1
|
Lu X, Zhao C, Wang X, Wang J, Du Y, Cui J, Zeng L, Zheng J. Arabinan branches in the RG-I region of citrus pectin aid acid-induced gelation. Carbohydr Polym 2024; 346:122668. [PMID: 39245519 DOI: 10.1016/j.carbpol.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Gelation is a critical property of citrus pectin. However, the roles played by neutral sugar side-chains on acid-induced pectin gelation remain poorly understood. Herein, galactan- or/and arabinan-eliminated pectins (P-G, P-A, and P-AG) were used to investigate the effects of side-chains on gelation. The gel hardness values of citrus pectin, P-G, P-A, and P-AG were 42.6, 39.9, 5.3, and 2.1 g, respectively, suggesting that arabinan contributed more to gelation than galactan. We next found that arabinan branches promoted pectin chain entanglement more effectively than arabinan backbones. Destabilizer addition experiments showed that hydrogen bonding, electrostatic interaction, and hydrophobic interaction were the main forces affecting pectin gel networks and strength, which was further validated by molecular dynamic simulations. The total number of hydrogen bonds between the arabinan branches and galactan/HG (65.7) was significantly higher than that between the arabinan backbones and galactan/HG (39.1), indicating that arabinan branches predominated in terms of such interactions. This study thus elucidated the roles played by neutral-sugar side-chains, especially the arabinan branches of acid-induced pectin gels, in term of enhancing high-methoxyl pectin gelation, and offers novel insights into the structure-gelling relationships of citrus pectin.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jirong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyi Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhang M, Wei T, Mai Q, Hayat K, Hou Y, Xia S, Cui H, Yu J. Microwave-induced heterogeneity in protein conformation and water mobility interferes with the distribution pattern and migration pathway of sodium ion in myofibrillar protein gel. Food Chem 2024; 460:140503. [PMID: 39053279 DOI: 10.1016/j.foodchem.2024.140503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The aim of this study was to investigate the distribution pattern and migration pathway of sodium ion in the myofibrillar protein (MP) gel matrix during microwave heating. The results showed that the content of sodium ions in the outer layer of MP gel increased by 47.85% compared with that in the inner layer. In the inner layer of protein gel, the non-covalent disulfide bonds (mainly ε(γ-Glu)-Lys) increased (P < 0.05), which contributed to the formation of a better rigid structure of the protein. The free water content was significantly higher than that of the inner layer (P < 0.05), which was related to the higher mobility of sodium ions. The results of microstructure analysis showed that the outer layer of the MP gel formed a more porous network than the inner layer. This work is expected to give some insights into the development of promising salt-reduced meat products by microwave heating.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Tianyi Wei
- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, 6 Yongan Road, Foshan, Guangdong, 528311, PR China
| | - Qianting Mai
- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, 6 Yongan Road, Foshan, Guangdong, 528311, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, United States
| | - Yaqi Hou
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
3
|
Liu X, Chi J, Lin Y, Ren W, Li Y, Jia W, Mowafy S, Li J, Li X. Mechanistic insights into combined effects of continuous microwave heating and tremella powder addition on physiochemical properties of Nemipterus virgatus surimi gel. Food Chem 2024; 460:140752. [PMID: 39121771 DOI: 10.1016/j.foodchem.2024.140752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The physicochemical properties of Nemipterus virgatus surimi gel were investigated, with tremella powder (TP) at concentrations ranging from 0 to 0.5% (w/w) combined with continuous microwave heating (CMH) using water-bath heating (WBH) as control. Results showed that TP addition (0.1%-0.3%, w/w) could significantly enhance the water holding capacity and reduce whiteness and cooking loss, attributed to the changed lateral relaxation time of water distribution. Notably, at 0.3% TP and 80 °C, the gel strength significantly increased by 96.84%, and the hardness, chewiness, and adhesiveness improved, but the quality of surimi decreased above 0.3% TP. The gel network structure was influenced by protein secondary structure composition, especially for increasing β-sheet in Raman spectra, thus promoting the gel microstructure density and uniform protein distribution. These findings offer insights for enhancing surimi gel quality and broadening tremella application in product processing.
