1
|
Yang Y, Zhang Z, Wang Z, Pan R, Wu H, Zhai S, Wu G, Fu W, Gao H. Multi-chromatic and multi-component lateral flow immunoassay for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified crops. Mikrochim Acta 2024; 192:16. [PMID: 39680231 DOI: 10.1007/s00604-024-06853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024]
Abstract
A multi-chromatic and multi-component lateral flow immunoassay (MCMC-LFIA) was developed for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified (GM) crops. Captured antibodies specific to these exogenous proteins were separately immobilized on a nitrocellulose membrane as test zones. Multi-colored microspheres, used as visible multi-probes, were conjugated with corresponding antibodies and sprayed on the conjugate pad. The assay results can be visually interpreted within 10 min by observing the appearance of colored bands. The MCMC-LFIA demonstrated high sensitivity, with detection of limits of 7.8 ng/mL for CP4 EPSPS and 2.5 ng/mL for Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins, significantly improving the performance of previously reported LFIAs. The MCMC-LFIA exhibited excellent specificity and was validated for practical use in field-based applications. The proposed MCMC-LFIA offers a rapid, sensitive, and user-friendly tool for the on-site large-scale screening of GM materials.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zini Zhang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhi Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Ruxin Pan
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huimin Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Wei Fu
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100176, China.
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
2
|
Zhu J, Guo G, Liu J, Li X, Yang X, Liu M, Fu C, Zeng J, Li J. One-pot synthesized Au@Pt nanostars-based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 nucleocapsid antibody. Anal Chim Acta 2024; 1292:342241. [PMID: 38309851 DOI: 10.1016/j.aca.2024.342241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
In addition to confirming virus infection, quantitative identification of the antibodies to severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) also evaluates persons immunity to guide personal protection. However, portable assays for fast and accurate quantification of SARS-CoV-2 antibodies remain challenging. In this work, we synthesized Au@Pt star-like nanoparticles (NPs) quickly and easily by a one-pot wet-chemical approach, allowing the stellate Au core to be partially decorated by Pt nanoshells. The nanoparticles were used as probe in a lateral flow immunoassay (LFIA) that operated in both colorimetric and photothermal dual modes, which could detect the antibodies to the SARS-CoV-2 nucleocapsid (N) protein with high sensitivity. Due to the sharp tips on the external region of nanostars and surface plasmon coupling effect between the Au core and Pt shell, the NIR absorption capacity and photothermal performance of these NPs were exceptional. Under optimal conditions, the colorimetric mode's detection limit for SARS-CoV-2 N protein antibody was 1 ng mL-1, which is significantly lower by 2-order of magnitude compared to commercially available colloidal gold strips. And the detection limit for the photothermal mode was as low as 24.91 pg mL-1, which was approximately 40-fold more sensitive than colorimetric detection. Moreover, the method demonstrated favorable specificity, reproducibility and stability. Finally, the approach was employed for the successful identification of actual serum samples. Therefore, the dual-mode LFIA can be applied for screening and tracking the early immunological reaction to SARS-CoV-2, and it has great promise for clinical application.
