1
|
Zhu YA, Li F, Wang M, Cao Y, Kong B, Liu Q, Wang H, Chen Q. Improving the storage quality of Harbin red sausages by quaternized chitosan/sodium alginate coating curcumin nano-emulsion. Meat Sci 2024; 216:109585. [PMID: 38959640 DOI: 10.1016/j.meatsci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
In this study, the effect of sodium alginate and quaternized chitosan bis-polysaccharide-based shell transport curcumin nano-emulsions (Cur@QCS/SA) on the microbiological, physicochemical properties, quality characteristics of Harbin red sausage during storage is investigated. According to the microbiological results, the shelf life of Harbin red sausage is extended from 3 d to 6 d by adding 0.15% Cur@QCS/SA, and Bacillus is the most predominant bacterial before 6 d. Additionally, the physicochemical properties change significantly, the pH, weight loss (WL), water holding capacity (WHC), water activity (aw), L*, and a* of red sausage decrease gradually with the extension of storage time, as well as b*, lipid oxidation, proteolysis increase significantly (P < 0.05). Secondly, it is found that 0.15% treatment group can better maintain the quality characteristics of Harbin red sausage according to texture profile analysis (TPA), electronic nose (E-nose), and electronic tongue (E-tongue) (P < 0.05). This study provides a new way for nano-emulsions in food applications and a new option for the preservation of Harbin red sausage as well as other low-temperature meat products.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Meihui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Huang M, Xu Y, Xu L, Chen X, Ding M, Bai Y, Xu X, Zeng X. The evaluation of mixed-layer emulsions stabilized by myofibrillar protein-chitosan complex for delivering astaxanthin: Fabrication, characterization, stability and in vitro digestibility. Food Chem 2024; 440:138204. [PMID: 38134832 DOI: 10.1016/j.foodchem.2023.138204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Muscle protein based functional foods have been attracted great interests in novel food designing. Herein, myofibrillar protein (MP)-chitosan (CH) electrostatic complexes were employed to fabricate mixed-layer emulsions to protect and deliver astaxanthin. The MP/CH complex fabricated mixed-layer emulsions displayed higher stability against pH and temperature changes, exhibiting smaller droplet and homogenous distributions. After UV-light irradiation for 8 h, the mixed-layer emulsions had higher astaxanthin retention (69.11 %, 1:1 group). During storage, a lower degree of lipid oxidation, protein oxidation and higher astaxanthin retention were obtained, indicating desirable protections of mixed-layer emulsions. The vitro digestion reveled the mixed-layer emulsions could decrease the release of free fatty acids. Meanwhile, the bioaccessibility of astaxanthin was higher (30.43 %, 2:1 group) than monolayer emulsion. In all, the MP/CH prepared mixed-layer emulsions could protect and deliver fat-soluble bioactive compounds, and contributed to develop muscle protein based functional foods to meet the needs of slow and controlled release.
Collapse
Affiliation(s)
- Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yujuan Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P.R. China
| | - Lina Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yun Bai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
3
|
Huang J, Zhang S, Liu D, Feng X, Wang Q, An S, Xu M, Chu L. Preparation and characterization of astaxanthin-loaded microcapsules stabilized by lecithin-chitosan-alginate interfaces with layer-by-layer assembly method. Int J Biol Macromol 2024; 268:131909. [PMID: 38679251 DOI: 10.1016/j.ijbiomac.2024.131909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Astaxanthin is a kind of keto-carotenes with various health benefits. However, its solubility and chemical stability are poor, which leads to low bio-availability. Microcapsules have been reported to improve the solubility, chemical stability, and bio-availability of lipophilic bioactives. Freeze-dried astaxanthin-loaded microcapsules were prepared by layer-by-layer assembly of tertiary emulsions with maltodextrin as the filling matrix. Tertiary emulsions were fabricated by performing chitosan and sodium alginate electrostatic deposition onto soybean lecithin stabilized emulsions. 0.9 wt% of chitosan solution, 0.3 wt% of sodium alginate solution and 20 wt% of maltodextrin were optimized as the suitable concentrations. The prepared microcapsules were powders with irregular blocky structures. The astaxanthin loading was 0.56 ± 0.05 % and the encapsulation efficiency was >90 %. A slow release of astaxanthin could be observed in microcapsules promoted by the modulating of chitosan, alginate and maltodextrin. In vitro simulated digestion displayed that the microcapsules increased the bio-accessibility of astaxanthin to 69 ± 1 %. Chitosan, alginate and maltodextrin can control the digestion of microcapsules. The coating of chitosan and sodium alginate, and the filling of maltodextrin in microcapsules improved the chemical stability of astaxanthin. The constructed microcapsules were valuable to enrich scientific knowledge about improving the application of functional ingredients.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; The East China Science and Technology Research Institute of Changshu Company Limited, Changshu 215500, China.
