1
|
Ji J, Wang Y, Li C, Xu F, Jiang M. Safe detoxification on acid-washed activated carbon combined with chitosan for aflatoxins from contaminated peanut oil. Mycotoxin Res 2024; 40:667-679. [PMID: 39256275 DOI: 10.1007/s12550-024-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Aflatoxins are one of the most toxic mycotoxins and can cause serious harm to humans and animals. Adsorption is a practical decontamination technique favored by the industry because of its advantages of low cost, speed and simplicity, and environmental friendliness. In this work, the adsorption features of activated carbon and chitosan were fabricated in a composite through chemical co-precipitation to improve its properties for adsorption. Furthermore, the capacity of the synthesized chitosan and acid-washed activated carbon composite (CS-AAC) to attenuate the aflatoxins in contaminated peanut oil and the adsorption capacity at different initial aflatoxins content, contact duration, and temperature were evaluated. The results showed a higher adsorption capacity (removal efficiency to 93.45% of AFB1, 94.05% of AFB2, 89.16% of AFG1, 83.26% of AFG2). The Freundlich isothermal and D-R model and the pseudo-second-order rate expression both implied a good correlation with the test data and explained the adsorption mechanism well. The adsorption mechanism was found to be accomplished primarily via ion exchange and chelation. According to thermodynamic results (△G < 0, △H > 0, △S > 0), the adsorption process was endothermic and spontaneous. Compared to acid-washed activated carbon, CS-AAC enhanced the retention of VE and sterols (especially VE by 23%), and the safety of CS-AAC adsorbent was explored by cellular experiments. In conclusion, CS-AAC is a promising adsorbent material for the removal of aflatoxins from edible oils.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China.
| | - Yan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Changjiang Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Fengyao Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Miaomiao Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
González-Jartín JM, de Castro Alves L, Piñeiro Y, Alfonso A, Alvariño R, Gomez MG, Vieytes MR, Rivas J, Botana LM. Magnetic nanostructured agents for the mitigation of mycotoxins and cyanotoxins in the food chain. Food Chem 2024; 456:140004. [PMID: 38870813 DOI: 10.1016/j.foodchem.2024.140004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Natural toxins, such as mycotoxins and cyanotoxins, can contaminate food and feed, leading to toxicity in humans and animals. This study focused on using nine magnetic nanostructured agents to remove the main types of toxins. Initially, the efficacy of these materials was evaluated in water solutions, revealing that composites with sizes below 3 mm, containing magnetite, activated carbon, esterified pectin, and sodium alginate, removed up to 90% of mycotoxins and cyanotoxins with an adsorption of 873 ng/g. The application of the nanostructures was then assessed in beer, milk, Distillers Dried Grains with Solubles and water contaminated with cyanobacteria. The presence of matrix slightly decreases the adsorption capacity for some toxins. The maximum toxin removal capacity was calculated with cyanotoxins, composites achieved a removal of up to 0.12 mg/g, while nanocomposites (15 μm) reached 36.6 mg/g. Therefore, these findings point out the potential for using nanotechnology in addressing natural toxins contamination.
Collapse
Affiliation(s)
- Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Farmacia, IDIS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Lisandra de Castro Alves
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Y Piñeiro
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Manuel González Gomez
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - J Rivas
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
3
|
Rasheed U, Ain QU, Liu B. Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil. CHEMOSPHERE 2024; 367:143424. [PMID: 39368492 DOI: 10.1016/j.chemosphere.2024.143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Enzymatic degradation of aflatoxins in food commodities has gained significant attention. However, enzyme denaturation in organic media discourages their direct use in oils to remove aflatoxins. For that, enzymes are immobilized or encapsulated for improved stability and reusability under unfavorable conditions. We sandwiched the laccase between a carrier and an outer protective layer. We used spent-mushroom-substrate (SMS) derived porous magnetic biochar as the laccase carrier and coated it with an iron MOF to create a biocomposite, Fe-BTC@Lac@FB. The immobilized laccase demonstrated enhanced chemical, thermal, and storage stability and proficient reusability. Fe-BTC@Lac@FB exhibited 11 times enhanced aflatoxin B1 (AFB1) degradation compared to free laccase (FL). In addition, thermally inactivated Fe-BTC@Lac@FB could adsorb 11.2 mg/g of AFB1 from peanut oil. Multi-aflatoxin removal also proved promising, while Fe-BTC@Lac@FB could retain >85 % of AFB1 removal efficacy after five reusability cycles. Fe-BTC@Lac@FB treatment did not affect peanut oil quality as indicated by different oil quality parameters and proved essentially non-cytotoxic. All these aspects helped recognize Fe-BTC@Lac@FB as an excellent laccase-carrying material with exceptionally higher stability, activity, and reusability.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China.
| |
Collapse
|
4
|
Wu S, Peng X. Synthesis of Magnetic Attapulgite Nanoparticles Via a Novel Surface Covalent Reaction Method and its Application in the Magnetic Solid Phase Extraction. J Chromatogr Sci 2024; 62:696-703. [PMID: 38702843 DOI: 10.1093/chromsci/bmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/24/2024] [Indexed: 05/06/2024]
Abstract
In this study, the attapulgite nanoparticle was immobilized on the surface of magnetic nanoparticle Fe3O4 via a novel surface covalent reaction method for the magnetic solid phase extraction (MSPE) for the first time. The surface covalent reaction method has the advantages of controllable steps, and can make the magnetic attapulgite nanoparticle (MANP) have good homogeneity and high stability. Field emission scanning electron microscopy, equipped with an energy dispersive spectrometer, Nitrogen adsorption BET, X-ray diffraction and Fourier transform infrared spectroscopy were applied to characterize the prepared MANP, confirming that the attapulgite nanoparticle could be effectively immobilized on the surface of magnetic nanoparticle Fe3O4 via covalent reactions. Under optimal conditions of the MSPE experiment based on the MANP, the limits of detection were found to be 10 ng/mL for melamine and 3 ng/mL for cyromazine with a relative standard deviation < 10% by a high-performance liquid chromatography system. Meanwhile, 0.1 mg/mL melamine in milk and 0.1 mg/mL cyromazine in cucumber can also be detected according to our MSPE procedure. More importantly, the MANP still has good magnetism and enrichment efficiency after several decades of use. These results showed that the MANP prepared by our method is a kind of promising material for the MSPE.