Collapse
Affiliation(s)
- Jinyue Zhu
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jianting Liu
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xianning Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Min Liu
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chunhui Fu
- Qingdao Henderson Biological Technology Co., Ltd, Qingdao, 266109, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Jingwen Li
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
3
|
Liu H, Hu X, Zeng H, He C, Cheng F, Tang X, Wang J. A rapid and high-throughput system for the detection of transgenic products based on LAMP-CRISPR-Cas12a. Curr Res Food Sci 2023; 7:100605. [PMID: 37868002 PMCID: PMC10589767 DOI: 10.1016/j.crfs.2023.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
With the increasing acreage of genetically modified crops worldwide, rapid and efficient detection technologies have become very important for the regulation and screening of GM organisms. We constructed a method based on loop-mediated isothermal amplification (LAMP), CRISPR-Cas12a and lateral flow assay (LAMP-CRISPR-Cas12a-LFA). It is an intuitive, sensitive and specific fluorescence detection and test strip system to detect CP4-EPSPS and Cry1Ab/Ac genes in field screening. The LAMP-CRISPR-Cas12a-LFA method has a limit of detection (LOD) of 100 copies based on lateral flow test strips after optimization of the conditions with screened specific primers, and the entire detection process can be completed within 1 h at 61 °C. The system was used to evaluate field test samples and showed high reproducibility after testing products containing CP4-EPSPS and Cry1Ab/Ac genes, and both were detectable. The LAMP-CRISPR-Cas12a-LFA method established in this paper functions as a rapid field detection method. It requires only one portable thermostatic instrument, which renders it compatible with the rapid detection of field samples and useable at experimental workstations, in law enforcement field work, and in local inspection and quarantine departments.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Xiuwen Hu
- College of Food Sciences and Technology, Shanghai Ocean University, 999 Huancheng Road Shanghai, 200120, China
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Chuan He
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Fang Cheng
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| |
Collapse
|
4
|
Luo T, Li L, Wang S, Cheng N. Research Progress of Nucleic Acid Detection Technology for Genetically Modified Maize. Int J Mol Sci 2023; 24:12247. [PMID: 37569623 PMCID: PMC10418336 DOI: 10.3390/ijms241512247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Genetically modified (GM) maize is one of the earliest GM crops to have achieved large-scale commercial cultivation globally, and it is of great significance to excel in the development and implementation of safety policy regarding GM, and in its technical oversight. This article describes the general situation regarding genetically modified maize, including its varieties, applications, relevant laws and regulations, and so on. From a technical point of view, we summarize and critically analyze the existing methods for detecting nucleic acid levels in genetically modified maize. The nucleic acid extraction technology used for maize is explained, and the introduction of traditional detection techniques, which cover variable-temperature and isothermal amplification detection technology and gene chip technology, applications in maize are described. Moreover, new technologies are proposed, with special attention paid to nucleic acid detection methods using sensors. Finally, we review the current limitations and challenges of GM maize nucleic acid testing and share our vision for the future direction of this field.
Collapse
Affiliation(s)
- Tongyun Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Lujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Shirui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Nan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Zhang J, Feng X, Jin J, Fang H. Concise Cascade Methods for Transgenic Rice Seed Discrimination using Spectral Phenotyping. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0071. [PMID: 37519936 PMCID: PMC10380542 DOI: 10.34133/plantphenomics.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Currently, the presence of genetically modified (GM) organisms in agro-food markets is strictly regulated by enacted legislation worldwide. It is essential to ensure the traceability of these transgenic products for food safety, consumer choice, environmental monitoring, market integrity, and scientific research. However, detecting the existence of GM organisms involves a combination of complex, time-consuming, and labor-intensive techniques requiring high-level professional skills. In this paper, a concise and rapid pipeline method to identify transgenic rice seeds was proposed on the basis of spectral imaging technologies and the deep learning approach. The composition of metabolome across 3 rice seed lines containing the cry1Ab/cry1Ac gene was compared and studied, substantiating the intrinsic variability induced by these GM traits. Results showed that near-infrared and terahertz spectra from different genotypes could reveal the regularity of GM metabolic variation. The established cascade deep learning model divided GM discrimination into 2 phases including variety classification and GM status identification. It could be found that terahertz absorption spectra contained more valuable features and achieved the highest accuracy of 97.04% for variety classification and 99.71% for GM status identification. Moreover, a modified guided backpropagation algorithm was proposed to select the task-specific characteristic wavelengths for further reducing the redundancy of the original spectra. The experimental validation of the cascade discriminant method in conjunction with spectroscopy confirmed its viability, simplicity, and effectiveness as a valuable tool for the detection of GM rice seeds. This approach also demonstrated its great potential in distilling crucial features for expedited transgenic risk assessment.