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Shennan An
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Mengting Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Wang Y, Rehman A, Jafari SM, Shehzad Q, Yu L, Su Y, Wu G, Jin Q, Zhang H, Suleria HAR, Wang X. Micro/nano-encapsulation of marine dietary oils: A review on biomacromolecule-based delivery systems and their role in preventing cardiovascular diseases. Int J Biol Macromol 2024; 261:129820. [PMID: 38286385 DOI: 10.1016/j.ijbiomac.2024.129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Qayyum Shehzad
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yijia Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Wan X, Kang Q, Li J, Guo M, Li P, Shi H, Zhang X, Liu Z, Xia G. Effect of NaCl concentration on the formation of high internal phase emulsion based on whey protein isolate microgel particles. Food Chem 2024; 433:137395. [PMID: 37678115 DOI: 10.1016/j.foodchem.2023.137395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
At present, the effect of structural modification of microgel particles on high internal phase emulsions (HIPEs) is less studied. In this study, the structural modification effect of NaCl on whey protein isolate microgels (WPIMPs) was comprehensively characterized and applied to the construction of HIPEs. WPIMPs were prepared with NaCl (0-150 mM) and the structural changes were analyzed by measuring the particle size, Zeta-potential, and endogenous fluorescence spectra. The results showed that inducing WPIMPs by NaCl enhanced the surface hydrophobicity, decreased the Zeta potential, and elevated the degree of cross-linking. The interfacial behavior of WPIMPs was characterized by measuring interfacial tensions and adsorbed layer properties. The results showed that NaCl induction decreased the interfacial tension, increased the thickness of the adsorbed layer, and improved the viscoelasticity. The HIPEs were analyzed for micromorphology and particle sizes. The results indicated that NaCl-induced WPIMPs favored the formation of HIPEs with small particle sizes and provided HIPEs with superior environmental stability. This study provides a new idea for the structural modification of microgels and a new theoretical basis for the construction conditions of HIPE.
Collapse
Affiliation(s)
- Xiaoshan Wan
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Qi Kang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Jiaqi Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengxue Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Peng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Wu M, He X, Feng D, Li H, Han D, Li Q, Zhao B, Li N, Liu T, Wang J. The Emulsifying Properties, In Vitro Digestion Characteristics and Storage Stability of High-Pressure-Homogenization-Modified Dual-Protein-Based Emulsions. Foods 2023; 12:4141. [PMID: 38002198 PMCID: PMC10670896 DOI: 10.3390/foods12224141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The droplet size, zeta potential, interface protein adsorption rate, physical stability and microrheological properties of high-pressure-homogenization (HPH)-modified, dual-protein-based whey-soy (whey protein isolate-soy protein isolate) emulsions containing different oil phase concentrations (5%, 10% and 15%; w/w) were compared in this paper. The in vitro digestion characteristics and storage stability of the dual-protein emulsions before and after HPH treatment were also explored. The results show that with an increase in the oil phase concentration, the droplet size and interface protein adsorption rate of the untreated dual-protein emulsions increased, while the absolute value of the zeta potential decreased. When the oil phase concentration was 10% (w/w), HPH treatment could significantly reduce the droplet size of the dual-protein emulsion, increase the interface protein adsorption rate, and improve the elasticity of the emulsion. Compared with other oil phase concentrations, the physical stability of the dual-protein emulsion containing a 10% (w/w) oil phase concentration was the best, so the in vitro digestion characteristics and storage stability of the emulsions were studied. Compared with the control group, the droplet size of the HPH-modified dual-protein emulsion was significantly reduced after gastrointestinal digestion, and the in vitro digestibility and release of free amino groups both significantly increased. The storage stability results show that the HPH-modified dual-protein emulsion showed good stability under different storage methods, and the storage stability of the steam-sterilized dual-protein emulsion stored at room temperature was the best. These results provide a theoretical basis for the development of new nutritional and healthy dual-protein liquid products.
Collapse
Affiliation(s)
- Meishan Wu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoye He
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hu Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Di Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qingye Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Boya Zhao
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tianxin Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
7
|
Jiang M, Gan Y, Li Y, Qi Y, Zhou Z, Fang X, Jiao J, Han X, Gao W, Zhao J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int J Biol Macromol 2023; 250:126153. [PMID: 37558039 DOI: 10.1016/j.ijbiomac.2023.126153] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
In recent years, a wide attention has been paid to curcumin in medicine due to its excellent physiological activities, including anti-inflammatory, antioxidant, antibacterial, and nerve damage repair. However, the low solubility, poor stability, and rapid metabolism of curcumin make its bioavailability low, which affects its development and application. As a unique biopolymer structure, protein-polysaccharide (PRO-POL)-based delivery system has the advantages of low toxicity, biocompatibility, biodegradability, and delayed release. Many scholars have investigated PRO-POL -based delivery systems to improve the bioavailability of curcumin. In this paper, we focus on the interactions between different proteins (e.g. casein, whey protein, soybean protein isolate, pea protein, zein, etc.) and polysaccharides (chitosan, sodium alginate, hyaluronic acid, pectin, etc.) and their effects on complexes diameter, surface charge, encapsulation drive, and release characteristics. The mechanism of the PRO-POL-based delivery system to enhance the bioavailability of curcumin is highlighted. In addition, the application of PRO-POL complexes loaded with curcumin is summarized, aiming to provide a reference for the construction and application of PRO-POL delivery systems.
Collapse
Affiliation(s)
- Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China; Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
8
|
Shao X, Niu B, Fang X, Wu W, Liu R, Mu H, Gao H, Chen H. Pullulan-stabilized Soybean Phospholipids/Cinnamaldehyde emulsion for Flammulina velutipes preservation. Int J Biol Macromol 2023; 246:125425. [PMID: 37330078 DOI: 10.1016/j.ijbiomac.2023.125425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fresh mushrooms (Flammulina velutipes) are very perishable and easily brown; also they undergo postharvest loss of nutritive constituents. In this study, cinnamaldehyde (CA) emulsion was prepared by using soybean phospholipids (SP) as emulsifier and pullulan (Pul) as stabilizer. The effect of emulsion on the quality of mushroom during storage was also studied. The experimental results indicated that the emulsion obtained by adding 6 % pullulan was found to the most uniform and stable, which is beneficial to its application. Emulsion coating maintained the storage quality of Flammulina velutipes. The incorporation of CA emulsion into the coating system showed a positive effect on inhibiting the accumulation of reactive oxygen species, resulting from improving the effectiveness of delaying active free radical scavenging enzymes. The shelf life of mushrooms coated with emulsion was significantly prolonged, which indicates its potential application in food preservation.
