1
|
Li F, Cui C, Li C, Yu Y, Zeng Q, Li X, Zhao W, Dong J, Gao X, Xiang J, Zhang D, Wen S, Yang M. Cytology, metabolomics, and proteomics reveal the grain filling process and quality difference of wheat. Food Chem 2024; 457:140130. [PMID: 38943917 DOI: 10.1016/j.foodchem.2024.140130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Comparative proteomics and non-target metabolomics, together with physiological and microstructural analyses of wheat grains (at 15, 20, 25, and 30 days after anthesis) from two different quality wheat varieties (Gaoyou 5766 (strong-gluten) and Zhoumai 18) were performed to illustrate the grain filling material dynamics and to search for quality control genes. The differential expressions of 1541 proteins and 406 metabolites were found. They were mostly engaged in protein metabolism, stress/defense, energy metabolism, and amino acid metabolism, and the metabolism of stored proteins and carbohydrates was the major focus of the latter stages. The core proteins and metabolites in the growth process were identified, and the candidate genes for quality differences were screened. In conclusion, this study offers a molecular explanation for the establishment of wheat quality, and it aids in our understanding of the intricate metabolic network between different qualities of wheat at the filling stage.
Collapse
Affiliation(s)
- Fang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chao Cui
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chenyang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Yan Yu
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiaoyan Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Wanchun Zhao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jishan Xiang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Dingguo Zhang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Shanshan Wen
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
2
|
Zhang Z, Liu D, Li B, Wang W, Zhang J, Xin M, Hu Z, Liu J, Du J, Peng H, Hao C, Zhang X, Ni Z, Sun Q, Guo W, Yao Y. A k-mer-based pangenome approach for cataloging seed-storage-protein genes in wheat to facilitate genotype-to-phenotype prediction and improvement of end-use quality. MOLECULAR PLANT 2024; 17:1038-1053. [PMID: 38796709 DOI: 10.1016/j.molp.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Wheat is a staple food for more than 35% of the world's population, with wheat flour used to make hundreds of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-gene families and are repetitive, with gaps commonplace in several genome assemblies. To overcome these barriers and efficiently identify superior wheat SSP alleles, we developed "PanSK" (Pan-SSP k-mer) for genotype-to-phenotype prediction based on an SSP-based pangenome resource. PanSK uses 29-mer sequences that represent each SSP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars. Genome-wide association studies with k-mers identified 23 SSP genes associated with end-use quality that represent novel targets for improvement. We evaluated the effect of rye secalin genes on end-use quality and found that removal of ω-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality. Finally, using machine-learning-based prediction inspired by PanSK, we predicted the quality phenotypes with high accuracy from genotypes alone. This study provides an effective approach for genome design based on SSP genes, enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.
Collapse
Affiliation(s)
- Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Binyong Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jize Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Wang Q, Wang Z, Wang Z, Duan Y, Guo H, Liang Y, Zhang X, Zhang Y, Wang J. Effect of high-molecular-weight glutenin subunits silencing on dough aggregation characteristics. Food Chem 2024; 441:138371. [PMID: 38218148 DOI: 10.1016/j.foodchem.2024.138371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
The qualities of wheat dough are influenced by the high-molecular-weight glutenin subunits (HMW-GS), a critical component of wheat gluten protein. However, it is still unknown how HMW-GS silencing affects the aggregation characteristics of dough. Two groups of near-isogenic wheat were used to study the effects of HMW-GS silencing on dough aggregation characteristics, dough texture characteristics, and dough microstructure. It was observed that the content of gliadin in LH-11 strain significantly increased compared to the wild-type (WT). Additionally, the amount of glutenin macropolymer and the glutenin/gliadin both decreased. The aggregation characteristics and rheological characteristics of the dough in LH-11 strain were significantly reduced, and the content of β-sheet in the dough was significantly reduced. The HMW-GS silencing resulted in a reduction in the aggregation of the gluten network in the dough, which related to the alteration of the secondary and microstructure of the gluten.