Collapse
Affiliation(s)
- Shuaibin Wu
- College of Chemistry and Bioengineering, Yichun University, Xuefu Road No. 576, Yichun 336000, China
| | - Xuejuan Peng
- Yuanzhou District People's Court, Yijang Road, Yichun 336000, China
| |
Collapse
|
5
|
Sun J, Wang Z, Dai Y, Zhang M, Pang X, Li X, Lu Y. Acid modified attapulgite loaded with bacillomycin D for mold inhibition and mycotoxin removal. Food Chem 2024; 446:138762. [PMID: 38402761 DOI: 10.1016/j.foodchem.2024.138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Molds and mycotoxins pose severe threats to health. Bacillomycin D (BD) can effectively inhibit mold growth. Attapulgite (ATP) can provide a good carrier for antimicrobial agents. Natural ATP was acid-modified to obtain H-ATP. It was used to load BD to obtain a novel composite material (H-ATP-BD). The results showed H-ATP had better adsorption performance than ATP. BD was adsorbed up to 93.13 % by adding 30 mg H-ATP and stirring at 40 ℃ for 120 min. Fourier transform infrared spectra (FTIR), size and zeta potential, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results confirmed successful loading of BD onto H-ATP. The composite showed good inhibition of Aspergillus and adding 0.6 % H-ATP-BD composite was effective in removing 89.06 % of aflatoxin B1 (AFB1) at 50 °C. Model fitting indicated that AFB1 removal was a spontaneous exothermic reaction. This research will lay the foundation for the development of efficient and green antimicrobial and toxin-reducing materials.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Zaixu Wang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yongjin Dai
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Moran Zhang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinyi Pang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiangfei Li
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yingjian Lu
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
6
|
Zhang T, Huang X, Qiao J, Liu Y, Zhang J, Wang Y. Recent developments in synthesis of attapulgite composite materials for refractory organic wastewater treatment: a review. RSC Adv 2024; 14:16300-16317. [PMID: 38769962 PMCID: PMC11103670 DOI: 10.1039/d4ra02014f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Attapulgite clay, due to its unique crystalline hydrated magnesium-aluminium silicate composition and layer-chain structure, possesses exceptional adsorption and catalytic properties, which enable it or its composites to be utilized as adsorbents and catalysts for wastewater treatment. But the drawbacks of attapulgite are also very obvious, such as relatively low specific surface area (compared to traditional adsorbents such as activated carbon and activated alumina), easy aggregation, and difficulty in dispersion. In order to fully utilize and improve the performance of attapulgite, researchers have conducted extensive research on its modification, but few specialized works have comprehensively evaluated the synthesis, applications and challenges for attapulgite-based composite materials in refractory organic wastewater treatments. This paper provides a comprehensive review of controllable preparation strategies, characterization methods and mechanisms of attapulgite-based composite materials, as well as the research progress of these materials in refractory organic wastewater treatment. Based on this review, constructive recommendations, such as deep mechanism analysis from molecular level multi-functional attapulgite-based material developments, and using biodegradable materials in attapulgite-based composites, were proposed.
Collapse
Affiliation(s)
- Ting Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Xiaoyi Huang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Jiaojiao Qiao
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Yang Liu
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Jingjing Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| | - Yi Wang
- School of Petrochemical Engineering, Lanzhou University of Technology Lanzhou P. R. China
| |
Collapse
|
7
|
Liu Y, Xia L, Galani Yamdeu JH, Gong YY, Orfila C. Adsorption of aflatoxin B 1 to corn by-products. Food Chem 2024; 440:138212. [PMID: 38150899 DOI: 10.1016/j.foodchem.2023.138212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The adsorption of aflatoxin B1 (AFB1) to natural fiber materials prepared from corn by-products was investigated in this study. The results showed that corn cob powder (CCP) dose, particle size, time (0.25-24 h), temperature (4, 20, 37, 50 and 100 °C) and pH (2-8), had significant effects on adsorption. The maximum adsorption (98%) was with particles 500-355 µm in size at 20 °C for 8 h, at the dose of 50 mg mL-1. The adsorption fitted pseudo-second-order model and Langmuir isotherm well. Besides, CCP had a higher adsorption capacity to AFB1 than any single cell wall components of corn, which indicated that capillary effect happened in cell wall might be the main reason for adsorption. The results also suggested that CCP could reduce AFB1 content from both liquid and solid food matrixes. Briefly, CCP displayed promising properties that could be developed in nature-based practical applications for food aflatoxin decontamination.
Collapse
Affiliation(s)
- Yue Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK.