Collapse
Affiliation(s)
- Xue Shao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ben Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Xiangjun Fang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Weijie Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Ruiling Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Honglei Mu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China
| | - Haiyan Gao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, China; Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Hangzhou 310021, China.
| |
Collapse
|
9
|
Zheng Y, Zi Y, Shi C, Gong H, Zhang H, Wang X, Zhong J. Tween emulsifiers improved alginate-based dispersions and ionic crosslinked milli-sized capsules. NPJ Sci Food 2023; 7:33. [PMID: 37369662 DOI: 10.1038/s41538-023-00208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The blending of surfactants might change the properties of alginate-based oil encapsulation preparations. Herein, the effects of Tween series (Tween 20, 40, 60, and 80) blending on the fish oil-encapsulated sodium alginate dispersions and calcium alginate capsules were studied. The results suggested Tween 80 showed better emulsifying properties than Span 80 for the alginate/surfactant emulsions. All the Tween series induced higher creaming stability than the sodium alginate-stabilized dispersion. Tween series blending did not change the sizes, decreased the water contents, and induced similar particle-like protrusions of calcium alginate capsules. Loading capacity and encapsulation efficiency of fish oil were dependent on the hydrophilic heads and fatty acid moieties of the Tween series. Tween series blending could increase the fish oil oxidative stability of the capsules. In the in vitro digestion process, Tween with saturated fatty acid moieties increased the free fatty acid release percentages. This work provided potential innovative processing technologies for improving the biological potency of fish oil.
Collapse
Affiliation(s)
- Yulu Zheng
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Gong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Strategies for modulating the lipid digestion of emulsions in the gastrointestinal tract. Crit Rev Food Sci Nutr 2023; 64:9740-9755. [PMID: 37267158 DOI: 10.1080/10408398.2023.2215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural changes in emulsion products can be used to control the bioavailability of fatty acids and lipophilic compounds. After ingestion, lipid droplets undergo breakdown and structural changes as they pass through the gastrointestinal tract. The oil-water interface plays a critical role in modulating the digestive behavior of lipid droplets because changes in the interfacial layer control the adsorption of lipase and bile salts and determine the overall rate and extent of lipid digestion. Therefore, lipid digestibility can be tuned by selecting the appropriate types and levels of stabilizers. The stabilizer can change the lipase accessibility and exposure of lipid substrates, resulting in variable digestion rates. However, emulsified lipids are not only added to food matrixes but are also co-ingested from other dietary components. Therefore, overall consumption behaviors can affect the digestion rate and digestibility of emulsified lipids. Although designing an emulsion structure is challenging, controlling lipid digestion can improve the health benefits of products. Therefore, a thorough understanding of the process of emulsified lipid digestion is required to develop food products that enable specific physiological responses. The targeted or delayed release of lipophilic molecules and fatty acids through emulsion systems has significant applications in healthcare and pharmaceuticals.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
11
|
Tao L, Wang P, Zhang T, Ding M, Liu L, Tao N, Wang X, Zhong J. Preparation of Multicore Millimeter-Sized Spherical Alginate Capsules to Specifically and Sustainedly Release Fish Oil. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Li L, Zhang M, Feng X, Yang H, Shao M, Huang Y, Li Y, Teng F. Internal/external aqueous-phase gelation treatment of soybean lipophilic protein W/O/W emulsions: Improvement in microstructure, interfacial properties, physicochemical stability, and digestion characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Cao L, Jeong SJ, Shin JH. Effect of gelation technique on lipid digestibility of emulsion-loaded alginate microparticles: a systematic review and meta-analysis. Food Sci Biotechnol 2023; 32:135-144. [PMID: 36647522 PMCID: PMC9839912 DOI: 10.1007/s10068-022-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Alginate microparticles fabricated via calcium gelation or layer-by-layer assembly are commonly used for encapsulating emulsions. In this study, the impact of these two gelation methods on the lipid digestibility of emulsions was reviewed through a systematic screening of relevant studies. From the literature search (Scopus, PubMed, and Web of Science databases), 604 records were screened and 25 articles were included in the analysis. The fold change of free fatty acid release rate at the end of in vitro digestion process between alginate-encapsulated emulsion and emulsions not encapsulated by alginate was calculated for calcium gelation (weighted mean of response ratio 0.64, 95% CI 0.54-0.75) and layer-by-layer assembly (weighted mean of response ratio 0.89, 95% CI 0.81-0.98). Alginate-calcium hydrogels showed stronger inhibition of the extent of lipid digestion than alginate-coated multilayer emulsions. The structural and particle size differences between alginate microparticles acquired using different techniques may contribute to this phenomenon.