Collapse
Affiliation(s)
- Qi Wang
- The National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhicheng Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zehao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yaqian Duan
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Haimei Guo
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingjun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China.
| | - Jinshui Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Qiu Y, Han Z, Liu N, Yu M, Zhang S, Chen H, Tang H, Zhao Z, Wang K, Lin Z, Han F, Ye X. Effects of Aegilops longissima chromosome 1S l on wheat bread-making quality in two types of translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:2. [PMID: 38072878 DOI: 10.1007/s00122-023-04504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Two wheat-Ae. longissima translocation chromosomes (1BS·1SlL and 1SlS·1BL) were transferred into three commercial wheat varieties, and the new advanced lines showed improved bread-making quality compared to their recurrent parents. Aegilops longissima chromosome 1Sl encodes specific types of gluten subunits that may positively affect wheat bread-making quality. The most effective method of introducing 1Sl chromosomal fragments containing the target genes into wheat is chromosome translocation. Here, a wheat-Ae. longissima 1BS·1SlL translocation line was developed using molecular marker-assisted chromosome engineering. Two types of translocation chromosomes developed in a previous study, 1BS·1SlL and 1SlS·1BL, were introduced into three commercial wheat varieties (Ningchun4, Ningchun50, and Westonia) via backcrossing with marker-assisted selection. Advanced translocation lines were confirmed through chromosome in situ hybridization and genotyping by target sequencing using the wheat 40 K system. Bread-making quality was found to be improved in the two types of advanced translocation lines compared to the corresponding recurrent parents. Furthermore, 1SlS·1BL translocation lines displayed better bread-making quality than 1BS·1SlL translocation lines in each genetic background. Further analysis revealed that high molecular weight glutenin subunit (HMW-GS) contents and expression levels of genes encoding low molecular weight glutenin subunits (LMW-GSs) were increased in 1SlS·1BL translocation lines. Gliadin and gluten-related transcription factors were also upregulated in the grains of the two types of advanced translocation lines compared to the recurrent parents. This study clarifies the impacts of specific glutenin subunits on bread-making quality and provides novel germplasm resources for further improvement of wheat quality through molecular breeding.
Collapse
Affiliation(s)
- Yuliang Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Cotton Sciences, Shanxi Agricultural University, Yuncheng, 044000, China
| | - Zhiyang Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ningtao Liu
- Keshan Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161600, China
| | - Mei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuangxi Zhang
- Crop Research Institute, Ningxia Academy of Agri-Forestry Sciences, Yinchuan, 750105, China
| | - Haiqiang Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huali Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Zhao
- Institute of Cotton Sciences, Shanxi Agricultural University, Yuncheng, 044000, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhishan Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Yang C, Chen Q, Xin M, Su Z, Du J, Guo W, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. A highly conserved amino acid in high molecular weight glutenin subunit 1Dy12 contributes to gluten functionality and processing quality in wheat. J Genet Genomics 2023; 50:909-912. [PMID: 36396014 DOI: 10.1016/j.jgg.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhenqi Su
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Pourmohammadi K, Abedi E, Hashemi SMB. Gliadin and glutenin genomes and their effects on the technological aspect of wheat-based products. Curr Res Food Sci 2023; 7:100622. [PMID: 38021258 PMCID: PMC10643115 DOI: 10.1016/j.crfs.2023.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Wheat is the most important crops worldwide, providing about one-fifth of the daily protein and calories for human consumption. The quality of cereal-based products is principally governed by the genetic basis of gluten (glutenin and gliadin proteins), which exists in a wide range of variable alleles and is controlled by clusters of genes. There are certain limitations associated with gluten characteristics, which can be genetically manipulated. The present review aimed to investigate the correlation between the genetic characteristics of gluten protein components and wheat-based product's quality. According to various references, Glu-B1d (6 + 8), Glu-B1h (14 + 15) and Glu-B1b (7 + 8) are related to higher gluten strength and pasta quality, while, subunits Dx2 + Dy12 and Dx5 + Dy10, are usually present at the Glu-D1 locus in bread wheat, resulted in lower cooked firmness in pasta. Moreover, introducing Gli-D1/Glu-D3 and Glu-D1 loci into durum wheat genomes, causing to provide the maximum values of gluten index in pasta products. 1Dx5 + 1Dy10 alleles determine the level of increase in dough's consistency, elasticity, viscosity, and extensibility quality of baking and appropriate bread loaf volume, while 1Dx2 + 1Dy12 as the alleles associated with poor baking quality, being more suitable for soft wheat/pastry end uses. Bx7, Bx7OE, 1Bx17 + 1By18, 1Bx13 + 1By16, Bx7 + By9 and 1Bx7 + 1By8 at Glu-B1alleles and 1Ax2* found on Glu-A1, augmented dough strength and has positive effects on consistency, extensibility, viscosity, and elasticity of bread dough. Breeding programs by genome editing have made gluten a promoting component for improving cereal-based products.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
