1
|
Dong S, Qian Z, Liu X, Liu F, Zhan Q, Hu Q, Zhao L. Exploring gelation properties and structural features on 3D printability of compound proteins emulsion gels: Emphasizing pH-regulated non-covalent interactions with xanthan gum. Food Chem 2024; 461:141005. [PMID: 39213733 DOI: 10.1016/j.foodchem.2024.141005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Rational regulation of pH and xanthan gum (XG) concentration has the potential to modulate interactions among macromolecules and enhance 3D printability. This study investigated non-covalent interactions between XG and other components within compound proteins emulsion gel systems across varying pH values (4.0-8.0) and XG concentrations (0-1 wt%) and systematically explored impacts of gelation properties and structural features on 3D printability. The results of rheological and structural features indicated that pH-regulated non-covalent interactions were crucial for maintaining structural stability of emulsion gels with the addition of XG. The 3D printability of emulsion gels would be significantly improved through moderate depletion flocculation produced when XG concentration was 0.75 wt% at the pH 6.0. Mechanical properties like viscosity exhibited a strongly negative correlation with 3D printability, whereas structural stability showed a significantly positive correlation. Overall, this study provided theoretical insights for the development of emulsion gels for 3D printing by regulating non-covalent interactions.
Collapse
Affiliation(s)
- Sizhe Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Qian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
3
|
Zou Q, Zheng Y, Liu Y, Luo L, Chen Y, Ran G, Liu D. Preparation of Cassia Bean Gum/Soy Protein Isolate Composite Matrix Emulsion Gel and Its Effect on the Stability of Meat Sausage. Gels 2024; 10:643. [PMID: 39451296 PMCID: PMC11506983 DOI: 10.3390/gels10100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The use of plant-derived emulsified gel systems as fat substitutes for meat products has always been an important direction in the development of healthy foods. In this study, a composite matrix emulsion gel was prepared with soy protein isolate (SPI) and different concentrations of cassia bean gum (CG), and then the selected emulsion gel was applied to meat sausage as a fat substitute to explore its stability. Our results showed that the hardness, chewiness, viscosity, shear stress, and G' and G″ moduli of the emulsion gel increased considerably with the cassia bean gum concentration, the thickness of the emulsion gel increased, and the pore size decreased. The gel strength of the 1.75% CG/SPI emulsion gel was the highest, which was 586.91 g. The elasticity was 0.94 mm, the masticability was 452.94 mJ, and the water-holding capacity (WHC) was 98.45%. Then, the 1.75% CG/SPI emulsion gel obtained via screening was applied as a fat substitute in meat sausage. With an increase in the substitution amount, the cooking loss, emulsification stability, pH, color difference, texture, and antioxidant activity of the meat sausage before and after freezing and thawing increased first and then decreased. The indexes of meat sausage with 50% fat replacement were not considerably different from those of full-fat meat sausage. This study can provide a theoretical basis for the application of plant-derived emulsified gel systems as fat substitutes in meat sausage.
Collapse
Affiliation(s)
- Qiang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.Z.); (Y.Z.); (Y.L.); (L.L.); (Y.C.); (G.R.)
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhan Zheng
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.Z.); (Y.Z.); (Y.L.); (L.L.); (Y.C.); (G.R.)
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yudie Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.Z.); (Y.Z.); (Y.L.); (L.L.); (Y.C.); (G.R.)
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Linghui Luo
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.Z.); (Y.Z.); (Y.L.); (L.L.); (Y.C.); (G.R.)
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyou Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.Z.); (Y.Z.); (Y.L.); (L.L.); (Y.C.); (G.R.)
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Guilian Ran
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.Z.); (Y.Z.); (Y.L.); (L.L.); (Y.C.); (G.R.)
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.Z.); (Y.Z.); (Y.L.); (L.L.); (Y.C.); (G.R.)