| | - Lei Xia
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Joseph Hubert Galani Yamdeu
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK; Section of Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, UK
| | - Yun Yun Gong
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Caroline Orfila
- Nutritional Science and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Ji J, Zhang Y, Wang D, Wang Y. Efficient removal of PAHs from peanut oil using coconut shell-based activated charcoal decorated by cationic (CTAB), anionic (SDS), non-ionic surfactant (Triton X-100). Food Chem 2024; 438:137962. [PMID: 37976872 DOI: 10.1016/j.foodchem.2023.137962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The coconut shell-based activated charcoal was decorated by three different electronegativities of surfactants (CTAB, SDS, and Triton X-100) through the impregnation method, and the decorated activated charcoal adsorbents were used for the removal of PAHs from peanut oil, respectively. The influence of surfactant decoration on the adsorption and detoxification effect of coconut shell-based activated charcoal was discussed. The thermodynamic and kinetic behaviors of PAHs adsorption on the surfactant-modified activated charcoal were investigated, and the adsorption mechanism was analyzed in-depth. Notably, the prepared modified coconut shell activated charcoal could not only remove more than 90% of PAHs from the peanut oil but also keep the cytotoxicity of the treated peanut oil low. Meanwhile, the detoxification procedure has little effect on the nutritional quality and flavor of the peanut oil. The results of this fundamental study demonstrate that the low-cost surfactant-modified coconut shell-based activated charcoal was effective and feasible.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yaxin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Dan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
9
|
Shao Z, Ding L, Zhu W, Fan C, Di K, Yuan R, Wang K. Highly selective detection and removal of mercury ions in the aquatic environment based on magnetic ZIF-71 multifunctional composites with sufficient chlorine functional groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171085. [PMID: 38387584 DOI: 10.1016/j.scitotenv.2024.171085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
The development of both detection and removal technologies for heavy metal ions is of great importance. Most of the existing adsorbents that contain oxygen, nitrogen or sulfur functional groups can remove heavy metals, but achieving both selective detection and removal of a single metal ion is difficult because they bind to a wide range of heavy metal ions. Herein, we selected zeolite imidazolium hydrochloride framework-71 (ZIF-71) with sufficient chlorine functional groups to fabricate magnetic ZIF-71 multifunctional composites (M-ZIF-71). M-ZIF-71 had a large specific surface area, excellent water stability, and good magnetic properties, which made M-ZIF-71 conducive to the separation and recovery of adsorbents and the assembly of electrodes. M-ZIF-71 exhibited high selectivity, wide linear range (1-500 μg/L), and low detection limit (0.32 μg/L) for electrochemical detection of mercury ions (Hg2+). Meanwhile, M-ZIF-71 demonstrated rapid Hg2+ adsorption with a high capacity of 571.2 mg/g and excellent recyclability. The high selectivity for Hg2+ was attributed to the powerful affinity of highly electronegative chlorine and Hg2+. Moreover, XPS spectra demonstrated the interaction between chlorine and Hg2+. This work provides a new inspiration for applications in the targeted monitoring and removal of heavy metal pollution.
Collapse
Affiliation(s)
- Zhiying Shao
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiran Zhu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kezuo Di
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ruishuang Yuan
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
10
|
Ji J, Wang D, Wang Y, Hou J. Relevant mycotoxins in oil crops, vegetable oils, de-oiled cake and meals: Occurrence, control, and recent advances in elimination. Mycotoxin Res 2024; 40:45-70. [PMID: 38133731 DOI: 10.1007/s12550-023-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Mycotoxins in agricultural commodities have always been a concern due to their negative impacts on human and livestock health. Issues associated with quality control, hot and humid climate, improper storage, and inappropriate production can support the development of fungus, causing oil crops to suffer from mycotoxin contamination, which in turn migrates to the resulting oil, de-oiled cake and meals during the oil processing. Related research which supports the development of multi-mycotoxin prevention programs has resulted in satisfactory mitigation effects, mainly in the pre-harvest stage. Nevertheless, preventive actions are unlikely to avoid the occurrence of mycotoxins completely, so removal strategies may still be necessary to protect consumers. Elimination of mycotoxin has been achieved broadly through the physical, biological, or chemical course. In view of the steadily increasing volume of scientific literature regarding mycotoxins, there is a need for ongoing integrated knowledge systems. This work revisited the knowledge of mycotoxins affecting oilseeds, food oils, cake, and meals, focusing more on their varieties, toxicity, and preventive strategies, including the methods adopted in the decontamination, which supplement the available information.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Dan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jie Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
11
|
Zabeti N, Keyhanizadeh AK, Faraji AR, Soltani M, Saeedi S, Tehrani E, Hekmatian Z. Activate hydrogen peroxide for facile and efficient removal of aflatoxin B 1 by magnetic Pd-chitosan/rice husk-hercynite biocomposite and its impact on the quality of edible oil. Int J Biol Macromol 2024; 254:127897. [PMID: 37956815 DOI: 10.1016/j.ijbiomac.2023.127897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Due to the high heat and chemical stability of aflatoxin B1 (AFB1) with significant impacts on humans/animals and thus it needs to develop a practical and efficient approach for its removal. Herein, we fabricated a magnetic Pd-chitosan/glutaraldehyde/rice husk/hercynite (Pd@CRH-x) composite for efficient detoxification of AFB1. The Pd@CRH-x was obtained by a simple wet-impregnation procedure of CRH complexes followed by pyrolysis. The results confirmed that the unique structure of Pd@CRH-400 effectively improves dispersity, and mass transfer subsequently enhancing removal efficiency in batch conditions. Results indicate 94.30 % of AFB1 was efficiently degraded by 0.1 mg mL-1 Pd@CRH-400 with 4.0 mM H2O2 at wide pH ranges (3.0-10) at 60 min with a decomposition rate constant of 0.0467 min-1. Besides, by comparing the quality factors of edible oil (i.e., acid value, peroxide value, iodine value, moisture, volatile matters, anisidine value, and fatty acid composition), it was confirmed that there was no obvious influence on the physicochemical indicators of edible oil after removal/storage process. Subsequently, the systematic kinetic study and AFB1 degradation mechanism were presented. This study provides a new strategy for the efficient construction of controllable and dispersed Pd-based catalysts using CRH-x as a spatial support for alleviating the risk of toxic pollutants.