Collapse
Affiliation(s)
- Lei Cao
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Seung Jin Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joong Ho Shin
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
14
|
Du Q, Wu Y, Zeng X, Tu M, Wu Z, Liu J, Pan D, Ding Y. Competitive binding of maltodextrin and pectin at the interface of whey protein hydrolyzate-based fish oil emulsion under high temperature sterilization: Effects on storage stability and in vitro digestion. Food Res Int 2023; 164:112368. [PMID: 36737955 DOI: 10.1016/j.foodres.2022.112368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Whey protein hydrolysate (WPH), maltodextrin (MD), low methoxy pectin (LMP) and high methoxy pectin (HMP) were used to study the interface binding under high temperature sterilization conditions (121 °C, 15 min). The effect of competitive binding of MD and pectin with interface protein on the storage stability and gastrointestinal fate of fish oil emulsion was studied. The low-molecular-weight MD and the interface protein undergo a wide range of covalent binding through the Maillard reaction, while a small amount of high-molecular-weight pectin can form a protective shell with the interface protein through electrostatic interaction to inhibit the covalent reaction of MD, which was called competitive binding. However, due to the bridging and depletion flocculation of pectin, the emulsification stability of fish oil emulsion reduced. After 13 days of storage, compared with the particle size of the WPH fish oil emulsion (459.18 nm), the fish oil emulsion added with LMP and HMP reached 693.58 nm and 838.54 nm, respectively. In vitro digestion proved that WPH fish oil emulsion flocculated rapidly in the stomach (1.76 μm), while WPH-MD and WPH-MD-pectin fish oil emulsions flocculated slightly (less than800 nm). WPH-MD-pectin delayed digestion in the gastrointestinal tract, and HMP exhibited a better slow-release effect. This study provides reference for the design of multi-component functional drinks and other bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Yang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
15
|
Kan G, Zi Y, Li L, Gong H, Peng J, Wang X, Zhong J. Curcumin-encapsulated hydrophilic gelatin nanoparticle to stabilize fish oil-loaded Pickering emulsion. Food Chem X 2023; 17:100590. [PMID: 36845465 PMCID: PMC9944614 DOI: 10.1016/j.fochx.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Herein, pH-cycle method was explored to prepare curcumin-encapsulated hydrophilic bovine bone gelatin (BBG/Cur) nanoparticle and then the obtained nanoparticle was applied to stabilize fish oil-loaded Pickering emulsion. The nanoparticle had a high encapsulation efficiency (93.9 ± 0.5 %) and loading capacity (9.4 ± 0.1 %) for curcumin. The nanoparticle-stabilized emulsion had higher emulsifying activity index (25.1 ± 0.9 m2/g) and lower emulsifying stability index (161.5 ± 18.8 min) than BBG-stabilized emulsion. The pH affected the initial droplet sizes and creaming index values of the Pickering emulsions: pH 11.0 < pH 5.0 ≈ pH 7.0 ≈ pH 9.0 < pH 3.0. Curcumin provided obvious antioxidant effect for the emulsions, which was also dependent on pH. The work suggested pH-cycle method could be used to prepare hydrophobic antioxidant-encapsulated hydrophilic protein nanoparticle. It also provided basic information on the development of protein nanoparticles for Pickering emulsion stabilization.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China,Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China,Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Li
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China,Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huan Gong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China,Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China,Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China,Corresponding authors at: at: Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (J. Zhong). National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China (Xichang Wang).
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China,Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China,Corresponding authors at: at: Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China (J. Zhong). National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China (Xichang Wang).
| |
Collapse
|
16
|
Shen R, Yang X, Lin D. PH sensitive double-layered emulsions stabilized by bacterial cellulose nanofibers/soy protein isolate/chitosan complex enhanced the bioaccessibility of curcumin: In vitro study. Food Chem 2023; 402:134262. [DOI: 10.1016/j.foodchem.2022.134262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
17
|
Wang T, Wang S, Zhang L, Sun J, Guo T, Yu G, Xia X. Fabrication of bilayer emulsion by ultrasonic emulsification: Effects of chitosan on the interfacial stability of emulsion. ULTRASONICS SONOCHEMISTRY 2023; 93:106296. [PMID: 36641872 PMCID: PMC9852778 DOI: 10.1016/j.ultsonch.2023.106296] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
In this study, the stable system of bilayer emulsion was fabricated by ultrasonic emulsification. The effect of chitosan (CS) addition (0.05 %-0.4 %, w/v) at pH 5.0 on the stability of rice bran protein hydrolysate-ferulic acid (RBPH-FA) monolayer emulsion was investigated. It was found that the addition of CS (0.3 %) could form a stable bilayer emulsion. The droplet size was 3.38 μm and the absolute ζ-potential value was 31.52 mV. The bilayer emulsion had better storage stability, oxidation stability and environmental stabilities than the monolayer emulsion. The results of in vitro simulations revealed the bilayer emulsion was able to deliver the β-carotene to the small intestine digestive stage stably and the bioaccessibility was increased from 22.34 % to 61.36 % compared with the monolayer emulsion. The research confirmed that the bilayer emulsion prepared by ultrasonic emulsification can be used for the delivery of hydrophobic functional component β-carotene.
Collapse
Affiliation(s)
- Tengyu Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Shirang Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lijuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiapeng Sun
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianhao Guo
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
18
|
Liu L, Zhang J, Wang P, Tong Y, Li Y, Chen H. Functional Properties of Corn Byproduct-Based Emulsifier Prepared by Hydrothermal-Alkaline. Molecules 2023; 28:molecules28020665. [PMID: 36677721 PMCID: PMC9865437 DOI: 10.3390/molecules28020665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
As consumers' interest in nature-sourced additives has increased, zein has been treated hydrothermally under alkaline conditions to prepare a nature-sourced emulsifier. The effects of mild hydrothermal-alkaline treatment with different temperatures or alkaline concentrations on the emulsifying properties of zein were investigated. The emulsification activity and stability index of zein hydrolysates increased by 39% and 164%, respectively. The optimal simple stabilized emulsion was uniform and stable against heat treatment up to 90 °C, sodium chloride up to 200 mmol/L, and pH values ranging from 6 to 9. Moreover, it presented excellent storage stability compared to commonly used food emulsifiers. The surface hydrophobicity caused the depolymerization of the tertiary structure of zein and the dissociation of subunits along with exposure of hydrophilic groups. The amino acid composition and circular dichroism results reveal that the treatment dissociated protein subunits and transformed α-helices into anti-parallel β-sheets and random coil. In conclusion, mild hydrothermal-alkaline treatment may well contribute to the extended functional properties of zein as a nature-sourced emulsifier.