7
|
Liu D, Yang H, Zhang Z, Chen Q, Guo W, Rossi V, Xin M, Du J, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. An elite γ-gliadin allele improves end-use quality in wheat. THE NEW PHYTOLOGIST 2023; 239:87-101. [PMID: 36617723 DOI: 10.1111/nph.18722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/02/2023]
Abstract
Gluten is composed of glutenins and gliadins and determines the viscoelastic properties of dough and end-use quality in wheat (Triticum aestivum L.). Gliadins are important for wheat end-use traits, but the contribution of individual gliadin genes is unclear, since gliadins are encoded by a complex, multigenic family, including many pseudogenes. We used CRISPR/Cas9-mediated gene editing and map-based cloning to investigate the contribution of the γ-gliadin genes annotated in the wheat cultivar 'Fielder', showing that Gli-γ1-1D and Gli-γ2-1B account for most of the γ-gliadin accumulation. The impaired activity of only two γ-gliadin genes in knockout mutants improved end-use quality and reduced gluten epitopes associated with celiac disease (CD). Furthermore, we identified an elite haplotype of Gli-γ1-1D linked to higher end-use quality in a wheat germplasm collection and developed a molecular marker for this allele for marker-assisted selection. Our findings provide information and tools for biotechnology-based and classical breeding programs aimed at improving wheat end-use quality.
Collapse
Affiliation(s)
- Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huaimao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126, Bergamo, Italy
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Yang T, Ge J, Wang P, Zhong Y, Zhou Q, Wang X, Cai J, Huang M, Jiang D, Dai T, Cao W. Effect of High-Molecular Weight Glutenin Subunits (HMW-GSs) on Gluten Polymerization during Biscuit Making: Insights from Experimental and Molecular Dynamics Simulation Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8150-8163. [PMID: 37192322 DOI: 10.1021/acs.jafc.2c08277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effect of high-molecular weight glutenin subunits (HMW-GSs) on gluten polymerization during biscuit making was investigated using a set of HMW-GS deletion lines. Results showed that the deletion of HMW-GSs improved the biscuit quality compared with the wild type (WT), especially in x-type HMW-GS deletion lines. Slight gluten depolymerization was observed during dough mixing, while progressive gluten polymerization occurred during biscuit baking. The deletion of HMW-GSs suppressed the polymerization of glutenin and gliadin compared with the WT during biscuit baking, especially in x-type HMW-GS deletion lines. These actions resulted in less elevation of the intermolecular β-sheet and ordered α-helix and altering the disulfide (SS) conformation to a less stable conformation in HMW-GS deletion lines compared with the WT during baking. Molecular dynamics simulation analysis further demonstrated that x-type HMW-GSs had higher thermal stability compared with y-type HMW-GSs during heating.
Collapse
Affiliation(s)
- Tao Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiakun Ge
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mei Huang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tingbo Dai
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weixing Cao
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
9
|
Yang T, Wang Y, Jiang J, Wang P, Zhong Y, Zhou Q, Wang X, Cai J, Huang M, Jiang D, Dai T, Cao W. Influence of High-Molecular-Weight Glutenin Subunit on Components and Multiscale Structure of Gluten and Dough Quality in Soft Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4943-4956. [PMID: 36924464 DOI: 10.1021/acs.jafc.2c07958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A set of high-molecular-weight glutenin subunit (HMW-GS) deletion lines were used to investigate the influences of HMW-GS on wheat gluten, and dough properties were investigated using a set of HMW-GS deletion lines. Results showed that HMW-GS deletion significantly decreased the dough stability time, as well as viscoelastic moduli (G' and G″), compared with the wild type, where the deletion of x-type HMW-GSs (Ax1d, Bx7d, and Dy12d) decreased more than y-type HMW-GSs (By8d and Dy12d). The deletion of HMW-GS significantly decreased HMW-GS contents and increased α-/γ-gliadin contents. A proteomic study showed that the HMW-GS deletion down-regulated the HMW-GS, β-amylase, serpins, and protein disulfide isomerase and up-regulated the LMW-GS, α/γ-gliadin, and α-amylase inhibitor. Meanwhile, HMW-GS deletion significantly decreased contents of β-turn and β-sheet. In addition, less energetically stable disulfide conformations (trans-gauche-gauche and trans-gauche-trans) were abundant in HMW-GS deletion lines. Furthermore, analysis of five HMW-GSs based on amino acid sequences proved that Dx2 and Bx7 had a more stable structure, followed by Ax1, then Dy12, and finally By8.