Collapse
Affiliation(s)
- N Zabeti
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A K Keyhanizadeh
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A R Faraji
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - M Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - S Saeedi
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - E Tehrani
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Z Hekmatian
- Department of Chemistry, Payam Noor University, Hamedan, Iran
| |
Collapse
|
12
|
Fakhri Y, Omar SS, Mehri F, Hoseinvandtabar S, Mahmudiono T. Global systematic review and meta-analysis on prevalence and concentration of aflatoxins in peanuts oil and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:697-712. [PMID: 36040365 DOI: 10.1515/reveh-2022-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Exposure to mycotoxins in food is largely unavoidable, and concerns about their health effects are growing. Consumption of vegetable oils such as peanuts oil has increased, hence several studies have been conducted on concentration of aflatoxins (AFs) in peanuts oil. Search was performed in Scopus and PubMed databases on prevalence and concentration of AFs in peanuts oil from 1 January 2005 to 15 April 29, 2022. Prevalence and concentration of AFs in peanuts oil was meta-analyzed based on country and type of AFs subgroups. In addition, health risk was calculated using monte carlo simulation method. Pooled prevalence of AFB1 in peanuts oil was 47.9%; AFB2, 46.45%; AFG1, 46.92% and AFG2, 54.01%. The Overall prevalence of AFTs was 49.30%, 95%CI (35.80-62.84%). Pooled concentration of AFB1 in peanuts oil was 2.30 μg/kg; AFB2, 0.77 μg/kg; AFG1, 0.07 μg/kg; AFG1, 0.28 μg/kg. The sort of country based on mean of MOEs in the adults consumers was Japan (47,059) > China (17,670) > Ethiopia (7,398) > Sudan (6,974) > USA (1,012) and sort of country based on mean of MOEs in the children was Japan (120,994) > China (46,991) > Ethiopia (19,251) > Sudan (18,200) > USA (2,620). Therefore, adults consumers were in considerable health risk in Ethiopia, Sudan and USA and for children in USA (MOE < 10,000).
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sharaf S Omar
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, AL-Balqa Applied University, Amman, Jordan
| | - Fereshteh Mehri
- Nutrition Health Research Center, Health Sciences & Technology Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Hoseinvandtabar
- Student Research committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
13
|
Abasi N, Faraji AR, Davood A. Adsorptive removal of aflatoxin B 1 from water and edible oil by dopamine-grafted biomass chitosan-iron-cobalt spinel oxide nanocomposite: mechanism, kinetics, equilibrium, thermodynamics, and oil quality. RSC Adv 2023; 13:34739-34754. [PMID: 38035230 PMCID: PMC10682912 DOI: 10.1039/d3ra06495f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Currently, the use of magnetic physical adsorbents for detoxification is widely applied in the food industry; however, the fabrication of high-efficiency low-cost absorbents without damaging the nutritional quality of food is a major challenge. Herein, a simple, green, efficient, and cost-effective method for the magnetic solid-phase extraction of aflatoxin B1 (AFB1) from edible oils and aqueous matrices was developed using a dopamine-loaded biomass chitosan-iron-cobalt spinel oxide nanocomposite (DC/CFOS NC). The characterization, physicochemical processes, mechanism, and reusability of DC/CFOS were systematically evaluated in detail. It was found that the adsorption characteristic of DC/CFOS NC was accurately represented by the pseudo-second-order kinetics (k2 = 0.199 g mg-1 min-1) and Freundlich isotherm models (Kf = 1.139 (mg g-1) (L mg-1), R2 = 0.991)), and its adsorptive process is feasible, spontaneous, and exothermic. Benefiting from its high specific surface area, microporous structure, and polar/non-polar active sites, the as-prepared DC/CFOS exhibited an excellent adsorption performance for AFB1 (50.0 μg mL-1), as measured using the Freundlich isotherm model. The mechanistic studies demonstrated that the synergistic effects of the surface complexation and electrostatic interactions between the functional groups of DC/CFOS NC and AFB1 were the dominant adsorption pathways. Besides, DC/CFOS exhibited negligible impacts on the nutritional quality of the oil after the removal process and storage. Thus, DC/CFOS NC showed sufficient efficacy and safety in the removal of AFB1 from contaminated edible oil.
Collapse
Affiliation(s)
- N Abasi
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - A R Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran +98 21 22600099 +98 21 22640051
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - A Davood
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| |
Collapse
|
14
|
Shahinfar M, Moghaddas NH, Lashkaripour GR, Fotovat A. Simultaneous removal of four aflatoxins using magnetic nanobentonite as a green and fast sorbent: kinetic, thermodynamic, and isotherm investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110515-110527. [PMID: 37792193 DOI: 10.1007/s11356-023-29963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023]
Abstract
In the study, an adsorptive removal strategy as a straightforward and fast procedure was developed to remove four aflatoxins, including aflatoxin B1 (AF-B1), aflatoxin B2 (AF-B2), aflatoxin G1 (AF-G1), and aflatoxin G2 (AF-G2). A simple and green sorbent consisting of two components (activated nanobentonite and Fe3O4 nanoparticles) was synthesized based on three steps using acidic treatment, ultrasonic procedure, and chemical precipitation method. The sorbent was characterized by several techniques such as FTIR, FESEM, TEM, XRD, and VSM to determine the sorbent structure and morphology. An experimental design based on a central composite design was utilized to optimize factors in the removal of AFs. The optimum values of the factors (pH, sorbent amount, shaking rate) were 6.8, 0.076 g, and 160 rpm, respectively. Three models, including pseudo-first-order, pseudo-second-order, and intra-particle diffusion models, were used to investigate the kinetics of the removal process. The removal of AFs using magnetic nanobentonite was fitted with the pseudo-second-order model better than other models with an equilibrium time lower than 30 min. The thermodynamic data show that the adsorption of AFs on the sorbent is a spontaneous and feasible process due to negative values of the Gibbs-free energy change (ΔG) at different temperatures. Two models (Langmuir and Freundlich models) were chosen to study the isotherm of the removal procedure, indicating that the Freundlich model describes the results better than the Langmuir model. The maximum adsorption capacity of the sorbent for removing AF-B1, AF-B2, AF-G1, and AF-G2 is 357.14, 400.0, 370.37, and 400.0 mg g-1, respectively. The sorbent reusability was also evaluated to study the sorbent's ability for the removal of AFs, indicating that the sorbent was used for 5 cycles without a significant reduction in the ability to remove AFs.