Collapse
Affiliation(s)
- Lu Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jijun Zhang
- National Engineering Research Center for Corn Deep Processing, Changchun 130000, China
- Nutrition & Health Research Institute, China Oil and Foodstuffs Corporation, Beijing 102200, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yi Tong
- China Oil and Foodstuffs Biotechnology Corporation, Changchun 130000, China
| | - Yi Li
- China Oil and Foodstuffs Biotechnology Corporation, Changchun 130000, China
| | - Han Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
19
|
Insight into interfacial adsorption behavior of high-density lipoprotein hydrolysates regulated by carboxymethyl dextrin and in vitro digestibility of curcumin loaded high internal phase emulsions. Food Chem 2023; 400:134006. [DOI: 10.1016/j.foodchem.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
20
|
Farooq S, Ahmad MI, Zhang Y, Zhang H. Impact of interfacial layer number and Schiff base cross-linking on the microstructure, rheological properties and digestive lipolysis of plant-derived oil bodies-based oleogels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Song Z, Yang Y, Chen F, Fan J, Wang B, Bian X, Xu Y, Liu B, Fu Y, Shi Y, Zhang X, Zhang N. Effects of Concentration of Soybean Protein Isolate and Maltose and Oil Phase Volume Fraction on Freeze-Thaw Stability of Pickering Emulsion. Foods 2022; 11:foods11244018. [PMID: 36553760 PMCID: PMC9778241 DOI: 10.3390/foods11244018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
There is growing interest in enhancing the freeze-thaw stability of a Pickering emulsion to obtain a better taste in the frozen food field. A Pickering emulsion was prepared using a two-step homogenization method with soybean protein and maltose as raw materials. The outcomes showed that the freeze-thaw stability of the Pickering emulsion increased when prepared with an increase in soybean protein isolate (SPI) and maltose concentration. After three freeze-thaw treatments at 35 mg/mL, the Turbiscan Stability Index (TSI) value of the emulsion was the lowest. At this concentration, the surface hydrophobicity (H0) of the composite particles was 33.6 and the interfacial tension was 44.34 mN/m. Furthermore, the rheological nature of the emulsions proved that the apparent viscosity and viscoelasticity of Pickering emulsions grew with a growing oil phase volume fraction and concentration. The maximum value was reached in the case of the oil phase volume fraction of 50% at a concentration of 35 mg/mL, the apparent viscosity was 18 Pa·s, the storage modulus of the emulsion was 575 Pa, and the loss modulus was 152 Pa. This research is significant for the production of freeze-thaw resistant products, and improvement of protein-stabilized emulsion products with high freeze-thaw stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Na Zhang
- Correspondence: ; Tel.: +86-137-0451-7698
| |
Collapse
|
23
|
Chen P, Yang BQ, Wang RM, Xu BC, Zhang B. Regulate the interfacial characteristic of emulsions by casein/butyrylated dextrin nanoparticles and chitosan based on ultrasound-assisted homogenization: Fabrication and characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Hu Y, Zhang Y, Xu J, Zi Y, Peng J, Zheng Y, Wang X, Zhong J. Fish gelatin-polysaccharide Maillard products for fish oil-loaded emulsion stabilization: Effects of polysaccharide type, reaction time, and reaction pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
26
|
Chen Y, Sun Y, Ding Y, Ding Y, Liu S, Zhou X, Wu H, Xiao J, Lu B. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application. Crit Rev Food Sci Nutr 2022; 64:1677-1700. [PMID: 36062818 DOI: 10.1080/10408398.2022.2118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huawei Wu
- Ningbo Today Food Co Ltd, Ningbo, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Zheng Y, Zi Y, Tao L, Xu J, Chen J, Yang M, Wang X, Zhong J. Effects of Span surfactants on the preparation and properties of fish oil-loaded sodium alginate-stabilized emulsions and calcium alginate-stabilized capsules. Int J Biol Macromol 2022; 221:831-841. [PMID: 36063894 DOI: 10.1016/j.ijbiomac.2022.08.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
Encapsulation is an efficient protection method for oil in both liquid (e.g., emulsion) and solid (e.g., capsule) forms. In this work, we mainly explored the effect of different Span surfactants (Span 20, Span 40, Span 60, and Span 80) on the properties of fish oil-loaded sodium alginate/Span-stabilized emulsions and calcium alginate/Span capsules. For emulsions, different Span surfactants induced different initial droplet sizes and emulsion creaming stability. The emulsifying stability of Span surfactants for sodium alginate/Span-stabilized emulsions was: Span 40 < Span 20 < Span 80 < Span 60. For capsules, a Span addition could decrease the water content and change the particle morphologies. Compared with the calcium alginate capsule (12.2 %), the Span 60 addition increased the fish oil loading ratio (20.2 %). Moreover, the addition of Span 20, Span 60, and Span 80 decreased the production of primary lipid hydroperoxides of the capsules. Span surfactants had different effects on the free fatty acid release of calcium alginate capsules in the gastrointestinal digestion process, such that: Span 40 > Span 80 > control > Span 20 > Span 60. This work suggests that Span surfactants are capable of adjusting and optimizing the properties of emulsions and capsules for potential food applications.