Collapse
Affiliation(s)
- Tao Yang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingpeng Wang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiali Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mei Huang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weixing Cao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
10
|
Zhao Y, Zhao J, Hu M, Sun L, Liu Q, Zhang Y, Li Q, Wang P, Ma W, Li H, Gao H, Zhang Y. Transcriptome and Proteome Analysis Revealed the Influence of High-Molecular-Weight Glutenin Subunits (HMW-GSs) Deficiency on Expression of Storage Substances and the Potential Regulatory Mechanism of HMW-GSs. Foods 2023; 12:foods12020361. [PMID: 36673453 PMCID: PMC9857648 DOI: 10.3390/foods12020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The processing quality of wheat is affected by seed storage substances, such as protein and starch. High-molecular-weight glutenin subunits (HMW-GSs) are the major components of wheat seed storage proteins (SSPs); they are also key determinators of wheat end-use quality. However, the effects of HMW-GSs absence on the expression of other storage substances and the regulation mechanism of HMW-GSs are still limited. Previously, a wheat transgenic line LH-11 with complete deletions of HMW-GSs was obtained through introducing an exogenous gene Glu-1Ebx to the wild-type cultivar Bobwhite by transgenic approach. In this study, comparative seed transcriptomics and proteomics of transgenic and non-transgenic lines at different seed developmental stages were carried out to explore the changes in genes and proteins and the underlying regulatory mechanism. Results revealed that a number of genes, including genes related to SSPs, carbohydrates metabolism, amino acids metabolism, transcription, translation, and protein process were differentially enriched. Seed storage proteins displayed differential expression patterns between the transgenic and non-transgenic line, a major rise in the expression levels of gliadins were observed at 21 and 28 days post anthesis (DPA) in the transgenic line. Changes in expressions of low-molecular-weight glutenins (LMW-GSs), avenin-like proteins (ALPs), lipid transfer proteins (LTPs), and protease inhibitors (PIs) were also observed. In addition, genes related to carbohydrate metabolism were differentially expressed, which probably leads to a difference in starch component and deposition. A list of gene categories participating in the accumulation of SSPs was proposed according to the transcriptome and proteome data. Six genes from the MYB and eight genes from the NAC transcription families are likely important regulators of HMW-GSs accumulation. This study will provide data support for understanding the regulatory network of wheat storage substances. The screened candidate genes can lay a foundation for further research on the regulation mechanism of HMW-GSs.
Collapse
Affiliation(s)
- Yun Zhao
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Jie Zhao
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Mengyun Hu
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Lijing Sun
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Qian Liu
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yelun Zhang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Qianying Li
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Peinan Wang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Hui Li
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Huimin Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
- Correspondence: (H.G.); (Y.Z.)
| | - Yingjun Zhang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
- Correspondence: (H.G.); (Y.Z.)
| |
Collapse
|
11
|
Liu G, Gao Y, Wang H, Wang Y, Chen J, Zhang P, Ma H. Premature Termination Codon of 1Dy12 Gene Improves Cookie Quality in Ningmai9 Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:835164. [PMID: 35646032 PMCID: PMC9134186 DOI: 10.3389/fpls.2022.835164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The area between middle and lower reaches of the Yangtze River is the largest region for soft wheat production in China. In soft wheat breeding, the lack of germplasm with desirable quality for end-use products is a barrier. Ningmai9 is the main variety of soft wheat planted in this area. To create germplasm with better quality and yield potential than Ningmai9, mutants of HMW-GSs in Ningmai9 induced by ethylmethanesulfonate (EMS) were obtained. SDS-PAGE showed that two mutants, md10 and md11, were HMW-GS 1Dy deletions. DNA sequencing confirmed that one mutation was caused by a C/T substitution, resulting in the change of CAA encoding glutamine into the termination codon TAA, and another mutation was due to a G/A substitution in the central repetitive domain of the coding region, causing TGG encoding tryptophan to become the termination codon TGA. The premature termination codon of the 1Dy12 gene affected the expression of 1Dy12 and kept the mRNA at a lower transcription level during the kernel development stage in comparison with the wild type. HMW-GS 1Dy12 deletion mutants decreased the content of HMW-GSs and glutenin macropolymers, mixograph envelope peak time and TIMEX width, water solvent retention capacity (WSRC), and lactic acid solvent retention capacity (LASRC). In the HMW-GS 1Dy12 deletion lines, the sugar-snap cookie diameter was 8.70-8.74 cm, which was significantly larger than that in the wild type of 8.0 cm. There were no significant differences in spike number, kernel number, thousand kernel weight, and yield between the deletion lines and wild type. Overall, the study indicated that the knockout of the HMW-GS gene induced by EMS is an effective way to improve wheat quality, and deletion mutants of HMW-GS 1Dy12 decrease gluten strength and increase sugar snap cookie diameter without yield penalty in Ningmai9 wheat.