Collapse
Affiliation(s)
- Marjan Shahinfar
- Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Naser Hafezi Moghaddas
- Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Amir Fotovat
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
15
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Ying Z, Zhang T, Li H, Liu X. Adsorptive removal of aflatoxin B1 from contaminated peanut oil via magnetic porous biochar from soybean dreg. Food Chem 2023; 409:135321. [PMID: 36586250 DOI: 10.1016/j.foodchem.2022.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
The contamination of mycotoxin in edible oil has always been a major threat to human health. In this study, magnetic soybean dreg-based biochar SDB-6-K-9@Fe3O4 was prepared via co-precipitation and used to remove aflatoxin B1 (AFB1) from contaminated oil. The adsorbent characterization results revealed that the Fe3O4 was successfully loaded to the SDB-6-K-9. The 0.45SDB-6-K-9@Fe3O4 had paramagnetic properties with a saturation magnetization of 45.15 emu/g, which could be quickly separated from the peanut oil using an external magnet. The maximum adsorption capacity of peanut oil contaminated with 200 ng/mL AFB1 by 50 mg 0.45SDB-6-K-9@Fe3O4 for 2 h reached 0.1354 mg/g, while the removal process minimally affected the quality of the oil. The adsorption behavior results followed a pseudo-second-order kinetic and fitted well with the Freundlich model. The excellent adsorption removal efficiency and facile magnetic separation of the adsorbents provide a simple and efficient method for removing contaminants from the oil.
Collapse
Affiliation(s)
- Zhiwei Ying
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tianyu Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - He Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
17
|
Shao Z, Shen D, Fan F, Sun X, Ding J, Fang Y, Li P. Facile synthesis of chitosan-tartaric acid biosorbents for removal of Cu(II) and Cd(II) from water and tea beverages. Int J Biol Macromol 2023; 241:124533. [PMID: 37105248 DOI: 10.1016/j.ijbiomac.2023.124533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Consumption of water and tea beverages leads to the intake of heavy metals by humans. Development of technology for decontamination greatly reduces the risks of the heavy metal exposure. In this study, environment-friendly chitosan-tartaric acid biosorbents (CTBs) were synthesized by a facile one-step cross-linking strategy to mitigate the Cu(II) and Cd(II) contamination in water and tea beverages. The cross linkage of tartaric acid and chitosan endowed CTBs with excellent properties in aspects of surface roughness, mechanical strength, and acid resistance. Adsorption performance and mechanism of CTBs were studied, and the Langmuir isotherm model and pseudo-second-order kinetic model were adhered during adsorption. Up to 90 % removal efficiencies of Cu(II) and Cd(II) from water and tea beverages by CTBs were achieved. Moreover, the adsorption showed only a slight reduction in the quality of tea beverages. This study offers a new insight for reduction of heavy metals-pollution in beverages.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China; Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Dianying Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
| |
Collapse
|
18
|
Du Q, Zhang W, Xu N, Jiang X, Cheng J, Wang R, Wang P. Efficient and simultaneous removal of aflatoxin B1, B2, G1, G2, and zearalenone from vegetable oil by use of a metal-organic framework absorbent. Food Chem 2023; 418:135881. [PMID: 36966721 DOI: 10.1016/j.foodchem.2023.135881] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Vegetable oils are usually cocontaminated with different mycotoxins, including aflatoxins and zearalenone, which cause significant food safety issues. Establishment of multitarget, high-efficiency, and low-cost adsorption methods are considered to be ideal solutions for mycotoxin removal in vegetable oils. In this study, we used metal-organic frameworks (MOFs) were used for the simultaneous removal of aflatoxins and zearalenone from vegetable oils. The results showed that MOF-235 simultaneously removed, within 30 min, more than 96.1% of aflatoxins and 83.3% of zearalenone from oils, and oils treated with MOF-235 exhibited di minimis cytotoxicity. Thus, synthesized MOF-235 exhibited sufficient efficacy to remove the targeted residues, as well as safety and reusability, which could be applied as a novel potential adsorbent in the removal of multiple mycotoxins from contaminated vegetable oils.
Collapse
Affiliation(s)
- Qiuling Du
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ning Xu
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianhong Jiang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Yadavalli R, Valluru P, Raj R, Reddy CN, Mishra B. Biological detoxification of mycotoxins: Emphasizing the role of algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Zhang HL, Yang CE, Du J, Huang JQ, He JB, Zhang WN. Efficient and safe detoxification of aflatoxin B1 in peanut oil by synergistic modification of montmorillonite with histidine and acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Li Y, Zhou Y, Wang R, Chen Z, Luo X, Wang L, Zhao X, Zhang C, Yu P. Removal of aflatoxin B 1 from aqueous solution using amino-grafted magnetic mesoporous silica prepared from rice husk. Food Chem 2022; 389:132987. [PMID: 35489257 DOI: 10.1016/j.foodchem.2022.132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
It is urgent to solve the contamination of aflatoxin B1 (AFB1) in food and water. In this study, the mesoporous silica was prepared from rice husk, which was then magnetized using the precipitation technique, followed by amino-modification with 3-aminopropyltriethoxysilane, forming amino-grafted magnetic mesoporous silica (NMMS). X-ray diffraction, Fourier transformed infrared spectra, and thermogravimetric analysis showed the successful grafting of amino groups on NMMS with a percentage of grafting up to 13.33%. The NMMS had an adsorption capacity of 169.88 μg/g and a removal rate of 93.43% for AFB1 in aqueous solutions at 20 °C, pH 7.0 for 2.0 h. The adsorption of AFB1 by NMMS followed a quasi-second-order kinetics and fitted well with the Langmuir model. Furthermore, the removal rate of AFB1 by NMMS remained 72.43% after repeating the adsorption-desorption process for five times. This study provided a facile approach to prepare NMMS for effective removal of AFB1.