Collapse
Affiliation(s)
- Jinnuo Zhang
- Department of Agricultural and Biological Engineering,
Purdue University, West Lafayette, IN 47907, USA
| | - Xuping Feng
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou, China
| | - Jian Jin
- Department of Agricultural and Biological Engineering,
Purdue University, West Lafayette, IN 47907, USA
| | - Hui Fang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou, China
- Huzhou Institute of Zhejiang University, Huzhou, China
| |
Collapse
|
6
|
Zeng H, Zhang M, Liu H, Liu J, Zhu L, Feng D, Wang J. Two electrochemiluminescence immunosensors for the sensitive and quantitative detection of the CP4-EPSPS protein in genetically modified crops. Food Chem 2023; 428:136818. [PMID: 37421663 DOI: 10.1016/j.foodchem.2023.136818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Two different models of electrochemiluminescence (ECL) immunosensors for the sensitive and quantitative detection of the CP4-EPSPS protein in genetically modified (GM) crops were proposed in this study. One was a signal-reduced ECL immunosensor based on nitrogen-doped graphene, graphitic carbon nitride and polyamide-amine (GN-PAMAM-g-C3N4) composites as the electrochemically active substance. The other model was a signal-enhanced ECL immunosensor based on a GN-PAMAM modified electrode for the detection of CdSe/ZnS quantum dots (QDs)-labeled antigens. The ECL signal responses of the reduced and enhanced immunosensors linearly decreased as the increase of the soybean RRS and RRS-QDs content in the range of 0.05% to 1.5% and 0.025% to 1.0%, with the limits of detection of 0.03% and 0.01% (S/N = 3), respectively. Both of the ECL immunosensors showed good specificity, stability, accuracy, and reproducibility in the analysis of real samples. The results indicate that the two immunosensors provide an ultra-sensitive and quantitative approach for the determination of the CP4-EPSPS protein. Due to their outstanding performances, the two ECL immunosensors could be useful tools for achieving the effective regulation of GM crops.
Collapse
Affiliation(s)
- Haijuan Zeng
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co. Ltd., Shanghai 201106, China
| | - Minghao Zhang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science, Yangtze University, Jingzhou 434022, China
| | - Hua Liu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Juan Liu
- School of Public Health, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Lemei Zhu
- School of Public Health, Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Dongsheng Feng
- Shanghai Center of Agri-Products Quality and Safety, Shanghai 200335, China
| | - Jinbin Wang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| |
Collapse
|
7
|
Zhao T, Liang P, Ren J, Zhu J, Yang X, Bian H, Li J, Cui X, Fu C, Xing J, Wen C, Zeng J. Gold-silver alloy hollow nanoshells-based lateral flow immunoassay for colorimetric, photothermal, and SERS tri-mode detection of SARS-CoV-2 neutralizing antibody. Anal Chim Acta 2023; 1255:341102. [PMID: 37032051 PMCID: PMC10026621 DOI: 10.1016/j.aca.2023.341102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
Although many approaches have been developed for the quick assessment of SARS-CoV-2 infection, few of them are devoted to the detection of the neutralizing antibody, which is essential for assessing the effectiveness of vaccines. Herein, we developed a tri-mode lateral flow immunoassay (LFIA) platform based on gold-silver alloy hollow nanoshells (Au-Ag HNSs) for the sensitive and accurate quantification of neutralizing antibodies. By tuning the shell-to-core ratio, the surface plasmon resonance (SPR) absorption band of the Au-Ag HNSs is located within the near infrared (NIR) region, endowing them with an excellent photothermal effect under the irradiation of optical maser at 808 nm. Further, the Raman reporter molecule 4-mercaptobenzoic acid (MBA) was immobilized on the gold-silver alloy nanoshell to obtain an enhanced SERS signal. Thus, these Au-Ag HNSs could provide colorimetric, photothermal and SERS signals, with which, tri-mode strips for SARS-CoV-2 neutralizing antibody detection were constructed by competitive immunoassay. Since these three kinds of signals could complement one another, a more accurate detection was achieved. The tri-mode LFIA achieved a quantitative detection with detection limit of 20 ng/mL. Moreover, it also successfully detected the serum samples from 98 vaccinated volunteers with 79 positive results, exhibiting great application value in neutralizing antibody detection.