Collapse
Affiliation(s)
- Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lina Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiahui Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengyang Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
28
|
Gastrointestinal Fate and Fatty Acid Release of Pickering Emulsions Stabilized by Mixtures of Plant Protein Microgels + Cellulose Particles: an In Vitro Static Digestion Study. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe present study aims to investigate the in vitro intestinal digestion fate of Pickering emulsions with complex dual particle interfaces. Pickering oil-in-water emulsions (PPM-E) stabilized by plant (pea) protein-based microgels (PPM), as well as PPM-E where the interface was additionally covered by cellulose nanocrystals (CNC), were designed at acidic pH (pH 3.0). The gastrointestinal fate of the PPM-E and free fatty acid (FFA) release, was tested via the INFOGEST static in vitro digestion model and data was fitted using theoretical models. Lipid digestion was also monitored using lipase alone bypassing the gastric phase to understand the impact of proteolysis on FFA release. Coalescence was observed in the PPM-stabilized emulsions in the gastric phase, but not in those co-stabilized by CNC. However, coalescence occurred during the intestinal digestion stage, irrespective of the CNC concentration added (1–3 wt % CNC). The presence of CNC lowered the lipolysis kinetics but raised the extent of FFA release as compared to in its absence (p < 0.05), due to lower levels of gastric coalescence, i.e., a higher interfacial area. The trends were similar when just lipase was added with no prior gastric phase, although the extent and rate of FFA release was reduced in all emulsions, highlighting the importance of prior proteolysis in lipolysis of such systems. In summary, an electrostatically self-assembled interfacial structure of two types of oppositely-charged particles (at gastric pH) might be a useful strategy to enable enhanced delivery of lipophilic compounds that require protection in the stomach but release in the intestines.
Collapse
|
29
|
Sun C, Zhang M, Zhang X, Li Z, Guo Y, He H, Liang B, Li X, Ji C. Design of protein-polysaccharide multi-scale composite interfaces to modify lipid digestion. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Investigation of structure–stability correlations of reconstructed oil bodies. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Preparation and characterization of internal gelation-based electrosprayed multicore millimeter-sized fish oil-loaded calcium alginate-stabilized capsules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Xu J, Huang S, Zhang Y, Zheng Y, Shi W, Wang X, Zhong J. Effects of antioxidant types on the stabilization and in vitro digestion behaviors of silver carp scale gelatin-stabilized fish oil-loaded emulsions. Colloids Surf B Biointerfaces 2022; 217:112624. [PMID: 35728370 DOI: 10.1016/j.colsurfb.2022.112624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Lipid oxidation is a major challenge in the development and storage of lipid-containing food products. In this work, we extracted aquatic gelatin from silver carp scales and studied the effects of antioxidant types (water-soluble and lipid-soluble types) on the stabilization, lipid oxidation, and in vitro digestion behaviors of silver carp scale gelatin-stabilized fish oil-loaded emulsions. Vitamin C (VC), a water-soluble antioxidant, and vitamin E (VE), a lipid-soluble antioxidant, had no obvious effects on the appearance, droplet size distribution, and droplet stability of the emulsion. VC slowed the liquid-gel transition of the emulsions at room temperature. The emulsion creaming stability decreased with the increase of VC concentration, whereas it increased with the increase of VE concentration. Lipid oxidation hierarchy of emulsion groups at room temperature were VC<VE<control<pure oil. Free fatty acids were mainly released from the silver carp scale gelatin-stabilized emulsions in the simulated intestinal fluid. Moreover, compared with the control group, VC increased the free fatty acid release percentages, whereas VE decreased them. This work provided useful information for developing antioxidants in the field of food science and in value-added utilization research of aquatic by-products.
Collapse
Affiliation(s)
- Jiamin Xu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shudan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyi Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
33
|
Triggered and controlled release of bioactives in food applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:49-107. [PMID: 35659356 DOI: 10.1016/bs.afnr.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive compounds (e.g., nutraceuticals, micronutrients, antimicrobial, antioxidant) are added to food products and formulations to enhance sensorial/nutritional attributes and/or shelf-life. Many of these bioactives are susceptible to degradation when exposed to environmental and processing factors. Others involve in undesirable interactions with food constituents. Encapsulation is a useful tool for addressing these issues through various stabilization mechanisms. Besides protection, another important requirement of encapsulation is to design a carrier that predictably releases the encapsulated bioactive at the target site to elicit its intended functionality. To this end, controlled release carrier systems derived from interactive materials have been developed and commercially exploited to meet the requirements of various applications. This chapter provides an overview on basic controlled and triggered release concepts relevant to food and active packaging applications. Different approaches to encapsulate bioactive compounds and their mode of release are presented, from simple blending with a compatible matrix to complex multiphase carrier systems. To further elucidate the mass transport processes, selected diffusion and empirical release kinetic models are presented, along with their brief historical significance. Finally, interactive carriers that are responsive to moisture, pH, thermal and chemical stimuli are presented to illustrate how these triggered release mechanisms can be useful for food applications.