Collapse
Affiliation(s)
- Guangxiao Liu
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Yujiao Gao
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Huadun Wang
- Co-innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yonggang Wang
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Jianmin Chen
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Pingping Zhang
- Co-innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongxiang Ma
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Yu L, Ma Y, Zhao Y, Rehman AU, Guo L, Liu Y, Yang Y, Wang Z, Cao X, Gao X. Interaction of B-type starch with gluten skeleton improves wheat dough mixing properties by stabilizing gluten micro-structure. Food Chem 2022; 371:131390. [PMID: 34808780 DOI: 10.1016/j.foodchem.2021.131390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 11/04/2022]
Abstract
Some recent studies have revealed individual and the combined interactions of gluten and starch affecting dough mixing properties. However, the combined influence of high-molecular-weight glutenin subunits (HMW-GS) and starch on dough mixing and rheological properties requires elucidation. Thus four recombinant inbred lines, SS 1, SS 2, ZZ 1 and ZZ 2, were selected based on their HMW-GSs compositions. Compared to ZZ 1 and ZZ 2, both SS 1 and SS 2 carried superior HMW-GS alleles, and exhibited extended dough development and stability time, indicating their significant dough mixing characteristics. The gluten skeleton of the wheat lines SS 2 and ZZ 2 with higher B-type starch proportions exhibited fewer breakages along with the rise of dough temperature during mixing. Higher content of B-type starch strengthens interaction between starch and gluten skeleton at the dough heating stage, suggesting a specific range of B-type starch proportion can improve dough mixing characteristics.
Collapse
Affiliation(s)
- Liwei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanrong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiyue Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ata-Ur Rehman
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Lei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingchun Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Karaduman Y, Si̇rel Yeşildağ Z, Akın A. Evaluating selection efficacy of high molecular weight glutenin subunits (HMWGs) by relating gluten quality parameters. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Zhao K, Tao Y, Liu M, Yang D, Zhu M, Ding J, Zhu X, Guo W, Zhou G, Li C. Does temporary heat stress or low temperature stress similarly affect yield, starch, and protein of winter wheat grain during grain filling? J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Wang Y, Chen Q, Li Y, Guo Z, Liu C, Wan Y, Hawkesford M, Zhu J, Wu W, Wei M, Zhao K, Jiang Y, Zhang Y, Xu Q, Kong L, Pu Z, Deng M, Jiang Q, Lan X, Wang J, Chen G, Ma J, Zheng Y, Wei Y, Qi P. Post-translational cleavage of HMW-GS Dy10 allele improves the cookie-making quality in common wheat ( Triticum aestivum). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:49. [PMID: 37309542 PMCID: PMC10236088 DOI: 10.1007/s11032-021-01238-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Wheat is a major staple food crop worldwide because of the unique properties of wheat flour. High molecular weight glutenin subunits (HMW-GSs), which are among the most critical determinants of wheat flour quality, are responsible for the formation of glutenin polymeric structures via interchain disulfide bonds. We herein describe the identification of a new HMW-GS Dy10 allele (Dy10-m619SN). The amino acid substitution (serine-to-asparagine) encoded in this allele resulted in a partial post-translational cleavage that produced two new peptides. These new peptides disrupted the interactions among gluten proteins because of the associated changes to the number of available cysteine residues for interchain disulfide bonds. Consequently, Dy10-m619SN expression decreased the size of glutenin polymers and weakened glutens, which resulted in wheat dough with improved cookie-making quality, without changes to the glutenin-to-gliadin ratio. In this study, we clarified the post-translational processing of HMW-GSs and revealed a new genetic resource useful for wheat breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01238-9.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yang Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhenru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Caihong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yongfang Wan