Collapse
Affiliation(s)
- Tianyu Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Penghui Liang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jiaqi Ren
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jinyue Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xianning Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Hongyu Bian
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingwen Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiaofeng Cui
- Qingdao Henderson Biological Technology Co., Ltd, Qingdao, 266109, PR China
| | - Chunhui Fu
- Qingdao Henderson Biological Technology Co., Ltd, Qingdao, 266109, PR China
| | - Jinyan Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China.
| | - Congying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
8
|
Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. BIOSENSORS 2023; 13:320. [PMID: 36979532 PMCID: PMC10046603 DOI: 10.3390/bios13030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.
Collapse
|
9
|
Wang M, Wang H, Li K, Li X, Wang X, Wang Z. Review of CRISPR/Cas Systems on Detection of Nucleotide Sequences. Foods 2023; 12:foods12030477. [PMID: 36766007 PMCID: PMC9913930 DOI: 10.3390/foods12030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Nowadays, with the rapid development of biotechnology, the CRISPR/Cas technology in particular has produced many new traits and products. Therefore, rapid and high-resolution detection methods for biotechnology products are urgently needed, which is extremely important for safety regulation. Recently, in addition to being gene editing tools, CRISPR/Cas systems have also been used in detection of various targets. CRISPR/Cas systems can be successfully used to detect nucleic acids, proteins, metal ions and others in combination with a variety of technologies, with great application prospects in the future. However, there are still some challenges need to be addressed. In this review, we will list some detection methods of genetically modified (GM) crops, gene-edited crops and single-nucleotide polymorphisms (SNPs) based on CRISPR/Cas systems, hoping to bring some inspiration or ideas to readers.
Collapse
Affiliation(s)
- Mengyu Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoqian Wang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Kai Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Li
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xujing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhixing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
10
|
Meng S, Liu D, Li Y, Dong N, Liu S, Liu C, Li X, You T. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129759. [PMID: 36058185 DOI: 10.1016/j.jhazmat.2022.129759] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Currently, the development of sensitive and visual strategy for Cry1Ab detection, particularly using a switchable dual-mode detection system based on a single component, remains a great challenge. Here, a photoelectrochemical (PEC) and visual dual-mode sensor was designed for Cry1Ab detection based on a proximity hybridization driven multifunctional probe. In the presence of Cry1Ab, specific desorption of the antibody-DNA conjugate was achieved via sufficient proximity hybridization, leading to the selective release of the multifunctional signal probe, i.e., antibody-labeled single-stranded DNA-gold nanoparticles (Ab1-S1-AuNPs). The released Ab1-S1-AuNPs reduced the photocurrent signal and produced a colored response, thereby achieving PEC and visual dual-mode detection based on a single component. Owing to the different signal generation mechanisms, two independent signals were obtained simultaneously, which provided self-verification to improve reliability and accuracy. Taking advantage of the PEC sensitive detection and visual prediction, the dual-mode sensor achieved efficient detection of the Cry1Ab protein. The developed sensor was successfully used to determine Cry1Ab in corn, wheat, and soil samples with satisfactory results. This method offers a promising biosensing platform for the on-site detection of Cry1Ab protein.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
11
|
Wang J, Hu X, Wang Y, Zeng H, Liu X, Liu H. Rapid detection of genetically modified products based on CRISPR-Cas12a combined with recombinase polymerase amplification. Curr Res Food Sci 2022; 5:2281-2286. [DOI: 10.1016/j.crfs.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
|
12
|