Collapse
Affiliation(s)
- Ya'nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Yunyu Zhou
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Wuxi Zodolabs Biotech Co., Ltd, Yanxin Road 311, Wuxi 214174, China
| | - Ren Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiaohu Luo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiuping Zhao
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Chen Zhang
- Wuxi Xinwu Environmental Protection Technology Co., Ltd, Tianshan Road 8-2116, Wuxi 214028, China
| | - Peibin Yu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
22
|
Liu J, Wu S, Ma J, Liu C, Dai T, Wu X, Zhao H, Zhou D. Polycaprolactone/Gelatin/Hydroxyapatite Electrospun Nanomembrane Materials Incorporated with Different Proportions of Attapulgite Synergistically Promote Bone Formation. Int J Nanomedicine 2022; 17:4087-4103. [PMID: 36105619 PMCID: PMC9467850 DOI: 10.2147/ijn.s372247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 12/28/2022] Open
Abstract
Purpose To enhance the osteoinductive effect of Hydroxyapatite (HA) in bone tissue engineering, this study manufactured polycaprolactone (PCL)/gelatin (GEL)/HA nanofibrous scaffolds incorporated with different ratios of attapulgite (ATP): HA (0:3, 0:0, 1:1, 2:1 and 3:0) by high-voltage electrospinning. The synergistic effect exerted by ATP and HA on bone formation was explored both in vivo and in vitro. Methods and Results First, we determined the group composition and crystal structure of the nanosheets by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. Then, the physical properties of the scaffolds, including the modulus of elasticity, porosity and water absorption were evaluated. Moreover, the surface microstructure of the nanofibrous scaffolds was captured by Scanning electron microscopy (SEM) and Transmission Electron Microscope (TEM). The biocompatibility of the fabricated scaffolds represented by cell counting kit 8 (CCK-8) and phalloidin staining was also assessed. Next, in vitro osteogenesis was evaluated. Real-time PCR, alkaline phosphatase (ALP) staining and Alizarin red S (ARS) staining results showed that the materials incorporated with HA and ATP at a ratio of 2:1 synergistically promoted more osteoblastic differentiation and extracellular mineralization than scaffolds doped with HA and ATP alone. Last, in vivo, Hematoxylin-Eosin staining (HE staining) and Masson staining showed that groups treated with HA and ATP acquired optimal patterns of bone regeneration. Conclusion This study clarified for the first time that the combination of HA and ATP orchestrated biomaterial-induced osseointegration, and the synergistic effect was more significant when the ratio of ATP/HA was 2:1. This conclusion also provides new ideas and a scientific basis for the development of functionalized nanomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China.,Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Siyu Wu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China.,Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jiayi Ma
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China.,Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chun Liu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Ting Dai
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Xiaoyu Wu
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Hongbin Zhao
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| | - Dong Zhou
- Medical Research Centre, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, People's Republic of China
| |
Collapse
|
23
|
Yu Q, Cai XS, Leveneur S, Wang XD, Liu HM, Zhang CX, Ma YX. Kinetic modeling of the sesamin conversion into asarinin in the presence of citric acid loading on Hβ. Front Nutr 2022; 9:983843. [PMID: 36034908 PMCID: PMC9399800 DOI: 10.3389/fnut.2022.983843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the present work, effects of reaction temperature, reactant concentration, catalyst loading, and rotation speed on the kinetics of sesamin conversion in a sesame oil system were studied by using citric acid loading on Hβ zeolite (CA/Hβ) as a catalyst. A kinetic model was built for sesamin conversion. The kinetic model fits correctly the experimental concentration of sesamin and asarinin (RSesamin2 = 0.93 and RAsarinin2 = 0.97). The sesamin conversion is an endothermic reaction (△HrIso = 3 4.578kJ/mol). The CA/Hβ catalyst could be easily regenerated by calcination, and there was no obvious loss of catalytic activity when reused. Knowledge of the sesamin conversion is of great significance for guiding production and improving the value and nutrition of sesame oil. In a word, this study lays the foundation for the scale-up of the production of asarinin from sesame oil using CA/Hβ as the catalyst.
Collapse
Affiliation(s)
- Qiong Yu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiao-Shuang Cai
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | | | - Xue-de Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Yu-Xiang Ma
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
24
|
Ji J, Jiang M, Zhang Y, Hou J, Sun S. Co-occurrence of aflatoxins in plant oil products from China. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:275-282. [PMID: 35854473 DOI: 10.1080/19393210.2022.2102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aflatoxins have been detected as contaminants of oil crops before harvesting and drying, during storage and manufacturing and could be transferable to plant oils. There are more than 20 different types of aflatoxins, among which the most commonly occurring are the B1, B2, G1 and G2. Concentrations of these four aflatoxins were determined in plant oils from retail shops in China and in crude peanut oil extracted from culled mouldy peanuts by HPLC with fluorescence detection. Overall, aflatoxins were present in 25 of the 63 samples. The four aflatoxins co-existed in vegetable oil, but the content of AFB1 was usually higher than the other aflatoxins. Particularly in the case of highly contaminated oil samples, AFB1 accounted for 68% of the total aflatoxins. According to the health risk assessment, the low margin of exposure values from AFB1 in oils suggests a high level of concern for children.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Miaomiao Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yaxin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Jie Hou
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Shangde Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, P. R. China
| |
Collapse
|
25
|
Song C, Qin J. High‐Performance
Fabricated Nano‐adsorbents as Emerging Approach for Removal of Mycotoxins: A Review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenggang Song
- College of Plant Science Jilin University Changchun 130062 P. R. China
| | - Jianchun Qin
- College of Plant Science Jilin University Changchun 130062 P. R. China
| |
Collapse
|
26
|