Collapse
|
34
|
Xu J, Yang L, Nie Y, Yang M, Wu W, Wang Z, Wang X, Zhong J. Effect of transglutaminase crosslinking on the structural, physicochemical, functional, and emulsion stabilization properties of three types of gelatins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
The impact of lemon seeds oil microcapsules based on a bilayer macromolecule carrier on the storage of the beef jerky. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
The effect of fat content in food matrix on the structure, rheological properties and digestive properties of protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
38
|
Yang L, Yang M, Xu J, Nie Y, Wu W, Zhang T, Wang X, Zhong J. Structural and emulsion stabilization comparison of four gelatins from two freshwater and two marine fish skins. Food Chem 2022; 371:131129. [PMID: 34560337 DOI: 10.1016/j.foodchem.2021.131129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/04/2022]
Abstract
This study analyzed the structural and emulsion stabilization properties of two freshwater and two marine fish skin gelatins: Chinese longsnout catfish skin gelatin (CLCSG), silver carp skin gelatin (SCSG), salmon skin gelatin (SSG), and Alaska pollack skin gelatin (APSG). Their gel strengths (Bloom values) were: 361 ± 1 (SCSG) > 253 ± 4 (CLCSG) > 69 ± 1 (SSG) > 36 ± 2 (APSG). Higher molecular weights and α/β subunit contents of gelatins might induce higher gel strengths. Both creaming and droplet stability were completely the same to the contents of imino acids, β-sheet percentages, and β-turn percentages, whereas they were completely the opposite to random coil percentages. The emulsion stabilization mechanisms involved an "fish skin source - protein chemical composition - protein secondary structure - protein functional properties - emulsion stability" route. This study provided useful knowledges for gelatin science and for the comprehensive utilization of aquatic by-products in gelatin industry.
Collapse
Affiliation(s)
- Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengyang Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Wu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
39
|
Du X, Hu M, Liu G, Qi B, Zhou S, Lu K, Xie F, Zhu X, Li Y. Development and evaluation of delivery systems for quercetin: A comparative study between coarse emulsion, nano-emulsion, high internal phase emulsion, and emulsion gel. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
41
|
Liu G, Hu M, Du X, Yan S, Liao Y, Zhang S, Qi B, Li Y. Effects of succinylation and chitosan assembly at the interface layer on the stability and digestion characteristics of soy protein isolate-stabilized quercetin emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Cheng L, Ye A, Hemar Y, Singh H. Modification of the interfacial structure of droplet-stabilised emulsions during in vitro dynamic gastric digestion: Impact on in vitro intestinal lipid digestion. J Colloid Interface Sci 2021; 608:1286-1296. [PMID: 34758419 DOI: 10.1016/j.jcis.2021.10.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
The in-vitro gastrointestinal digestion behaviour of an oil-in-water emulsion with an interface consisting of nano-sized droplets coated with caseinate particles, referred to as a droplet-stabilised emulsion (DSE), was explored using the human gastric simulator and pH-stat models. A caseinate-particle-stabilised emulsion (PSE) was used as a control, with a similar droplet size distribution and the same composition as the DSE. The nanodroplet-stabilised interface of the DSE was preserved during the first 180 min of gastric digestion. During 240 min, the droplet sizes of the DSE and the PSE increased from 22.71 ± 1.14 to 63.34 ± 6.57 μm and from 17.98 ± 1.16 to 85.11 ± 9.35 μm respectively. The small droplet size of the DSE that was released from the gastric phase contributed to slightly higher total free fatty acid (FFA) release (56.18 ± 3.55%) than that from the PSE (49.4 ± 2.67%). The FFA release rate of the DSE (1.21 % min-1) was greater than that of the PSE (1.06 % min-1) during the first 30 min of small intestinal digestion; similar FFA release rates (0.5 µmol s-1 m-2 × 10-4) were obtained for both emulsions beyond 30 min of digestion. This study provides new information on lipid digestion using a novel interfacial layer that was stabilised with nanodroplets.
Collapse
Affiliation(s)
- Lirong Cheng
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Yacine Hemar
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
43
|
Li D, Wei Z, Xue C. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 20:5345-5369. [PMID: 34596328 DOI: 10.1111/1541-4337.12840] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Due to its advantagessuch as ionic crosslinking, pH responsiveness, excellent biocompatibility, biodegradability and low price, alginate has become one of the most important natural polysaccharides extensively used in constructing desired delivery systems for food bioactive ingredients. In this review, the fundamental knowledge of alginate as a building block for construction of nutraceutical delivery systems is introduced. Then, various types of alginate-based nutraceutical delivery systems are classified and summarized. Furthermore, the future trends of alginate-based delivery systems are highlighted. Currently, alginate-based delivery systems include hydrogel, emulsion, emulsion-filled alginate hydrogel, nanoparticle, microparticle, core-shell particle, liposome, edible film, and aerogel. Although alginate has been widely used in the fabrication of food bioactive ingredient delivery systems, further efforts and improvements are still needed. For this purpose, the future perspectives of alginate-based delivery systems are discussed. The feasible research trends of alginate-based delivery systems include the development of novel large-scale commercial preparation technology, multifunctional delivery system based on alginate, alginate oligosaccharide-based delivery system and alginate-based oleogel. Overall, the objective of this review is to provide useful guidance for rational design and application of alginate-based nutraceutical delivery systems in the future.
Collapse
Affiliation(s)
- Duoduo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
44
|
Yang M, Yang L, Xu J, Nie Y, Wu W, Zhang T, Wang X, Zhong J. Comparison of silver carp fin gelatins extracted by three types of methods: Molecular characteristics, structure, function, and pickering emulsion stabilization. Food Chem 2021; 368:130818. [PMID: 34403998 DOI: 10.1016/j.foodchem.2021.130818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023]
Abstract
High value-added utilization of different aquatic by-products is an increasingly urgent issue in aquatic science and industry. In this work, the effects of extraction methods on the molecular characteristics, structural properties, functional properties, and Pickering emulsion stabilization behaviors of silver carp fin gelatins were comprehensively studied. All the results showed molecular characteristics of silver carp fin gelatin was the key parameter to determine their functional properties such as wide gel strength range, excellent water-holding capacity, and excellent Pickering emulsion stabilization ability. The Pickering emulsion stabilization mechanisms of fin gelatins involved an "extraction method - protein molecular characteristics - fat-binding capacity - droplet structure - water phase properties - Pickering emulsion stability" route. This work could be helpful to understand the basic information on how the molecular characteristics determine the functions of gelatins. It would be also useful for the high value-added utilization of aquatic by-products and gelatins.