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | | | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Wang Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Meiqiao Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Kan Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhien Pu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| |
Collapse
|
16
|
Li Y, Fu J, Shen Q, Yang D. High-Molecular-Weight Glutenin Subunits: Genetics, Structures, and Relation to End Use Qualities. Int J Mol Sci 2020; 22:E184. [PMID: 33375389 PMCID: PMC7795185 DOI: 10.3390/ijms22010184] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High-molecular-weight glutenin subunits (HMW-GSs) are storage proteins present in the starchy endosperm cells of wheat grain. Encoding the synthesis of HMW-GS, the Glu-1 loci located on the long arms of group 1 chromosomes of the hexaploid wheat (1A, 1B, and 1D) present multiple allelism. In hexaploid wheat cultivars, almost all of them express 3 to 5 HMW-GSs and the 1Ay gene is always silent. Though HMW-GSs are the minor components in gluten, they are crucial for dough properties, and certain HMW-GSs make more positive contributions than others. The HMW-GS acts as a "chain extender" and provides a disulfide-bonded backbone in gluten network. Hydrogen bonds mediated by glutamine side chains are also crucial for stabilizing the gluten structure. In most cases, HMW-GSs with additional or less cysteines are related to the formation of relatively more or less interchain disulfide bonds and HMW-GSs also affect the gluten secondary structures, which in turn impact the end use qualities of dough.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Jiahui Fu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China;
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| |
Collapse
|
17
|
Fan X, Qin P, Hao Y, Guo H, Blecker C, Everaert N, Ren G. Overexpression of Soybean-Derived Lunasin in Wheat and Assessment of Its Anti-Proliferative Activity in Colorectal Cancer HT-29 Cells. Int J Mol Sci 2020; 21:ijms21249594. [PMID: 33339363 PMCID: PMC7767187 DOI: 10.3390/ijms21249594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Lunasin is a soybean-derived peptide that exhibits anticancer bioactivity in different cancer cells and has been identified in different plants. However, recent studies revealed through molecular and chemical analyses that lunasin was absent in wheat and other cereals. In this study, the soybean-derived lunasin was cloned into pCAMBIA3300 and we transferred the expression vector into wheat via an Agrobacterium-mediated transformation. The identification of transgenic wheat was detected by polymerase chain reaction, Western blot analysis, and ultra-performance liquid chromatography with tandem mass spectrometry. An enzyme-linked immunosorbent assay showed that lunasin content in transgenic wheat L32-3, L32-6, and L33-1 was 308.63, 436.78, and 349.07 µg/g, respectively, while lunasin was not detected in wild-type wheat. Lunasin enrichment from transgenic wheat displayed an increased anti-proliferative activity compared with peptide enrichment from wild-type wheat in HT-29 cells. Moreover, the results of a real-time quantitative polymerase chain reaction showed a significant elevation in p21, Bax, and caspase-3 expression, while Bcl-2 was significantly downregulated. In conclusion, soybean-derived lunasin was successfully expressed in wheat via Agrobacterium-mediated transformation and may exert anti-proliferative activity by regulating the apoptosis pathway in HT-29 cells, which provides an effective approach to compensate for the absence of lunasin in wheat.
Collapse
Affiliation(s)
- Xin Fan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian, Beijing 100081, China; (X.F.); (P.Q.); (Y.H.); (H.G.)
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (C.B.); (N.E.)
| | - Peiyou Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian, Beijing 100081, China; (X.F.); (P.Q.); (Y.H.); (H.G.)
| | - Yuqiong Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian, Beijing 100081, China; (X.F.); (P.Q.); (Y.H.); (H.G.)
| | - Huimin Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian, Beijing 100081, China; (X.F.); (P.Q.); (Y.H.); (H.G.)
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (C.B.); (N.E.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (C.B.); (N.E.)
| | - Nadia Everaert
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (C.B.); (N.E.)
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian, Beijing 100081, China; (X.F.); (P.Q.); (Y.H.); (H.G.)
- Correspondence: ; Tel.: +86-10-6211-5596; Fax: +86-10-6215-6596
| |
Collapse
|