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Luo S, Zhang J, Sun J, Zhao T, Deng J, Yang H. Future development trend of food-borne delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:385-433. [PMID: 39218507 DOI: 10.1016/bs.afnr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Precision nutrition, a personalized nutritional supplementation model, is widely acknowledged for its significant impact on human health. Nevertheless, challenges persist in the advancement of precision nutrition, including consumer dietary behaviors, nutrient absorption, and utilization. Thus, the exploration of effective strategies to enhance the efficacy of precision nutrition and maximize its potential benefits in dietary interventions and disease management is imperative. SCOPE AND APPROACH The primary objective of this comprehensive review is to synthesize and assess the latest technical approaches and future prospects for achieving precision nutrition, while also addressing the existing constraints in this field. The role of delivery systems is pivotal in the realization of precision nutrition goals. This paper outlines the potential applications of delivery systems in precision nutrition and highlights key considerations for their design and implementation. Additionally, the review offers insights into the evolving trends in delivery systems for precision nutrition, particularly in the realms of nutritional fortification, specialized diets, and disease prevention. KEY FINDINGS AND CONCLUSIONS By leveraging computer data collection, omics, and metabolomics analyses, this review scrutinizes the lifestyles, dietary patterns, and health statuses of diverse organisms. Subsequently, tailored nutrient supplementation programs are devised based on individual organism profiles. The utilization of delivery systems enhances the bioavailability of functional compounds and enables targeted delivery to specific body regions, thereby catering to the distinct nutritional requirements and disease prevention needs of consumers, with a particular emphasis on special populations and dietary preferences.
Collapse
Affiliation(s)
- Shuwei Luo
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Juntao Zhang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jing Sun
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Tong Zhao
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Haixia Yang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
5
|
Bernini R, Campo M, Cassiani C, Fochetti A, Ieri F, Lombardi A, Urciuoli S, Vignolini P, Villanova N, Vita C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12871-12895. [PMID: 38829927 DOI: 10.1021/acs.jafc.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Campo
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Cassiani
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Ieri
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Urciuoli
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Pamela Vignolini
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Vita
- QuMAP - PIN, University Center "Città di Prato" Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| |
Collapse
|
6
|
Guo R, Xiong J, Li P, Ma C, Zhao X, Cai W, Kong Y, Huang Q. Emulsified sausages with yeast protein as an animal fat replacer: Effects on nutritional composition, spatial structure, gel performance, and sensory quality. Meat Sci 2024; 210:109433. [PMID: 38278006 DOI: 10.1016/j.meatsci.2024.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
This paper investigated the effect of yeast protein (YP)-fat replacement on the nutritional composition, spatial structure, gel performance, and sensory quality of emulsified sausages. YP is enriched with essential amino acids (36.49 g/100 g), which improved the nutritional quality of sausages whereas reducing its fat content. Moreover, YP could absorb water and fat, thus the YP-added sausages exhibiting an amount-dependent increase in emulsion stability and water migration. The microstructure illustrated that YP acted as a filler to improve structural homogeneity and compactness of the pork gel network. And YP-fat replacement could significantly enhance the hardness, gel strength and elasticity of sausages whereas decreasing the viscosity. Additionally, at partial or full YP-fat replacement (25-100%), the YP-added sausages scored higher in odor and texture, as well as better antioxidant stability than controls. Overall, YP can be employed as a new fat substitute for the preparation of healthy and nutritional sausages, while maintaining the sensory quality.
Collapse
Affiliation(s)
- Ruotong Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jian Xiong
- Angel Yeast Co. Ltd., Yichang, Hubei Province 443003, China
| | - Pei Li
- Angel Yeast Co. Ltd., Yichang, Hubei Province 443003, China
| | - Chunlei Ma
- Angel Yeast Co. Ltd., Yichang, Hubei Province 443003, China
| | - Xiaoyun Zhao
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yaqiu Kong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
7
|
Freiría-Gándara J, Martínez-Senra T, Bravo-Díaz C. Exploring the Use of Hydroxytyrosol and Some of Its Esters in Food-Grade Nanoemulsions: Establishing Connection between Structure and Efficiency. Antioxidants (Basel) 2023; 12:2002. [PMID: 38001855 PMCID: PMC10669426 DOI: 10.3390/antiox12112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The efficiency of HT and that of some of its hydrophobic derivatives and their distribution and effective concentrations were investigated in fish oil-in-water nanoemulsions. For this purpose, we carried out two sets of independent, but complementary, kinetic experiments in the same intact fish nanoemulsions. In one of them, we monitored the progress of lipid oxidation in intact nanoemulsions by monitoring the formation of conjugated dienes with time. In the second set of experiments, we determined the distributions and effective concentrations of HT and its derivatives in the same intact nanoemulsions as those employed in the oxidation experiments. Results show that the antioxidant efficiency is consistent with the "cut-off" effect-the efficiency of HT derivatives increases upon increasing their hydrophobicity up to the octyl derivative after which a further increase in the hydrophobicity decreases their efficiency. Results indicate that the effective interfacial concentration is the main factor controlling the efficiency of the antioxidants and that such efficiency strongly depends on the surfactant concentration and on the oil-to-water (o/w) ratio employed to prepare the nanoemulsions.