Meng S, Liu D, Li Y, Dong N, Chen T, You T. Engineering the Signal Transduction between CdTe and CdSe Quantum Dots for in Situ Ratiometric Photoelectrochemical Immunoassay of Cry1Ab Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13583-13591. [PMID: 36251948 DOI: 10.1021/acs.jafc.2c05910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controllable modulation of a response mode is extremely attracting to fabricate biosensor with programmable analytical performances. Here, we reported a proof-of-concept ratiometric photoelectrochemical (PEC) immunoassay of Cry1Ab protein based on the signal transduction regulation at the sensing interface. A sandwich-type PEC structure was designed so that gold nanorods sensitized quantum dots to fix primary antibody (Au NRs/QDs-Ab1) and methylene blue sensitized QDs to combine a second antibody (MB/QDs-Ab2), which served as photoelectric substrate and signal amplifier, respectively. Unlike common recognition element, such a sandwich-type PEC structure allowed for the in situ generation of two specific response signals. For analysis, Cry1Ab captured by Au NRs/QDs-Ab1 led to a decreased photocurrent (ICry1Ab), while the subsequently anchored MB/QDs-Ab2 produced another photocurrent (IMB). Noteworthy, by taking advantage of the different energy band gaps of QDs, varying locations of CdTe and CdSe QDs could realize different signal transduction strategies (i.e., Mode 1 and Mode 2). Investigations on data analysis of ICry1Ab and IMB via different routes demonstrated the superior analytical performances of ratiometry (Mode 1). Consequently, the ratiometric PEC immunosensor offered a linear range of 0.01-100 ng mL-1 with a detection limit of 1.4 pg mL-1. This work provides an efficient strategy for in situ collection of multiple photocurrents to design ratiometric PEC sensors.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
13
|
One-Pot Synthesis of HRP&SA/ZIF-8 Nanocomposite and Its Application in the Detection of Insecticidal Crystalline Protein Cry1Ab. NANOMATERIALS 2022; 12:nano12152679. [PMID: 35957109 PMCID: PMC9370751 DOI: 10.3390/nano12152679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
This study reported the functionality integration of zeolitic imidazolate framework-8 (ZIF-8) with horseradish peroxidase (HRP) and streptavidin (SA) for the synthesis of a HRP&SA/ZIF-8 nanocomposite through one-pot coprecipitation. The synthesized HRP&SA/ZIF-8 nanocomposite was then employed as the ideal signal tag for application in the enzyme-linked immunosorbent assay (ELISA) and exhibited excellent sensitivity, selectivity and accuracy in the detection of insecticidal crystalline (Cry) protein Cry1Ab as a transgenic biomarker with a detection limit of 4.8 pg/mL. This proposed method provides a new way for the detection of transgenic biomarkers in food and may inspire further integration of a variety of biomolecules into ZIF-8 for applications ranging from biosensing, biomedicine, and catalysis to energy.
Collapse
|
14
|
Liang P, Guo Q, Zhao T, Wen CY, Tian Z, Shang Y, Xing J, Jiang Y, Zeng J. Ag Nanoparticles with Ultrathin Au Shell-Based Lateral Flow Immunoassay for Colorimetric and SERS Dual-Mode Detection of SARS-CoV-2 IgG. Anal Chem 2022; 94:8466-8473. [PMID: 35657150 PMCID: PMC9211040 DOI: 10.1021/acs.analchem.2c01286] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Immunoglobulin detection is essential for diagnosing progression of SARS-CoV-2 infection, for which SARS-CoV-2 IgG is one of the most important indexes. In this paper, Ag nanoparticles with ultrathin Au shells (∼2 nm) embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured via a ligand-assisted epitaxial growth method and integrated into lateral flow immunoassay (LFIA) for colorimetric and SERS dual-mode detection of SARS-CoV-2 IgG. AgMBA@Au possessed not only the surface chemistry advantages of Au but also the superior optical characteristics of Ag. Moreover, the nanogap between the Ag core and the Au shell also greatly enhanced the Raman signal. After being modified with anti-human antibodies, AgMBA@Au recognized and combined with SARS-CoV-2 IgG, which was captured by the SARS-CoV-2 spike protein on the T line. Qualitative analysis was achieved by visually observing the color of the T line, and quantitative analysis was conducted by measuring the SERS signal with a sensitivity four orders of magnitude higher (detection limit: 0.22 pg/mL). The intra-assay and inter-assay variation coefficients were 7.7 and 10.3%, respectively, and other proteins at concentrations of 10 to 20 times higher than those of SARS-CoV-2 IgG could hardly produce distinguishable signals, confirming good reproducibility and specificity. Finally, this method was used to detect 107 clinical serum samples. The results agreed well with those obtained from enzyme-linked immunosorbent assay kits and were significantly better than those of the colloidal gold test strips. Therefore, this dual-mode LFIA has great potential in clinical practical applications and can be used to screen and trace the early immune response of SARS-CoV-2.