Yu L, Liu J, Mao J, Peng Z, Zhong Z, Wang H, Dong L. Dietary Palygorskite Clay-Adsorbed Nano-ZnO Supplementation Improves the Intestinal Barrier Function of Weanling Pigs. Front Nutr 2022; 9:857898. [PMID: 35634385 PMCID: PMC9133891 DOI: 10.3389/fnut.2022.857898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of PNZ on intestinal mucosal barrier function in weaning piglets. A total of 210, 21-day-old piglets with similar body weights (6.30 ± 0.51 kg) were randomly allocated into seven groups: control group (CON), antibiotic group (ANT), ZnO group (ZO), nano-ZnO group (NZO) and low, middle, and high PNZ groups (LPNZ, MPNZ, and HPNZ). The seven groups were, respectively, fed control diets or control diets supplemented with antibiotics; 3,000 mg/kg ZnO; 800 mg/kg nano-ZnO; 700, 1,000, or 1,300 mg/kg PNZ. More integrated intestinal villi were observed in the LPNZ group. In the jejunum of LPNZ group, the crypt depth significantly decreased (P < 0.05), and the ratio of villus height to crypt depth (V/C) significantly increased (P < 0.05). In addition, the villus width and surface area of the ileum were significantly increased in the LPNZ group (P < 0.05). Dietary supplementation with PNZ can significantly increase the number of goblet cells in the mucosa of the jejunum and ileum (P < 0.05), decrease the contents of TNF-α and IL-1β (P < 0.05), and increase the contents of sIgA and IL-4 in the jejunal and ileal mucosa (P < 0.05). Meanwhile, the mRNA expression of MCU2 and ZO1 in PNZ group were significantly increased (P < 0.05), the mRNA expression of TLR4 and MyD88 was downregulated (P < 0.05). With increasing levels of PNZ, decreased proinflammatory cytokines and increased intestinal mucosal barrier function in weaned pigs was observed. In conclusion, supplementation with PNZ could effectively improve the intestinal barrier function of weanling piglets and potentially could replace the use of high doses of ZnO and antibiotics. The appropriate dose of PNZ for supplementation was 700 mg/kg.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
28
|
Li Y, Wang R, Luo X, Chen Z, Wang L, Zhou Y, Liu W, Cheng M, Zhang C. Synthesis of Rice Husk-Based MCM-41 for Removal of Aflatoxin B1 from Peanut Oil. Toxins (Basel) 2022; 14:toxins14020087. [PMID: 35202115 PMCID: PMC8876307 DOI: 10.3390/toxins14020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Edible oils, especially peanut oil, usually contain aflatoxin B1 (AFB1) at extremely high concentrations. This study focused on the synthesis of rice husk-based mesoporous silica (MCM-41) for the removal of AFB1 from peanut oil. MCM-41 was characterized by X-ray diffraction, N2 physisorption, and transmission electron microscope. MCM-41 was shown to have ordered channels with high specific surface area (1246 m2/g), pore volume (1.75 cm3/g), and pore diameter (3.11 nm). Under the optimal concentration of 1.0 mg/mL of the adsorbent dose, the adsorption behavior of MCM-41, natural montmorillonite (MONT), and commercial activated carbon (CA) for AFB1 were compared. The adsorption of AFB1 in peanut oil onto the three adsorbents was slower compared to that of AFB1 in an aqueous solution. In addition, the pseudo-second-order kinetic model better fit the adsorption kinetics of AFB1, while the adsorption mechanism followed the Langmuir adsorption isotherm on the three adsorbents. The calculated maximum adsorbed amounts of AFB1 on MONT, MCM-41, and CA were 199.41, 215.93, and 248.93 ng/mg, respectively. These results suggested that MCM-41 without modification could meet market demand and could be considered a good candidate for the removal of AFB1 from peanut oil. This study provides insights that could prove to be of economic and practical value.
Collapse
Affiliation(s)
- Ya’nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (Y.L.); (Z.C.)
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Ren Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Xiaohu Luo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (Y.L.); (Z.C.)
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yunyu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Wuxi Zodolabs Biotech Co., Ltd., Wuxi 214174, China
- Correspondence:
| | - Weizhi Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Miaomiao Cheng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; (R.W.); (X.L.); (W.L.); (M.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Chen Zhang
- Wuxi Xinwu Environmental Protection Technology Co., Ltd., Wuxi 214028, China;
| |
Collapse
|
29
|
Dai H, Liang S, Shan D, Zhang Q, Li J, Xu Q, Wang C. Efficient and simple simultaneous adsorption removal of multiple aflatoxins from various liquid foods. Food Chem 2022; 380:132176. [PMID: 35081476 DOI: 10.1016/j.foodchem.2022.132176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 11/04/2022]
Abstract
In this study, a polydopamine modified nanofibers membrane (PDA-PS NFsM) was prepared and evaluated as the adsorbent for simultaneous removal of a variety of aflatoxins in various liquid foods, including edible oil, soy sauce and milk, rice vinegar and liquor. The removal efficiency for every single aflatoxin from all samples involved above was more than 76.5% within 1 h at 25 °C, except the liquors with higher ethanol content, for which the efficiency was lower. Moreover, PDA-PS NFsM can be removed directly after the adsorption process without any subsequent separation. The results suggested that the adsorption mechanism of the aflatoxins onto PDA-PS NFsM was chemisorption-based spontaneous endothermic reaction and aflatoxins were adsorbed by electrostatic interaction, hydrogen bonding and π-π interaction. This study confirmed that the PDA-PS NFsM has a good practical application potential in the simultaneous removal of a variety of aflatoxins from various liquid foods.
Collapse
Affiliation(s)
- Hairong Dai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Sihui Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China.
| |
Collapse
|
30
|
Tang B, Peng G, Luo D, Zhou X. Preparation and Adsorption Properties of Soybean Dreg/Hydrocalumite Composites. ACS OMEGA 2021; 6:27491-27500. [PMID: 34693170 PMCID: PMC8529653 DOI: 10.1021/acsomega.1c04460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
The application of biomass-based composites in the field of adsorption has attracted extensive attention. Herein, soybean dreg/hydrocalumite composites were prepared by in situ self-assembly from soybean dregs and applied to the adsorption of Congo Red (CR). The composites were characterized by scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and N2 physical adsorption-desorption. The results showed that the adsorption property of soybean dregs/hydrocalumite for CR was better than that of soybean dregs or hydrocalumite. Effects of preparation and adsorption conditions on the adsorption of CR by soybean dregs/hydrocalumite were also investigated. The removal rate of soybean dregs/hydrocalumite (30%BD-LDH) prepared under the optimized conditions reached 97.4% with a 486.8 mg·g-1 adsorption capacity. Also, the adsorption capacity of 30%BD-LDH was about 2.4 times and 3.0 times that of hydrocalumite and soybean dregs, respectively. In addition, the adsorption process of CR by 30%BD-LDH was more in line with the pseudo-second-order kinetic and Langmuir isothermal models.
