. [PMID: 38532695 DOI: 10.1111/1541-4337.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
This manuscript presents a comprehensive review of high-resolution mass spectrometry in the field of food analysis and metabolomics. We have followed the historical evolution of metabolomics, its associated techniques and technologies, and its increasing role in food science and research. The review provides a critical comparison and synthesis of tentative identification guidelines proposed for over 15 years, offering a condensed resource for researchers in the field. We have also examined a wide range of recent metabolomics studies, showcasing various methodologies and highlighting key findings as a testimony of the versatility of the field and the possibilities it offers. In doing so, we have also carefully provided a compilation of the software tools that may be employed in this type of studies. The manuscript also explores the prospects of high-resolution mass spectrometry and metabolomics in food science. By covering the history, guidelines, applications, and tools of metabolomics, this review attempts to become a comprehensive guide for researchers in a rapidly evolving field.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - María Murcia-Morales
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| | - Amadeo Rodríguez Fernández-Alba
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almería, Almería, Spain
| |
Collapse
|
5
|
Nichani K, Uhlig S, Colson B, Hettwer K, Simon K, Bönick J, Uhlig C, Kemmlein S, Stoyke M, Gowik P, Huschek G, Rawel HM. Development of Non-Targeted Mass Spectrometry Method for Distinguishing Spelt and Wheat. Foods 2022; 12:141. [PMID: 36613357 PMCID: PMC9818861 DOI: 10.3390/foods12010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Food fraud, even when not in the news, is ubiquitous and demands the development of innovative strategies to combat it. A new non-targeted method (NTM) for distinguishing spelt and wheat is described, which aids in food fraud detection and authenticity testing. A highly resolved fingerprint in the form of spectra is obtained for several cultivars of spelt and wheat using liquid chromatography coupled high-resolution mass spectrometry (LC-HRMS). Convolutional neural network (CNN) models are built using a nested cross validation (NCV) approach by appropriately training them using a calibration set comprising duplicate measurements of eleven cultivars of wheat and spelt, each. The results reveal that the CNNs automatically learn patterns and representations to best discriminate tested samples into spelt or wheat. This is further investigated using an external validation set comprising artificially mixed spectra, samples for processed goods (spelt bread and flour), eleven untypical spelt, and six old wheat cultivars. These cultivars were not part of model building. We introduce a metric called the D score to quantitatively evaluate and compare the classification decisions. Our results demonstrate that NTMs based on NCV and CNNs trained using appropriately chosen spectral data can be reliable enough to be used on a wider range of cultivars and their mixes.
Collapse
Affiliation(s)
- Kapil Nichani
- QuoData GmbH, Prellerstr. 14, D-01309 Dresden, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Steffen Uhlig
- QuoData GmbH, Fabeckstr. 43, D-14195 Berlin, Germany
| | | | | | - Kirsten Simon
- QuoData GmbH, Prellerstr. 14, D-01309 Dresden, Germany
| | - Josephine Bönick
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany
| | - Carsten Uhlig
- Akees GmbH, Ansbacher Str. 11, D-10787 Berlin, Germany
| | - Sabine Kemmlein
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Diedersdorfer Weg. 1, D-12277 Berlin, Germany
| | - Manfred Stoyke
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Diedersdorfer Weg. 1, D-12277 Berlin, Germany
| | - Petra Gowik
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Diedersdorfer Weg. 1, D-12277 Berlin, Germany
| | - Gerd Huschek
- IGV-Institut für Getreideverarbeitung GmbH, Arthur-Scheunert-Allee 40/41, D-14558 Nuthetal, Germany
| | - Harshadrai M. Rawel
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| |
Collapse
|
6
|
Li Y, Zhang Y, Wang Y, Li X, Zhou L, Yang J, Guo L. Metabolites and chemometric study of Perilla (
Perilla frutescens
) from different varieties and geographical origins. J Food Sci 2022; 87:5240-5251. [DOI: 10.1111/1750-3841.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yuan Li
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
- School of Traditional Chinese Medicine Guangdong Pharmaceutical University Guangzhou PR China
| | - Yue Zhang
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
- College of Traditional Chinese Medicine Yunnan University of Chinese Medicine Kunming PR China
| | - Youyou Wang
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Xiang Li
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing PR China
- School of Traditional Chinese Medicine Guangdong Pharmaceutical University Guangzhou PR China
| |
Collapse
|
7
|