Collapse
Affiliation(s)
- Penghui Liang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Qi Guo
- The
Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Tianyu Zhao
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Cong-Ying Wen
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Zhangyu Tian
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Yanxue Shang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Jinyan Xing
- The
Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yongzhong Jiang
- Hubei
Provincial Center for Disease Control and Prevention, Wuhan 430065, China
| | - Jingbin Zeng
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| |
Collapse
|
15
|
Chou CC, Lin YT, Kuznetsova I, Wang GJ. Genetically Modified Soybean Detection Using a Biosensor Electrode with a Self-Assembled Monolayer of Gold Nanoparticles. BIOSENSORS 2022; 12:207. [PMID: 35448267 PMCID: PMC9025051 DOI: 10.3390/bios12040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, we proposed a genosensor that can qualitatively and quantitatively detect genetically modified soybeans using a simple electrode with evenly distributed single layer gold nanoparticles. The DNA sensing electrode is made by sputtering a gold film on the substrate, and then sequentially depositing 1,6-hexanedithiol and gold nanoparticles with sulfur groups on the substrate. Then, the complementary to the CaMV 35S promoter (P35S) was used as the capture probe. The target DNA directly extracted from the genetically modified soybeans rather than the synthesized DNA segments was used to construct the detection standard curve. The experimental results showed that our genosensor could directly detect genetically modified genes extracted from soybeans. We obtained two percentage calibration curves. The calibration curve corresponding to the lower percentage range (1-6%) exhibits a sensitivity of 2.36 Ω/% with R2 = 0.9983, while the calibration curve corresponding to the higher percentage range (6-40%) possesses a sensitivity of 0.1 Ω/% with R2 = 0.9928. The limit of detection would be 1%. The recovery rates for the 4% and 5.7% GMS DNA were measured to be 104.1% and 102.49% with RSD at 6.24% and 2.54%. The gold nanoparticle sensing electrode developed in this research is suitable for qualitative and quantitative detection of genetically modified soybeans and can be further applied to the detection of other genetically modified crops in the future.
Collapse
Affiliation(s)
- Cheng-Chi Chou
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Ying-Ting Lin
- Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 125009 Moscow, Russia;
| | - Gou-Jen Wang
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan;
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
16
|
Wang J, Yang Q, Liu H, Chen Y, Jiang W, Wang Y, Zeng H. A nanomaterial-free and thionine labeling-based lateral flow immunoassay for rapid and visual detection of the transgenic CP4-EPSPS protein. Food Chem 2022; 378:132112. [PMID: 35033711 DOI: 10.1016/j.foodchem.2022.132112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Nanomaterial-based lateral flow immunoassays (LFIAs) have been widely used for the on-site detection of genetically modified components. However, the practical applications are often limited by the complex matrix, such as in red samples. In this study, a thionine (Thi) labeling-based LFIA was developed for the first time to detect CP4-EPSPS protein. The optimal labeling concentration of Thi was 0.5 mg/mL, and the antibody could be rapidly coupled to Thi in 10 min. The visual limit of detection (vLOD) levels for transgenic soybean, sugar beet, and cotton containing the CP4-EPSPS protein reached 0.05%, 0.1%, and 0.1%, respectively, and had no interference from other proteins. After storage at 4 °C for three months, the LFIA sensitivity remained unchanged and showed good stability. This method could be used to screen and detect a variety of transgenic crops containing the CP4-EPSPS protein, and the results were consistent with the current standard assay. This study pioneered the development of an immunochromatographic method using Thi as a marker and applied it to the detection of the CP4-EPSPS protein in herbicide-tolerant transgenic crops. This provides a new method for the rapid immunoassay of Thi as a dye and has good prospects for practical application.