Collapse
Affiliation(s)
- Xuejie Liu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Junhao Chi
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
| | - Wenyan Ren
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Yafei Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Wenshen Jia
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Samir Mowafy
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Egypt
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
| |
Collapse
|
4
|
Fan X, Geng W, Li M, Wu Z, Li Y, Yu S, Zhao G, Zhao Q. Performance and protein conformation of thermally treated silver carp (Hypophthalmichthys molitrix) and scallop (Argopecten irradians) blended gels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7797-7808. [PMID: 38821885 DOI: 10.1002/jsfa.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The quality of surimi-based products can be improved by combining the flesh of different aquatic organisms. The present study investigated the effects of incorporating diverse ratios of unwashed silver carp (H) and scallop (A) and using various thermal treatments on the moisture, texture, microstructure, and conformation of the blended gels and myofibrillar protein of surimi. RESULTS A mixture ratio of A:H = 1:3 yielded the highest gel strength, which was 60.4% higher than that of scallop gel. The cooking losses of high-pressure heating and water-bath microwaving were significantly higher than those of other methods (P < 0.05). Moreover, the two-step water bath and water-bath microwaving samples exhibited a more regular spatial network structure compared to other samples. The mixed samples exhibited a microstructure with a uniform and ordered spatial network, allowing more free water to be trapped by the internal structure, resulting in more favorable gel properties. The thermal treatments comprehensively modified the tertiary and quaternary structures of proteins in unwashed mixed gel promoted protein unfurling, provided more hydrophobic interactions, enhanced protein aggregation and improved the gel performance. CONCLUSION The findings of the present study improve our understanding of the interactions between proteins from different sources. We propose a new method for modifying surimi's gel properties, facilitating the development of mixed surimi products, as well as enhancing the efficient utilization of aquatic resources. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinru Fan
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Wenhao Geng
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Zixuan Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Shuang Yu
- Dalian Ping Island Natural Product Technology Co., Ltd, Dalian, China
| | - Guanhua Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian, China
| |
Collapse
|
5
|
Bu K, Huang D, Zhang H, Xu K, Zhu C. Ultrasonic-microwave technique promotes the physicochemical structure of hydrogel and its release characterization of curcumin in vitro. Food Chem 2024; 451:139389. [PMID: 38670023 DOI: 10.1016/j.foodchem.2024.139389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
In this study, soybean protein isolate and hawthorn pectin were mixed to prepare binary hydrogels using ultrasound and microwave techniques. Moderate treatment can not only significantly improve the mechanical strength of the hydrogel, but also increase the tightness of the internal cross-linking. The strengthening of interactions (hydrogen bonds, hydrophobic interactions, and disulfide bonds) was the main reason for this trend. Especially, the ultrasonic-microwave (80 s) treatment hydrogel possessed excellent hardness (33.426 N), water-holding capacity (98.26%), elasticity (G' = 1205 Pa), and a more homogeneous and denser microstructure. In addition, the hydrogel minimized the extent of curcumin loss (21.23%) after 5 weeks of storage. In general, the ultrasonic-microwave technique could significantly promote the physicochemical structure and curcumin bioaccessibility of hydrogels, which showed excellent market prospects in the food industry.
Collapse
Affiliation(s)
- Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hao Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
6
|
Srikanlaya C, Therdthai N. Characterization of Plant-Based Meat Treated with Hot Air and Microwave Heating. Foods 2024; 13:2697. [PMID: 39272462 PMCID: PMC11394236 DOI: 10.3390/foods13172697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Plant-based meat is growing globally due to health, environmental, and animal welfare concerns, though there is a need for quality improvements. This study assessed how different ratios of wheat gluten (WG) to soy protein isolate (SPI) and various baking methods-hot air (HA), microwave (MW), and a combination of both (HA-MW)-affect the physicochemical properties of plant-based meat. Increasing the SPI from 0% to 40% significantly enhanced lightness, hardness, chewiness, water-holding capacity, moisture content, and lysine (an essential amino acid) (p ≤ 0.05). Hardness and chewiness ranged from 4.23 ± 1.19 N to 25.90 ± 2.90 N and 3.44 ± 0.94 N to 18.71 ± 1.85 N, respectively. Baking methods did not affect amino acid profiles. Compared to HA baking, MW and HA-MW baking increased lysine content (561.58-1132.50 mg/100 g and 544.85-1088.50 mg/100 g, respectively) while reducing fat and carbohydrates. These findings suggest that a 40% SPI and 60% WG ratio with microwave baking (360 W for 1 min) optimizes plant-based meat, offering benefits to both consumers and the food industry in terms of health and sustainability.
Collapse
Affiliation(s)
- Chonnikarn Srikanlaya
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Nantawan Therdthai
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
7
|
Mi H, Zhang Y, Zhao Y, Li J, Chen J, Li X. Cryoprotective effect of soluble soybean polysaccharides and enzymatic hydrolysates on the myofibrillar protein of Nemipterus virgatus surimi. Food Chem 2024; 446:138903. [PMID: 38452507 DOI: 10.1016/j.foodchem.2024.138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Cryoprotective effect and potential mechanism of soluble soybean polysaccharides (SSPS) and enzymatic hydrolysates on surimi was investigated. After hydrolysis, the molecular weight of SSPS significantly decreased, and the hydrolysates prepared by endo-polygalacturonase (EPG-SSPS) was the lowest (154 kDa). Infrared spectrum analysis revealed that enzymatic hydrolysis didn't alter the functional groups of SSPS, but it did augment the exposure to hydroxyl groups. Surimi containing 5 % EPG-SSPS had the lowest freezable water after 20 days of frozen storage. Furthermore, the 5 % EPG-SSPS group manifested the highest metrics in total sulfhydryl (8.0 × 10-5 mol/g), active sulfhydryl content (6.7 × 10-5 mol/g), Ca2+-ATPase activity, and exhibited the lowest level in carbonyl content, surface hydrophobicity (153 μg). Notably, the 5 % EPG-SSPS maintained the stability of protein structure. Conclusively, SSPS enzymatic hydrolysate using endo-polygalacturonase imparted superior cryoprotective effect on the myofibrillar protein of surimi, and the mechanism might be a decrease in molecular weight and exposure of hydroxyl groups.