Collapse
Affiliation(s)
- Josefa Freiría-Gándara
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Tamara Martínez-Senra
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Carlos Bravo-Díaz
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
8
|
Pineda CG, Yamul DK, Navarro AS. Utilization of different by-products to produce nutritionally rich gelled products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2234-2243. [PMID: 37273569 PMCID: PMC10232693 DOI: 10.1007/s13197-023-05750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 06/06/2023]
Abstract
Yellow corn cooking water with yerba mate (Ilex paraguariensis) extract, obtained as a by-product of snack manufacture, was combined with whey protein concentrate (7 g/100 g), flaxseed (Linum usitatissimum L.) flour (2 g/100 g), and honey (8 g/100 g) to obtain different gelled products. The effect of the composition on the physicochemical parameters was analyzed. Flaxseed flour was added directly or with a previous pre-heating, and, in both cases, it increased the solid behavior of gels. On the contrary, honey increased the gel liquid-like behavior, and both ingredients modified the color of the gels. Elastic and loss modulus decreased after storage for 7 and 14 days. Some of the textural parameters also changed during storage. Principal component analysis and cluster analysis revealed three groups of formulations according to their composition, and those samples containing only flaxseed flour were best described with the textural and rheological parameters. Yerba mate extract, mainly, flaxseed flour, and honey increased the phenolic composition of gels but decreased the sensory acceptability, despite the sweetness of honey. A variety of gelled products with different textures and flavors was obtained using by-products of the food industry. These gels could be used either for dessert formulations or as a matrix for gelled products.
Collapse
Affiliation(s)
- Carolina Giraldo Pineda
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP–CCT La Plata–CONICET, 47 y 116, 1900 La Plata, Argentina
| | - Diego Karim Yamul
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, PROANVET, Tandil, Buenos Aires Argentina
- CONICET, Tandil, Buenos Aires Argentina
| | - Alba Sofía Navarro
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP–CCT La Plata–CONICET, 47 y 116, 1900 La Plata, Argentina
- Facultad de Ingeniería, UNLP, 47 y 116, 1900 La Plata, Buenos Aires Argentina
| |
Collapse
|
9
|
Wan C, Cheng Q, Zeng M, Huang C. Recent progress in emulsion gels: from fundamentals to applications. SOFT MATTER 2023; 19:1282-1292. [PMID: 36744514 DOI: 10.1039/d2sm01481e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emulsion gels, also known as gelled emulsions or emulgels, have garnered great attention both in fundamental research and practical applications due to their superior stability, tunable morphology and microstructure, and promising mechanical and functional properties. From an application perspective, attention in this area has been, historically, mainly focused on food industries, e.g., engineering emulsion gels as fat substitutes or delivery systems for bioactive food ingredients. However, a growing body of studies has, in recent years, begun to demonstrate the full potential of emulsion gels as soft templates for designing advanced functional materials widely applied in a variety of fields, spanning chemical engineering, pharmaceutics, and materials science. Herein, a concise and comprehensive overview of emulsion gels is presented, from fundamentals to applications, highlighting significant recent progress and open questions, to scout for and deepen their potential applications in more fields.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Min Zeng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
10
|
Shu J, McClements DJ, Luo S, Ye J, Liu C. Effect of internal and external gelation on the physical properties, water distribution, and lycopene encapsulation properties of alginate-based emulsion gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Granato D. Functional foods to counterbalance low-grade inflammation and oxidative stress in cardiovascular diseases: a multilayered strategy combining food and health sciences. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Domínguez R, Lorenzo JM, Pateiro M, Munekata PES, Alves Dos Santos B, Basso Pinton M, Cichoski AJ, Bastianello Campagnol PC. Main animal fat replacers for the manufacture of healthy processed meat products. Crit Rev Food Sci Nutr 2022; 64:2513-2532. [PMID: 36123812 DOI: 10.1080/10408398.2022.2124397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The technological, sensory, and nutritional characteristics of meat products are directly related to their animal fat content. Adding animal fat to meat products significantly influences their sensory properties, such as color, taste, and aroma. In addition, the physicochemical properties of fat decisively contribute to the texture of meat products, playing a fundamental role in improving the properties of viscosity, creaminess, chewiness, cohesiveness, and hardness. However, meat products' high animal fat content makes them detrimental to a healthy diet. Therefore, reducing the fat content of meat products is an urgent need, but it is a challenge for researchers and the meat industry. The fat reduction in meat products without compromising the product's quality and with minor impacts on the production costs is not a simple task. Thus, strategies to reduce the fat content of meat products should be studied with caution. During the last decades, several fat replacers were tested, but among all of them, the use of flours and fibers, hydrocolloids, mushrooms, and some animal proteins (such as whey and collagen) presented promising results. Additionally, multiple strategies to gel oils of vegetable origin are also a current topic of study, and these have certain advantages such as their appearance (attempts to imitate animal fat), while also improving the nutritional profile of the lipid fraction of the products meat. However, each of these fat substitutes has both advantages and limitations in their use, which will be discussed in subsequent sections. Therefore, due to the growing interest in this issue, this review focuses on the main substitutes for animal fat used in the production of meat products, offering detailed and updated information on the latest discoveries and advances in this area.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | | | | | | | | |
Collapse
|
13
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
14
|
Santiesteban-López NA, Gómez-Salazar JA, Santos EM, Campagnol PCB, Teixeira A, Lorenzo JM, Sosa-Morales ME, Domínguez R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022; 11:2613. [PMID: 36076798 PMCID: PMC9455744 DOI: 10.3390/foods11172613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Meat is a nutrient-rich matrix for human consumption. However, it is also a suitable environment for the proliferation of both spoilage and pathogenic microorganisms. The growing demand to develop healthy and nutritious meat products with low fat, low salt and reduced additives and achieving sanitary qualities has led to the replacement of the use of synthetic preservatives with natural-origin compounds. However, the reformulation process that reduces the content of several important ingredients (salt, curing salts, etc.), which inhibit the growth of multiple microorganisms, greatly compromises the stability and safety of meat products, thus posing a great risk to consumer health. To avoid this potential growth of spoiling and/or pathogenic microorganisms, numerous molecules, including organic acids and their salts; plant-derived compounds, such as extracts or essential oils; bacteriocins; and edible coatings are being investigated for their antimicrobial activity. This review presents some important compounds that have great potential to be used as natural antimicrobials in reformulated meat products.
Collapse
Affiliation(s)
| | - Julián Andrés Gómez-Salazar
- Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Mexico
| | - Eva M. Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42039, Mexico
| | - Paulo C. B. Campagnol
- Departmento de Tecnologia e Ciência de Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Alfredo Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - María Elena Sosa-Morales
- Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Mexico
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
15
|
Liu S, Lu J, Zhang J, Su X, Peng X, Guan H, Shi C. Emulsion gels prepared with chia mucilage and olive oil as a new animal fat replacer in beef patties. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuping Liu
- College of Tourism and Cuisine Harbin University of Commerce Harbin P. R. China
| | - Jiahui Lu
- College of Tourism and Cuisine Harbin University of Commerce Harbin P. R. China
| | - Jiamei Zhang
- College of Tourism and Cuisine Harbin University of Commerce Harbin P. R. China
| | - Xiaowen Su
- College of Tourism and Cuisine Harbin University of Commerce Harbin P. R. China
| | - Xiuwen Peng
- College of Tourism and Cuisine Harbin University of Commerce Harbin P. R. China
| | - Huanan Guan
- College of Food Engineering Harbin University of Commerce Harbin P. R. China
| | - Changbo Shi
- College of Tourism and Cuisine Harbin University of Commerce Harbin P. R. China
| |
Collapse
|
16
|
Application of ginseng powder and combined starter culture for improving the oxidative stability, microbial safety and quality characteristics of sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Ren Y, Huang L, Zhang Y, Li H, Zhao D, Cao J, Liu X. Application of Emulsion Gels as Fat Substitutes in Meat Products. Foods 2022; 11:foods11131950. [PMID: 35804763 PMCID: PMC9265990 DOI: 10.3390/foods11131950] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Although traditional meat products are highly popular with consumers, the high levels of unsaturated fatty acids and cholesterol present significant health concerns. However, simply using plant oil rich in unsaturated fatty acids to replace animal fat in meat products causes a decline in product quality, such as lower levels of juiciness and hardness. Therefore, it is necessary to develop a fat substitute that can ensure the sensory quality of the product while reducing its fat content. Consequently, using emulsion gels to produce structured oils or introducing functional ingredients has attracted substantial attention for replacing the fat in meat products. This paper delineated emulsion gels into protein, polysaccharide, and protein–polysaccharide compound according to the matrix. The preparation methods and the application of the three emulsion gels as fat substitutes in meat products were reviewed. Since it displayed a unique separation structure, the double emulsion was highly suitable for encapsulating bioactive substances, such as functional oils, flavor components, and functional factors, while it also exhibited significant potential for developing low-fat or functional healthy meat products. This paper summarized the studies involving the utilization of double emulsion and gelled double emulsion as fat replacement agents to provide a theoretical basis for related research and new insight into the development of low-fat meat products.