Collapse
Affiliation(s)
- Jinbin Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Qianwen Yang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hua Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yifan Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Wei Jiang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Yu Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haijuan Zeng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China.
| |
Collapse
|
17
|
Yang Q, Wang Y, Liu X, Liu H, Bao H, Wang J, Zeng H. A Label-Free Immunosensor Based on Gold Nanoparticles/Thionine for Sensitive Detection of PAT Protein in Genetically Modified Crops. Front Chem 2021; 9:770584. [PMID: 34950635 PMCID: PMC8688707 DOI: 10.3389/fchem.2021.770584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Genetically modified (GM) crops containing phosphinothricin acetyltransferase (PAT) protein has been widely planted worldwide. The development of a rapid method for detecting PAT protein is of great importance to food supervision. In this study, a simple label-free electrochemical immunosensor for the ultrasensitive detection of PAT protein was constructed using thionine (Thi)/gold nanoparticles (AuNPs) as signal amplification molecules and electrochemically active substances. Under optimum conditions, the limits of detection of the sensor for soybean A2704-12 and maize BT-176 were 0.02% and 0.03%, respectively. The sensor could detect crops containing PAT protein and had no cross-reaction with other proteins. After storage at 4°C for 33 days, the sensor still retained 82.5% of the original signal, with a relative standard deviation (RSD) of 0.92%. The recoveries of the sensor for soybean A2704-12 and maize BT-176 were 85%-108% and 98%-113%, respectively. The developed PAT-target immunosensor with high sensitivity, specificity, and satisfactory reproducibility and accuracy will be a useful tool in the trace screening of GM crops. Moreover, this design concept can be extended to other proteins by simply changing the antibody.
Collapse
Affiliation(s)
- Qianwen Yang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yu Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Hua Liu
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Huifang Bao
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Jinbin Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Haijuan Zeng
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
18
|
Liu J, Liang YS, Hu T, Zeng H, Gao R, Wang L, Xiao YH. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112805. [PMID: 34592526 DOI: 10.1016/j.ecoenv.2021.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 05/26/2023]
Abstract
During the production and application of Bacillus thuringiensis (Bt) transgenic crops, large doses of insecticidal Bt toxic proteins are expressed continuously. The multi-interfacial behaviors of Bt proteins entering the environment in multi-media affects their states of existence transformation, transport and fate as well as biological and ecological impacts. Because both soil matrix and organisms will be exposed to Bt proteins to a certain extent, knowledge of the multi-interfacial behaviors and affecting factors of Bt proteins are vital not only for understanding the source-sink distribution mechanisms, predicting their bio-availability, but also for exploring the soil safety and environmental problems caused by the interaction between Bt proteins and soil matrix. This review summarized and analyzed various internal and external factors that affect the adsorption/ desorption and degradation of Bt proteins in the environment, so as to understand the multi-interfacial behaviors of Bt proteins. In addition, the reasons of concentration changes of Bt proteins in soil are discussed. This review will also discuss the existing knowledge of the combined effects of Bt proteins and other pollutants in environment. Finally, discussing the factors that should be considered when assessing the environmental risk of Bt proteins, thus to further improve the understanding of the environmental fate of Bt proteins.
Collapse
Affiliation(s)
- Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Hong Zeng
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| |
Collapse
|
19
|
Zhang Q, Fang L, Jia B, Long N, Shi L, Zhou L, Zhao H, Kong W. Optical lateral flow test strip biosensors for pesticides: Recent advances and future trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Gu J, Ye R, Xu Y, Yin Y, Li S, Chen H. A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Detection of GM Canola MS11, DP-073496-4, and MON88302 events using multiplex PCR coupled with capillary electrophoresis. Food Sci Biotechnol 2021; 30:565-570. [PMID: 33936848 DOI: 10.1007/s10068-021-00882-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 10/21/2022] Open
Abstract
As of 2020, 11 GM canola events have been authorized as food for humans in Korea. However, there are no simultaneous multiplex detection methods for 3 GM canola events (DP-073496-4, MON88302, and MS11). Thus, we established the multiplex polymerase chain reaction (PCR) method coupled with capillary electrophoresis to detect 3 GM canola events. To verify the specificity of event-specific primers, various GM crops of 3 GM soybean events, 6 GM maize events, 2 GM cotton events and 11 GM canola events were prepared. The limit of detection of the developed multiplex PCR was approximately 0.0125% for 3 GM canola events. Certified GM canola and stacked events were analyzed to validate the developed multiplex PCR. This study focuses on establishing multiplex PCR coupled with capillary electrophoresis for newly approved GM canola events and contributes to efficient monitoring GM canola samples in Korea.
Collapse
|