Collapse
Affiliation(s)
- Hongbo Mi
- College of Food Science and Technology, Bohai University, Institute of Ocean Research, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| | - Yuhang Zhang
- College of Food Science and Technology, Bohai University, Institute of Ocean Research, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| | - Yuming Zhao
- College of Food Science and Technology, Bohai University, Institute of Ocean Research, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Institute of Ocean Research, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| | - Jingxin Chen
- College of Food Science and Technology, Bohai University, Institute of Ocean Research, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Institute of Ocean Research, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, People's Republic of China.
| |
Collapse
|
8
|
Sun W, Bu K, Meng H, Zhu C. Hawthorn pectin/soybean isolate protein hydrogel bead as a promising ferrous ion-embedded delivery system. Colloids Surf B Biointerfaces 2024; 237:113867. [PMID: 38522284 DOI: 10.1016/j.colsurfb.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Huangmei Meng
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
9
|
Li Z, Zhong X, Luan C, Wen N, Shi C, Liu S, Xu Y, He Q, Wu Y, Yang J. Simultaneous ultrasound and microwave application in myosin-chlorogenic acid conjugation: Unlocking enhanced emulsion stability. Food Chem X 2024; 21:101149. [PMID: 38312490 PMCID: PMC10837472 DOI: 10.1016/j.fochx.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
This study investigated the grafting chlorogenic acid (CA) onto myosin, utilizing various techniques including conventional method, ultrasound, microwave, and combination of ultrasound and microwave (UM). The grafting efficiency was as follows: conventional method < microwave < ultrasound < UM. The UM technique manifested the highest CA-binding capacity (80.26 μmol/g myosin) through covalent bonding, and a much shorter time was required for conjugation than conventional method. The conjugation of polyphenol significantly increased the solubility of myosin with reduced aggregation behavior, which was accompanied by structural alterations from ordered structures (α-helix and β-sheet) to disordered forms. The emulsion stabilized by UM-myosin-CA conjugate exhibited the most homogeneous microstructure with favorable creaming stability. Moreover, the resulting emulsion presented strong oxidation resistance and storage stability. These results illustrate the promising potential of employing CA-grafted myosin, especially when processed using the UM technique, in the development of highly efficient emulsifiers.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Xiaomei Zhong
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Cuirong Luan
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Nanhua Wen
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Chuanyang Shi
- Department of Nutrition and Food Studies, Steinhardt School of Culture, Education, and Human Development, New York University, NY, United States
| | - Shuji Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yizhou Xu
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Quan He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, NS, Canada
| | - Yijing Wu
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| | - Jie Yang
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| |
Collapse
|
10
|
Huang Y, Nie Y, Zhou F, Li B, Luo Q, Zhang B, Zeng Q, Huang Y. Effects of collagen-based coating with chitosan and ε-polylysine on sensory, texture, and biochemical changes of refrigerated Nemipterus virgatus fillets. Food Sci Nutr 2024; 12:2145-2152. [PMID: 38455186 PMCID: PMC10916661 DOI: 10.1002/fsn3.3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
In order to evaluate the effects of chitosan, ε-polylysine, and collagen on the preservation properties of refrigerated Nemipterus virgatus, samples were tested with different treatments for 10 days, namely chitosan, ε-polylysine and collagen (CH + ε-PL + CA), chitosan and ε-polylysine (CH + ε-PL), chitosan and collagen (CH + CA), ε-polylysine and collagen (ε-PL + CA), and the uncoated sample (CK). The results demonstrated that the bio-coating exhibited better preservation effects. The CH + ε-PL + CA, CH + ε-PL, CH + CA, ε-PL + CA treatments could significantly inhibit bacterial growth and retard the increase of total volatile base nitrogen (TVB-N), 2-thiobarbituric acid (TBA), K-value, and total viable counts (TVC) in N. virgatus fillets. The pH of all samples decreased and reached its lowest value on day 6, then increased significantly at the end of the experiment (p < .05). Water-holding capacity (WHC) of all the groups decreased continuously throughout storage, and CK reached 66.03% on day 6, which is significantly lower than CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA (p < .05). On the contrary, the sensory scores of CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA were significantly higher than the control, and the score of CH + ε-PL + CA (p < .05) was the best among all the groups. In terms of texture, CH + PL + CA also showed less cell shrinkage and tighter muscle fiber arrangement compared to other treatments. To sum up, the CH + PL + CA bio-coating proved to be a promising method for maintaining the storage quality of N. virgatus under refrigerated storage conditions.