Collapse
Affiliation(s)
- Mengyang Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Wu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
45
|
Xu J, Zhang T, Zhang Y, Yang L, Nie Y, Tao N, Wang X, Zhong J. Silver carp scale gelatins for the stabilization of fish oil-loaded emulsions. Int J Biol Macromol 2021; 186:145-154. [PMID: 34246667 DOI: 10.1016/j.ijbiomac.2021.07.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023]
Abstract
Herein, three types of silver carp scale gelatins were extracted, and their molecular weight distribution, structural properties, functional properties and emulsifying properties were investigated and discussed. Acetic acid-extracted gelatin (AAG), hot water-extracted gelatin (HWG), and pepsin enzyme-extracted gelatin (PEG) showed similar and four clear bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern, whereas they showed different β chain amounts and β-sheet percentages. The water-holding capacity values (g/g of gelatin) were: AAG (16.8 ± 1.1) > HWG (14.0 ± 0.7) ≈ PEG (13.5 ± 1.6). The fat-binding capacity values (g/g of gelatin) were: AAG (11.8 ± 0.3) > HWG (9.5 ± 1.3) > PEG (5.3 ± 0.4). Emulsion droplet sizes and creaming index values decreased with the increase of gelatin concentrations for all the fish oil-loaded emulsions stabilized by three types of gelatins. Compared with PEG, AAG and HWG show similar and higher emulsion stability at high gelatin concentration (10 mg/mL). The stabilization mechanism of fish oil-loaded silver carp scale gelatin-stabilized emulsions involved an "extraction method-protein molecular weight distribution-protein molecular structure-molecular interaction-emulsibility-droplet structure-emulsion stability" route. This work would be beneficial for the research on the relationship of structure and function of gelatin and to the comprehensive utilization of aquatic products.
Collapse
Affiliation(s)
- Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yangyi Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
46
|
Zhang T, Xu J, Chen J, Wang Z, Wang X, Zhong J. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Liu L, Tao L, Chen J, Zhang T, Xu J, Ding M, Wang X, Zhong J. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Tang Y, Gao C, Zhang Y, Tang X. The microstructure and physiochemical stability of Pickering emulsions stabilized by chitosan particles coating with sodium alginate: Influence of the ratio between chitosan and sodium alginate. Int J Biol Macromol 2021; 183:1402-1409. [PMID: 34019920 DOI: 10.1016/j.ijbiomac.2021.05.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to further improve the physiochemical stability of the chitosan (CS) particle-stabilized Pickering emulsion by coating with sodium alginate (SA). The effect of different mass ratios of CS and SA (1:0.5-1:2) on the microstructure, rheology and the stability of the emulsions were comprehensively evaluated by various methods such as optical microscope, scanning electron microscope, rheometer, and low-field nuclear magnetism. The multilayer emulsion with low content of SA (CS:SA = 1:0.5) presented bridging flocculation. If SA concentration was high (CS:SA = 1:1-1:2), the surface of the Pickering emulsion droplets was completely covered by the SA. At this time, multilayer emulsion droplets became stable due to strong electrostatic and/or steric repulsion. Too high SA concentration (CS:GA = 1:2) might also promote the accumulation of moisture. In addition, the CS/SA multilayer emulsion showed higher coalescence stability under different environmental treatments but its creaming stability and flocculation stability were still sensitive to pH (2, 4 and 10), temperature (4 °C and 80 °C) and ionic strength (300-500 mM). In all, the addition of the proper level SA (CS:GA = 1:1-1:2) could increase the stability of CS particle-stabilized Pickering emulsion.
Collapse
Affiliation(s)
- Yang Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
49
|
Islam MR, Yuhi T, Meng D, Yoshioka T, Ogata Y, Ura K, Takagi Y. Purity and properties of gelatins extracted from the head tissue of the hybrid kalamtra sturgeon. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Deng Y, Tu Y, Lao S, Wu M, Yin H, Wang L, Liao W. The role and mechanism of citrus flavonoids in cardiovascular diseases prevention and treatment. Crit Rev Food Sci Nutr 2021; 62:7591-7614. [PMID: 33905288 DOI: 10.1080/10408398.2021.1915745] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cardiovascular diseases (CVDs) have been ranked as the leading cause of death in the world, whose global incidence is increasing year by year. Citrus, one of the most popular fruits in the world, is rich in flavonoids. Citrus flavonoids attract special attention due to a variety of biological activities, especially in the prevention and treatment of CVDs. The research progress of citrus flavonoids on CVDs have been constantly updated, but relatively fragmented, which needed to be systematically summarized. Hence, the recent research about citrus flavonoids and CVDs were reviewed, including the types and in vivo processes of citrus flavonoids, epidemiology study and mechanism on prevention and treatment of CVDs by citrus flavonoids. This review would provide a theoretical basis for the citrus flavonoids research and a new idea in the citrus industry development and application.
Collapse
Affiliation(s)
- Yudi Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yali Tu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengting Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hantong Yin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Linqing Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|