Dinis K, Tsamba L, Thomas F, Jamin E, Camel V. Preliminary authentication of apple juices using untargeted UHPLC-HRMS analysis combined to chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Prandi B, Righetti L, Caligiani A, Tedeschi T, Cirlini M, Galaverna G, Sforza S. Assessing food authenticity through protein and metabolic markers. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:233-274. [PMID: 36064294 DOI: 10.1016/bs.afnr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter aims to address an issue of ancient origins, but more and more topical in a globalized world in which consumers and stakeholders are increasingly aware: the authenticity of food. Foods are systems that can also be very complex, and verifying the correspondence between what is declared and the actual characteristics of the product is often a challenging issue. The complexity of the question we want to answer (is the food authentic?) means that the answer is equally articulated and makes use of many different analytical techniques. This chapter will consider the chemical analyses of foods aimed at guaranteeing their authenticity and will focus on frontier methods that have been developed in recent years to address the need to respond to ever-increasing guarantees of authenticity. Targeted and non-targeted approaches will be considered for verifying the authenticity of foods, through the study of different classes of constituents (proteins, metabolites, lipids, flavors). The numerous approaches available (proteomics, metabolomics, lipidomics) and the related analytical techniques (LC-MS, GC-MS, NMR) are first described from a more general point of view, after which their specific application for the purposes of authentication of food is addressed.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Zhong P, Wei X, Li X, Wei X, Wu S, Huang W, Koidis A, Xu Z, Lei H. Untargeted metabolomics by liquid chromatography‐mass spectrometry for food authentication: A review. Compr Rev Food Sci Food Saf 2022; 21:2455-2488. [DOI: 10.1111/1541-4337.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Anastasios Koidis
- Institute for Global Food Security Queen's University Belfast Belfast UK
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National–Local Joint Engineering Research Center for Precision Machining and Safety of Livestock and Poultry Products, College of Food Science South China Agricultural University Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
10
|
Ji Hye L, Jae Min A, Dong Jin K, Ho Jin K, Seong Hun L. Use of LC-Orbitrap MS and FT-NIRS with multivariate analysis to determine geographic origin of Boston butt pork. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2027962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lee Ji Hye
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - An Jae Min
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Kang Dong Jin
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Kim Ho Jin
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| | - Lee Seong Hun
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Republic of Korea
| |
Collapse
|
11
|
Suman M. Combating Olive Oil Fraud Using GC–IMS and FGC-Enose. LCGC EUROPE 2021. [DOI: 10.56530/lcgc.eu.cz9789p2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adulteration of high-quality foods is big business. Typical adulteration of olive oil involves the use of other types of oil, such as seed oils or pomace oils, the introduction of re-esterified oils, or the creation of mixtures with refined oils to create a lower quality product that can still be sold at a premium price. Fortunately, these processes can be easily detected using standard methods. However, fraudsters now seek more advanced methods using soft refined oils or oils with a tailored composition, making detection with existing procedures difficult. LCGC spoke to Michele Suman about novel screening and confirmatory analytical strategies he has investigated to regain the upper hand in the fight against olive oil adulteration.
Collapse
|
12
|
Advances in Analysis of Contaminants in Foodstuffs on the Basis of Orbitrap Mass Spectrometry: a Review. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Loffi C, Cavanna D, Sammarco G, Catellani D, Dall'Asta C, Suman M. Non-targeted high-resolution mass spectrometry study for evaluation of milk freshness. J Dairy Sci 2021; 104:12286-12294. [PMID: 34593223 DOI: 10.3168/jds.2021-20285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Milk freshness is an important parameter for both consumers' health and quality of milk-based products. Up to now there have been neither analytical methods nor specific parameters to uniquely define milk freshness from a complete and univocal chemical perspective. In this study, 8 molecules were selected and identified as responsible for milk aging, using a liquid chromatography-high-resolution mass spectrometry approach followed by chemometric data elaboration. For model setup and marker selection, 30 high-quality pasteurized fresh milk samples were collected directly from the production site and analyzed immediately and after storage at 2 to 8°C for 7 d. The markers were then validated by challenging the model with a set of 10 milk samples, not previously analyzed. Our results demonstrated that the markers identified within this study can be successfully used for the correct classification of non-fresh milk samples, complementing and successfully enhancing parallel evaluations obtainable through sensory measures.
Collapse
Affiliation(s)
- Cecilia Loffi
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy; Department of Food and Drugs, University of Parma, Parco Area delle Scienze 95/A, 43124 Parma, Italy
| | - Daniele Cavanna
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy
| | - Giuseppe Sammarco
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy; Department of Food and Drugs, University of Parma, Parco Area delle Scienze 95/A, 43124 Parma, Italy
| | - Dante Catellani
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy
| | - Chiara Dall'Asta
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 95/A, 43124 Parma, Italy
| | - Michele Suman
- Advanced Research Laboratory, Barilla G. e R. Fratelli S.p.A., Via Mantova 166, 43122 Parma, Italy; Department for Sustainable Food Process, Catholic University of the Sacred Heart, 29121 Piacenza, Italy.