Collapse
Affiliation(s)
- Bei Tang
- Department
of Food and Chemical Engineering, Shaoyang
University, Shaoyang, Hunan 422000, P. R. China
| | - Guanping Peng
- Department
of Food and Chemical Engineering, Shaoyang
University, Shaoyang, Hunan 422000, P. R. China
| | - Deyi Luo
- Hunan
Provincial Key Laboratory of Soybean Products Processing and Safety
Control, Shaoyang, Hunan 422000, P.
R. China
| | - Xi Zhou
- Department
of Food and Chemical Engineering, Shaoyang
University, Shaoyang, Hunan 422000, P. R. China
| |
Collapse
|
31
|
Li X, Zhang S, Wu Y, Jiang L, Zhang W, Qiao X, Yan H, Zhou H, Tang B. Removal of trace DNA toxic compounds using a Poly(deep eutectic solvent)@Biomass based on multi-physical interactions. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126369. [PMID: 34130161 DOI: 10.1016/j.jhazmat.2021.126369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
DNA toxic compounds (DNA-T-Cs), even in trace amounts, seriously threaten human health and must be completely eliminated. However, the currently used separation media face great challenges in removing trace DNA-T-Cs. Based on the functional advantages of deep eutectic solvents (DESs) and the natural features of biomass (BioM), a series of Poly(DES)@BioMs functioning as adsorbents were prepared for the removal of aromatic/hetero-atomic DNA-T-Cs at the ppm level. After optimisation of experimental conditions, the removal efficiency for DNA-T-Cs ranged from 92.4% to 96.0% with an initial concentration of 20.0 ppm, a temperature of 30 °C, duration of 30 min, and pH of 7.0. The removal processes between the DNA-T-Cs and Poly(DES)@BioMs are well described in the Temkin equilibrium and second-order kinetic adsorption models, and the desorption processes are well shown in the Korsmeryer-Peppas equilibrium and zero-order kinetic models. Molecular simulations revealed that the removal interactions include hydrogen bonding, π-π stacking, and hydrophobic/hydrophilic effects. The removal efficiency for the DNA-T-Cs at 8.0 ppm in industrial sewage ranged from 69.7% to 102%, while the removal efficiency for the DNA-T-Cs standing alone at 20.0 ppm in a methyl violet drug solution was 95.4%, confirming that the Poly(DES)@BioMs effectively removed trace DNA-T-Cs in field samples.
Collapse
Affiliation(s)
- Xiaofang Li
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Susu Zhang
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Ying Wu
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Luying Jiang
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Wenxi Zhang
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Baokun Tang
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
32
|
Yang P, Xiao W, Lu S, Jiang S, Zheng Z, Zhang D, Zhang M, Jiang S, Jiang S. Recombinant Expression of Trametes versicolor Aflatoxin B 1-Degrading Enzyme (TV-AFB 1D) in Engineering Pichia pastoris GS115 and Application in AFB 1 Degradation in AFB 1-Contaminated Peanuts. Toxins (Basel) 2021; 13:toxins13050349. [PMID: 34068167 PMCID: PMC8153001 DOI: 10.3390/toxins13050349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene (TV-AFB1D) was integrated into the genome of Pichia pastoris GS115 by homologous recombination approach. The recombinant TV-AFB1D was expressed in engineering P. pastoris with a size of approximately 77 kDa under the induction of methanol. The maximum activity of TV-AFB1D reached 17.5 U/mL after the induction of 0.8% ethanol (v/v) for 84 h at 28 °C. The AFB1 proportion of 75.9% was degraded using AFB1 standard sample after catalysis for 12 h. In addition, the AFB1 proportion was 48.5% using AFB1-contaminated peanuts after the catalysis for 18 h at 34 °C. The recombinant TV-AFB1D would have good practical application value in AFB1 degradation in food crops. This study provides an alternative degrading enzyme for the degradation of AFB1 in aflatoxin-contaminated grain and feed via enzymatic degradation approach.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
- Correspondence:
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuhua Lu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Suwei Jiang
- School of Biological, Food and Environment Engineering, Hefei University, 158 Jinxiu Avenue, Hefei 230601, China;
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Danfeng Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Min Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuying Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| |
Collapse
|
33
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
34
|
Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins (Basel) 2021; 13:toxins13010046. [PMID: 33435382 PMCID: PMC7827145 DOI: 10.3390/toxins13010046] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxin contamination causes significant economic loss to food and feed industries and seriously threatens human health. Aflatoxins (AFs) are one of the most harmful mycotoxins, which are produced by Aspergillus flavus, Aspergillus parasiticus, and other fungi that are commonly found in the production and preservation of grain and feed. AFs can cause harm to animal and human health due to their toxic (carcinogenic, teratogenic, and mutagenic) effects. How to remove AF has become a major problem: biological methods cause no contamination, have high specificity, and work at high temperature, affording environmental protection. In the present research, microorganisms with detoxification effects researched in recent years are reviewed, the detoxification mechanism of microbes on AFs, the safety of degrading enzymes and reaction products formed in the degradation process, and the application of microorganisms as detoxification strategies for AFs were investigated. One of the main aims of the work is to provide a reliable reference strategy for biological detoxification of AFs.
Collapse
Affiliation(s)
- Yun Guan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.G.); (J.C.)
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.L.); (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (M.L.); (W.W.); (K.K.)
| |
Collapse
|