Collapse
Affiliation(s)
- Yongping Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Ying Nie
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Fei Zhou
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Biansheng Li
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Qiulan Luo
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Bin Zhang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| | - Qinpei Zeng
- Guangdong Wuqiong Food Group Co., LTDChaozhouChina
| | - Yisheng Huang
- School of Life Sciences and Food EngineeringHanshan Normal UniversityChaozhouChina
| |
Collapse
|
11
|
Li Z, Zhong X, Luan C, Wen N, Shi C, Lin X, Zhao C, Zhang Y, Luo L, Zhang L, Wu Y, Yang J. Fabrication of high-preformance emulsifier from conjugating maltodextrin onto myofibrillar protein peptide with microwave- ultrasound synergy. ULTRASONICS SONOCHEMISTRY 2024; 104:106818. [PMID: 38452710 PMCID: PMC10924053 DOI: 10.1016/j.ultsonch.2024.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
In this study, we systematically investigated the emulsifying capabilities of myofibrillar protein (MP)- and MP peptide (MPP)-based conjugates synthesized through intensification techniques: water bath (WB), microwave, ultrasound, and the combined ultrasound-microwave (UM) methods. Compared with WB, microwave, and ultrasound treatments, the combined UM treatment greatly promoted the glycation reaction because ultrasound and microwave mutually reinforced modification effects. The resultant conjugate structure tended to unfold with more flexible conformation and homogeneous morphology. Moreover, the emulsifying properties of conjugates developed with single and combined ultrasound-assisted glycation displayed substantial improvement, and pre-hydrolysis further enhanced these performances, as observed in the Principal Component Analysis as well. Remarkably, MPP grafted by maltodextrin with the assistance of a combined UM field produced the smallest and most uniform emulsion system, positioning it as the most efficient emulsifier among all the fabricated glycoconjugates. Our study highlighted the potential of synergistically applying ultrasound and microwave techniques to develop a well-performance glycation with an ideal conjugate structure, in which they would be associated into a strong film that provided the robust physical barrier, creaming stability, heat retention, and oxidation resistance. These findings offered a basis for better utilizing complex ultrasonic technology to develop novel and improved MP-based food products.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xiaomei Zhong
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Cuirong Luan
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Nanhua Wen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chuanyang Shi
- Department of Nutrition and Food Studies, Steinhardt School of Culture, Education, and Human Development, New York University, NY, United States
| | - Xiaoyu Lin
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chao Zhao
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Yang Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lianyu Luo
- Fujian Flavorbio Technology Co., LTD, Fuzhou, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yijing Wu
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| | - Jie Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China.
| |
Collapse
|
12
|
Li Z, Lin L, Fu G, Guo Z, Zhang C. Insight on the emulsifying mechanisms of low-salt type emulsions stabilized by Maillard conjugates: Myofibrillar protein peptide-dextrin with different degrees of hydrolysis. Food Chem 2024; 433:137151. [PMID: 37661502 DOI: 10.1016/j.foodchem.2023.137151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
In this study, we investigated the emulsifying properties and stabilisation mechanisms of low-salt type emulsions stabilised by MP-base conjugates prepared via the Maillard reaction between DX and MP peptides (MPP). Mild hydrolysis by Alcalase promoted a well-controlled Maillard reaction in dry conditions. Combining hydrolysis and Maillard reaction caused the dissociation and unfolding of highly aggregated MP structures; the ordered secondary structure was lost and the hydrophobic residue was exposed. The MPP-DX conjugates greatly improved the emulsifying ability and stability in the low-salt system; the resulting emulsion exhibited a small droplet size and homogeneous microstructure with desirable storage stability. Further, the glycation products were found to effectively suppress gravity-induced creaming. The MPP-DX glycoconjugate developed with 5% DG, exhibiting strongest flocculation and creaming stability, was determined as the optimal emulsifying agent for low-salt type emulsions. These findings provide a theoretical basis for developing low-salt meat products and/or emulsion-based foods.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Lin
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Gaofeng Fu
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chen Zhang
- Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
13
|
Mao S, Zhou Y, Song B, Wu Y, Wang Y, Wang Y, Liu Y, Xu X, Zhao C, Liu J. Effect of Microwave Intermittent Drying on the Structural and Functional Properties of Zein in Corn Kernels. Foods 2024; 13:207. [PMID: 38254508 PMCID: PMC10814094 DOI: 10.3390/foods13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Microwave intermittent drying was carried out on newly harvested corn kernels to study the effects of different microwave intermittent powers (900 W, 1800 W, 2700 W, and 3600 W) on the structural and functional properties of zein in corn kernels. The results showed that microwave drying could increase the thermal stability of zein in corn kernels. The solubility, emulsification activity index, and surface hydrophobicity increased under 1800 W drying power, which was due to the unfolding of the molecular structure caused by the increase in the content of irregular structure and the decrease in the value of particle size. At a drying power of 2700 W, there was a significant increase in grain size values and β-sheet structure. This proves that at this time, the corn proteins in the kernels were subjected to the thermal effect generated by the higher microwave power, which simultaneously caused cross-linking and aggregation within the proteins to form molecular aggregates. The solubility, surface hydrophobicity, and other functional properties were reduced, while the emulsification stability was enhanced by the aggregates. The results of the study can provide a reference for the in-depth study of intermittent corn microwave drying on a wide range of applications of zein in corn kernels.