| |
Collapse
|
14
|
Fighting food frauds exploiting chromatography-mass spectrometry technologies: Scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Liu HY, Wadood SA, Xia Y, Liu Y, Guo H, Guo BL, Gan RY. Wheat authentication:An overview on different techniques and chemometric methods. Crit Rev Food Sci Nutr 2021; 63:33-56. [PMID: 34196234 DOI: 10.1080/10408398.2021.1942783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops and is consumed as a staple food around the globe. Wheat authentication has become a crucial issue over the last decades. Recently, many techniques have been applied in wheat authentication including the authentication of wheat geographical origin, wheat variety, organic wheat, and wheat flour from other cereals. This paper collected related literature in the last ten years, and attempted to highlight the recent studies on the discrimination and authentication of wheat using different determination techniques and chemometric methods. The stable isotope analysis and elemental profile of wheat are promising tools to obtain information regarding the origin, and variety, and to differentiate organic from conventional farming of wheat. Image analysis, genetic parameters, and omics analysis can provide solutions for wheat variety, organic wheat, and wheat adulteration. Vibrational spectroscopy analyses, such as NIR, FTIR, and HIS, in combination with multivariate data analysis methods, such as PCA, LDA, and PLS-DA, show great potential in wheat authenticity and offer many advantages such as user-friendly, cost-effective, time-saving, and environment friendly. In conclusion, analytical techniques combining with appropriate multivariate analysis are very effective to discriminate geographical origin, cultivar classification, and adulterant detection of wheat.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Syed Abdul Wadood
- Department of Food and Nutrition, University of Home Economics, Lahore, Pakistan
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Bo-Li Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu, China
| |
Collapse
|
16
|
Lipid Compositions and Geographical Discrimination of 94 Geographically Authentic Wheat Samples Based on UPLC-MS with Non-Targeted Lipidomic Approach. Foods 2020; 10:foods10010010. [PMID: 33374499 PMCID: PMC7822159 DOI: 10.3390/foods10010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Wheat is the staple food for the world’s major populations. However, chemical characters of geographically authentic wheat samples, especially for the lipids, have not been deeply studied. The present research aimed to investigate lipid compositions of Chinese wheat samples and clarify the major markers that contribute to the geographical differences. A total of 94 wheat samples from eight main wheat-producing provinces in China were evaluated to differentiate their lipid compositions. Based on the data collected from ultra-high-performance-liquid-chromatography tandem time-of-flight mass spectrometry (UPLC-Q/TOF MS), an optimized non-targeted lipidomic method was utilized for analyses. As the results, 62 lipid compounds, including fatty acids, phospholipids, galactolipids, triglycerides, diglycerides, alkylresorcinol, and ceramide were tentatively identified. Partial least squares discriminant analysis (PLS-DA) demonstrated a more satisfying performance in distinguishing wheat samples from different origins compared with principal component analysis (PCA). Further, the abundances of triglycerides and glycerophospholipids with more unsaturated fatty acids were found greater in wheat samples from northern origins of China, while more glycolipids and unsaturated fatty acids arose in southern original wheat samples. These findings describe the lipid profiles of wheat samples in China and could contribute to the quality and safety control for the wheat flour products.
Collapse
|
17
|
Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools. Foods 2020; 9:foods9111551. [PMID: 33120902 PMCID: PMC7693377 DOI: 10.3390/foods9111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Italy is the country with the largest durum wheat pasta production and consumption. The mandatory labelling for pasta indicating the country of origin of wheat has made consumers more aware about the consumed pasta products and is influencing their choice towards 100% Italian wheat pasta. This aspect highlights the need to promote the use of domestic wheat as well as to develop rapid methodologies for the authentication of pasta. A rapid, inexpensive, and easy-to-use method based on infrared spectroscopy was developed and validated for authenticating pasta made with 100% Italian durum wheat. The study was conducted on pasta marketed in Italy and made with durum wheat cultivated in Italy (n = 176 samples) and on pasta made with mixtures of wheat cultivated in Italy and/or abroad (n = 185 samples). Pasta samples were analyzed by Fourier transform-near infrared (FT-NIR) spectroscopy coupled with supervised classification models. The good performance results of the validation set (sensitivity of 95%, specificity and accuracy of 94%) obtained using principal component-linear discriminant analysis (PC-LDA) clearly demonstrated the high prediction capability of this method and its suitability for authenticating 100% Italian durum wheat pasta. This output is of great interest for both producers of Italian pasta pointing toward authentication purposes of their products and consumer associations aimed to preserve and promote the typicity of Italian products.
Collapse
|
18
|
Yan XT, Zhang Y, Zhou Y, Li GH, Feng XS. Technical Overview of Orbitrap High Resolution Mass Spectrometry and Its Application to the Detection of Small Molecules in Food (Update Since 2012). Crit Rev Anal Chem 2020; 52:593-626. [PMID: 32880479 DOI: 10.1080/10408347.2020.1815168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Food safety and quality issues are becoming increasingly important and attract much attention, requiring the development of better analytical platforms. For example, high-resolution (especially Orbitrap) mass spectrometry simultaneously offers versatile functions such as targeted/non-targeted screening while providing qualitative and quantitative information on an almost unlimited number of analytes to facilitate routine analysis and even allows for official surveillance in the food field. This review covers the current state of Orbitrap mass spectrometry (OMS) usage in food analysis based on research reported in 2012-2019, particularly highlighting the technical aspects of OMS application and the achievement of OMS-based screening and quantitative analysis in the food field. The gained insights enhance our understanding of state-of-the-art high-resolution mass spectrometry and highlight the challenges and directions of future research.
Collapse
Affiliation(s)
- Xiao-Ting Yan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|