Collapse
Affiliation(s)
- Sining Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yuhan Zhou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Bin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yiran Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yanjia Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Jingsheng Liu
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
14
|
Berrio ME, Jerez-Olate C, Ramírez JA, Saireddy S, González-Rocha G, Ponce A, Meléndrez-Castro M, Sánchez-Sanhueza G. Novel Antibacterial and Biocompatible Nanostructured Gels Based on One-step Synthesis as a Potential Disinfectant for Endodontic Infection Control. J Endod 2024; 50:74-84. [PMID: 37863353 DOI: 10.1016/j.joen.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
AIM The objective of this study was to develop nanostructured gels as biocompatible intracanal disinfectants by one-step microwave radiation-assisted synthesis. METHODS Polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as a support network, and polyethylene glycol (PEG) was used as a reducing agent. The gels were characterized by measuring the swelling ratio (SR) and rheological properties and by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The antibacterial effects of each gel were evaluated against the endodontic clinical strain Enterococcus faecalis. Then, the viability of the 21-day mature multispecies bacterial biofilm was assessed using confocal microscopy in an ex vivo model, where the biofilm was exposed to the mix of nanogels. The cell proliferation, viability, and morphology of human periodontal ligament (HPDL) cells were quantified using a real-time IncuCyte® S3 Live-Cell System. Viability was measured by confocal microscopy using an ex vivo model exposing a 21-day mature multispecies bacterial biofilm to the mix of nanogels. RESULTS The antibacterial activity of the gels coincided with the superficial characterization and the solubility of the gel in the growth medium. Gels with higher viscosity (327.85-980.58 Pa s), higher dissolution (42-70%SR), and lower porosity (no porosity and 611.63 nm) showed excellent antibacterial activity against E. faecalis. Despite their physicochemical characteristics, CuNPs gels showed greater effectiveness against E. faecalis.These nanostructured gels with high PVA concentrations promote HPDL cells proliferation while still exerting antibacterial properties. Mix of nanogels showed an increase non-viable cells biomass from at of application. CONCLUSIONS The use of biocompatible polymers influences the physicochemical, bactericidal, and cytotoxic response, making these materials potential disinfectant agents against resistant bacteria with good biocompatibility and improved HPDL cells proliferation.
Collapse
Affiliation(s)
- Maria Elizabeth Berrio
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Research Group in Advanced Nanocomposites (GINA), Universidad de Concepción, Concepción, Chile
| | - Christian Jerez-Olate
- Department of Microbiology, Faculty of Biological Sciences, Research Laboratory Antibacterial Agents (LIAA), Universidad de Concepción, Concepción, Chile; Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Lientur, Concepción, Chile
| | - Jesús Alfredo Ramírez
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Research Group in Advanced Nanocomposites (GINA), Universidad de Concepción, Concepción, Chile
| | - Shiva Saireddy
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Research Group in Advanced Nanocomposites (GINA), Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Department of Microbiology, Faculty of Biological Sciences, Research Laboratory Antibacterial Agents (LIAA), Universidad de Concepción, Concepción, Chile
| | - Arturo Ponce
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas
| | - Manuel Meléndrez-Castro
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Research Group in Advanced Nanocomposites (GINA), Universidad de Concepción, Concepción, Chile; Unidad de Desarrollo Tecnológico, Universidad de Concepción, Concepción, Chile.
| | - Gabriela Sánchez-Sanhueza
- Department of Microbiology, Faculty of Biological Sciences, Research Laboratory Antibacterial Agents (LIAA), Universidad de Concepción, Concepción, Chile; Department of Restorative Dentistry, Discipline of Endodontics, Faculty of Dentistry, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
15
|
Chen H, Zou Y, Zhou A, Liu X, Benjakul S. Elucidating the molecular mechanism of water migration in myosin gels of Nemipterus virgatus during low pressure coupled with heat treatment. Int J Biol Macromol 2023; 253:126815. [PMID: 37690646 DOI: 10.1016/j.ijbiomac.2023.126815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The relationship between myosin denaturation, aggregation and water migration in Nemipterus virgatus myosin gels with different treatment processes under optimal low pressure coupled with heat treatment was investigated to clarify the molecular mechanism of water migration. With the different treatment processes, the proportion of bound water of the myosin gels increased significantly (P < 0.05). Denaturation of myosin S1 sub-fragments and α-helical unfolding during different treatment processes led to an increase in β-sheets content. These promote increased exposure of Try residues and hydrophobic groups of myosin, formation of clathrate hydrates, and reduced mobility of bound water. Furthermore, hydrophobic interactions and disulfide bonds caused the head-head and head-hinge to coalesce into a 3D honeycomb network with greater fractal dimension, less lacunarity, smaller water hole diameter and more water holes. This increased the capillary pressure experienced by the bound water, causing immobile water to migrate towards the bound water. The present study may be necessary to improve the mechanism of water migration in protein gel systems and to promote the industrial application of high pressure processing technology in surimi-based foods.
Collapse
Affiliation(s)
- Haiqiang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China
| | - Yiqian Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Aimei Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojuan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
16
|
Wang Y, Liu C, Lang H, Hu Z, Wang X, Yang Z, Wang Z, Guo Z, Jiang L. Effects of microwave on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates. Food Chem X 2023; 19:100861. [PMID: 37780258 PMCID: PMC10534243 DOI: 10.1016/j.fochx.2023.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
This research explored microwave treatment impact on the structuro-functional aspects of oxidized soy protein aggregates (OSPI). Data showed that oxidative treatment promoted the formation of high molecular weight aggregates through hydrophobic interactions, thereby disrupting the structure of natural soy protein isolates (SPI). Microwave treatment for an appropriate time (≤30 s) caused the molecular structure of OSPI to open up and reduction in molecular weight and disulfide bond content, while absolute zeta potential increased. These modifications increased emulsifying capacity of OSPI, as well as the interfacial adsorption of protein. Longer microwave treatment times (>30 s) caused OSPI to exhibit a tendency to aggregate in TEM and CLSM images. It indicated the appropriate microwave electromagnetic field effect and microwave heating effect could coordinatively regulate soy protein functional properties by modifying their aggregation behavior. The results provided new ideas for reducing resource waste, and further expanding soy protein application in the food industry.
Collapse
Affiliation(s)
- Yichang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huiyuan Lang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinyue Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zongrui Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd., Fuhua Street, High Tech Development Zone, 251206 Yucheng City, Shandong Province, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Liu Y, Huang Y, Zhang L, Li S, Cheng Q, Zhu B, Dong X. Effects of pork fat and linseed oil as additives on gel quality of fish cake. J Texture Stud 2023; 54:693-705. [PMID: 37119016 DOI: 10.1111/jtxs.12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
Pork fat (PF) is a necessary ingredient in making traditional fish cakes (TFCs), which contains saturated fatty acids with potential health concerns. While linseed oil (LO) containing α-linolenic acid is a potential nutrient-enhancing fat substitute. In this study, the effect of pork fat and linseed oil level on gel quality, sensory characteristics, microstructure, and protein conformation of TFCs were characterized. Results showed that the TFCs with 30% pork fat (wt/wt) had the highest gel strength. Additionally, sensory evaluation determined that TFCs with 30% pork fat scored the best by a sensory panel with high gel strength, water-holding capacity, and fresh and sweet taste. The gel strength, chewiness, and hardness of nutrient-enriched fish cakes with 20% linseed oil replaced for pork fat were higher than that only with pork fat (wt/wt) without changing in tenderness and elasticity. Visual results showed that the network was uniform at a moderate level of linseed oil addition (20% LO/PF replacement ratio). The results of this study provided technical guidelines for standardizing the TFC manufacture processes, and useful insight for the development of fish cakes with reduced animal fat content for additional health benefits for consumers.
Collapse
Affiliation(s)
- Yu Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yizhen Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Lin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Shengjie Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Beiwei Zhu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| |
Collapse
|
18
|
Raza H, Xu H, Zhou Q, He J, Zhu B, Li S, Wang M. A review of green methods used in starch-polyphenol interactions: physicochemical and digestion aspects. Food Funct 2023; 14:8071-8100. [PMID: 37647014 DOI: 10.1039/d3fo01729j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The interactions of starch with lipids, proteins, and other major food components during food processing are inevitable. These interactions could result in the formation of V-type or non-V-type complexes of starch. The starch-lipid complexes have been intensively studied for over five decades, however, the complexes of starch and polyphenols are relatively less studied and are the subject of recent interest. The interactions of starch with polyphenols can affect the physicochemical properties and its digestibility. The literature has highlighted several green methods such as ultrasound, microwave, high pressure, extrusion, ball-milling, cold plasma etc., to assist interactions of starch with polyphenols. However, comprehensive information on green methods to induce starch-polyphenol interactions is still scarce. Therefore, in light of the importance and potential of starch-polyphenol complexes in developing functional foods with low digestion, this review has summarized the novel green methods employed in interactions of starch with flavonoids, phenolic acids and tannins. It has been speculated that flavonoids, phenolic acids, and tannins, among other types of polyphenols, may have anti-digestive activities and are also revealed for their interaction with starch to form either an inclusion or non-inclusion complex. Further information on the effects of these interactions on physicochemical parameters to understand the chemistry and structure of the complexes is also provided.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK, 1958, Denmark
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
19
|
Zhang M, Zhu S, Li Q, Xue D, Jiang S, Han Y, Li C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods 2023; 12:foods12061249. [PMID: 36981174 PMCID: PMC10048447 DOI: 10.3390/foods12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heat treatment affects the structural properties of meat proteins, which in turn leads to changes in their sensitivity to digestive enzymes, further affecting the nutritional value of meat and meat products. The mechanism of changes in the structure and digestive properties of myosin under different heating conditions were studied. An increase in heating temperature led to the exposure of internal groups to a polar environment, but to a decrease in the sturdy α-helix structure of myosin (p < 0.05). The results of tryptophan fluorescence verified that the tertiary structure of the protein seemed to be unfolded at 70 °C. Higher protein denaturation after overheating, as proven by the sulfhydryl contents and turbidity, caused irregular aggregate generation. The excessive heating mode of treatment at 100 °C for 30 min caused myosin to exhibit a lower degree of pepsin digestion, which increased the Michaelis constant (Km value) of pepsin during the digestion, but induced the production of new peptides with longer peptide sequences. This study elucidates the effects of cooking temperature on the conformation of myosin and the change in digestibility of pepsin treatment during heating.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Ministry of Education, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuran Zhu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
20
|
Zhao Z, Zhang H, Zhao X, Xu X. Terminal temperature dominates the gel quality of chicken meat paste: An emphasis on multiple heating-cooling regimes. Food Chem 2023; 418:135997. [PMID: 37004316 DOI: 10.1016/j.foodchem.2023.135997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
A survey of various heating strategies, including terminal temperature (70 and 90 °C), step heating (with or without holding at 50 °C for 10 min) and step cooling (with or without holding at 50 °C for 10 min), on the gelation properties of chicken meat paste was conducted. Compared to 70 °C, 90 °C heating drastically increased (p < 0.05) cooking loss (CL) from 5% to > 15% since more immobilized water was pushed out as free water. Step cooling could mitigate the high-temperature-induced CL. The impact of heating strategies on the textural properties of chicken meat is much lower than that on CL. For both 70 °C and 90 °C cooked samples, step heating reduced (p < 0.05) their whiteness by increasing the yellowness. The storage modulus (G') increase during cooling is mainly driven by cooling leaded lower mobility. Overall, low-temperature ramping heating produced excellent meat gel with low energy consumption.
Collapse
|
21
|
Wu S, Xu X, Yang N, Jin Y, Jin Z, Xie Z. Non-Conventional Induction Heat Treatment: Effect of Design and Electrical Parameters on Apple Juice Safety and Quality. Foods 2022; 11:3937. [PMID: 36496744 PMCID: PMC9735545 DOI: 10.3390/foods11233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The proposed non-conventional induction heating, which combines an MSCP and VDC structure, was proved to have excellent thermal effect. Different from other electric field sterilization, this electrotechnology operates with no electrodes, and it is a continuous-flow process with short-duration (about 20 s). In current study, the parameters related to temperature rise were investigated, including applied voltage, frequency, the diameter of the secondary coil and heating tube, as well as their length, etc. It was demonstrated that a smaller diameter of the heating tube, parallel connection sample coils, and higher frequency were beneficial for the inactivation of microorganisms. At 500 Hz, the optimal condition is 800 V, d1 = 2 mm, and L1 = 10 cm. Notably, the system could inactivate all microorganisms and maintained the physicochemical properties of apple juice at 40 kHz. It suggests that this structural design has the potential for industrial applications and the proposed induction heating can realize the rapid sterilization of liquid food without applying electrodes.
Collapse
Affiliation(s)
- Shilin Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academic of Sciences, Jinan 250301, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academic of Sciences, Jinan 250301, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengjun Xie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
22
|
Qu C, Li Y, Du S, Geng Y, Su M, Liu H. Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Res Int 2022; 161:111805. [DOI: 10.1016/j.foodres.2022.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
|
23
|
Zhang T, Wang J, Feng J, Liu Y, Suo R, Ma Q, Sun J. Effects of ultrasonic-microwave combination treatment on the physicochemical, structure and gel properties of myofibrillar protein in Penaeus vannamei (Litopenaeus vannamei) surimi. ULTRASONICS SONOCHEMISTRY 2022; 90:106218. [PMID: 36356497 PMCID: PMC9650070 DOI: 10.1016/j.ultsonch.2022.106218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The objective of this study was to evaluate the effects of single ultrasound (360 W, 20 min), single microwave (10 W/g, 120 s) and ultrasonic-microwave combination treatment on shrimp surimi gel properties. The structure and physicochemical properties of myofibrillar protein (MP) were also determined. Low-field nuclear magnetic resonance showed that the fluidity of water molecules and the moisture content decreased, the stability and water holding capacity (WHC) increased after single ultrasound, single microwave and ultrasonic-microwave combination treatment. Compared with the traditional water bath treatment, ultrasound and microwave treatment reduced the total sulfhydryl content and promoted the formation of intermolecular disulfide bonds and hydrophobic interactions, which improved the compactness of the network structure of shrimp surimi gel. Moreover, Fourier transform infrared spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that these treatments not only inhibited the degradation of MP, but also decreased the α-helix content and increased the β-sheet content. The three treatments also significantly reduced the particle size and decreased the solubility of MP. Overall, the effect of ultrasonic-microwave combination treatment was superior to that of either single treatment.
Collapse
Affiliation(s)
- Tong Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jiaqi Feng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| |
Collapse
|
24
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
25
|
Zhou A, Chen H, Zou Y, Liu X, Benjakul S. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration. Food Res Int 2022; 157:111230. [DOI: 10.1016/j.foodres.2022.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
|
26
|
Xu Y, Lv Y, Yin Y, Zhao H, Yi S, Li X, Li J. Impacts of yeast β‐glucan on thermal aggregation and flavour adsorption capacity of Spanish mackerel myosin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yanan Lv
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Yiming Yin
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Honglei Zhao
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Shumin Yi
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing Jinzhou 121013 China
| |
Collapse
|
27
|
Chen X, Yang J, Shen M, Chen Y, Yu Q, Xie J. Structure, function and advance application of microwave-treated polysaccharide: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Huang Q, Huang X, Liu L, Wang G, Song H, Geng F, Luo P. Effect of nano eggshell calcium on the structure, physicochemical, and gel properties of threadfin bream (Nemipterus virgatus) actomyosin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Insight into the Effect of Ice Addition on the Gel Properties of Nemipterus virgatus Surimi Gel Combined with Water Migration. Foods 2021; 10:foods10081815. [PMID: 34441590 PMCID: PMC8392640 DOI: 10.3390/foods10081815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The effect of the amount of ice added (20–60%) on the gel properties and water migration of Nemipterus virgatus surimi gel obtained with two-stage heat treatment was studied. The gel strength and water-holding capability (WHC) of the surimi gel with 30% ice added were significantly higher than those of other treatment groups (p < 0.05). The addition of 30% ice was conducive to the increase of protein β-sheet proportion during heat treatment, exposing more reactive sulfhydryl groups. These promoted the combination of protein-protein through disulfide bonds and hydrophobic-hydrophobic interactions, forming an ordered three-dimensional gel network structure. Meanwhile, the increase in hydrogen bonds promoted the protein-water interaction. Low-field nuclear magnetic resonance analysis showed that more bound water was locked in the gel system, reducing the migration of immobile water to free water and finally showing better gel properties. When the amount of ice added was insufficient (20%), the gel structure lacked the support of immobile water, resulting in deterioration of gel strength. However, excessive addition of ice (>30%) was not conducive to the combination of protein-protein and protein-water, forming a large and rough gel structure, resulting in the migration of immobile water to free water and ultimately exhibited weak gel properties.
Collapse
|
30
|
Pure AE, Yarmand MS, Farhoodi M, Adedeji A. Microwave treatment to modify textural properties of high protein gel applicable as dysphagia food. J Texture Stud 2021; 52:638-646. [PMID: 33969884 DOI: 10.1111/jtxs.12611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 12/20/2022]
Abstract
The study aimed to formulate a high protein base as a dysphagia food and investigate the possibility of textural modification by applying microwave treatments. The formulated mixture contained 41.7% pea protein (dry basis), which exhibited shear thinning behavior. The application of microwave processing at 300, 500, and 700 W for 60, 120, and 180 s showed that at a higher level of energy induction by microwave, the hardness of the sample gradually increased from a fluid gel to a soft solid and more rigid levels. Processing at 300 and 500 W in the tested range showed that textural properties (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness) of the sample could be modulated within the recommended criteria for dysphagia food, providing the possibility of individualization of food texture for dysphagia disorder. Two main causes of these textural changes could be water evaporation and protein denaturation, in which, regarding the ratio of water evaporation to the size of textural changes, protein denaturation was thought to have the main impact on the phenomena.
Collapse
Affiliation(s)
- Ali Ebrahimi Pure
- Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Saeid Yarmand
- Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akinbode Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
31
|
Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|