Collapse
Affiliation(s)
- Yuqing Ren
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Lu Huang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Yinxiao Zhang
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Correspondence: (H.L.); (X.L.)
| | - Di Zhao
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
| | - Jinnuo Cao
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.R.); (L.H.); (Y.Z.); (D.Z.)
- Plant Meat (Hangzhou) Health Technology Limited Company, Hangzhou 310000, China;
- Correspondence: (H.L.); (X.L.)
| |
Collapse
|
18
|
Physicochemical, Rheological and Structural Properties of Cold-set Emulsion-filled Gels Based on Whey Protein Isolate-basil Seed Gum Mixed Biopolymers. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
20
|
Lingiardi N, Galante M, de Sanctis M, Spelzini D. Are quinoa proteins a promising alternative to be applied in plant-based emulsion gel formulation? Food Chem 2022; 394:133485. [PMID: 35753255 DOI: 10.1016/j.foodchem.2022.133485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/13/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Emulsion gels are structured emulsion systems that behave as soft solid-like materials. Emulsion gels are commonly used in food-product design both as fat replacers and as delivery carriers of bioactive compounds. Different plant-derived proteins like soy, chia, and oat have been used in emulsion gel formulation to substitute fat in meat products and to deliver some vegetable dyes or extracts. Quinoa protein isolates have been scarcely applied in emulsion gel formulation although they seem to be a promising alternative as emulsion stabilizers. Quinoa protein isolates have a high protein content with a well-balanced amino acid profile and show good emulsifying and gelling capabilities. Unlike quinoa starch, quinoa protein isolates do not require any chemical modification before being used. The present article reviews the state of the art in food emulsion gels stabilized with vegetable proteins and highlights the potential uses of quinoa proteins in emulsion gel formulation.
Collapse
Affiliation(s)
- Nadia Lingiardi
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina.
| | - Micaela Galante
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Católica Argentina, Facultad de Química e Ingeniería del Rosario, Pellegrini 3314, Rosario, Argentina
| | - Mariana de Sanctis
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Universidad del Centro Educativo Latinoamericano, Facultad de Química, Pellegrini 1332, Rosario, Argentina
| | - Darío Spelzini
- Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
21
|
Ingrassia R, Busti PA, Boeris V. Physicochemical and mechanical properties of a new cold-set emulsion gel system and the effect of quinoa protein fortification. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Niknam SM, Kashaninejad M, Escudero I, Sanz MT, Beltrán S, Benito JM. Preparation of Water-in-Oil Nanoemulsions Loaded with Phenolic-Rich Olive Cake Extract Using Response Surface Methodology Approach. Foods 2022; 11:279. [PMID: 35159431 PMCID: PMC8834604 DOI: 10.3390/foods11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
In this study, we aimed to prepare stable water-in-oil (W/O) nanoemulsions loaded with a phenolic-rich aqueous phase from olive cake extract by applying the response surface methodology and using two methods: rotor-stator mixing and ultrasonic homogenization. The optimal nanoemulsion formulation was 7.4% (w/w) of olive cake extract as the dispersed phase, and 11.2% (w/w) of a surfactant mixture of polyglycerol polyricinoleate (97%) and Tween 80 (3%) in Miglyol oil as the continuous phase. Optimum results were obtained by ultrasonication for 15 min at 20% amplitude, yielding W/O nanoemulsion droplets of 104.9 ± 6.7 nm in diameter and with a polydispersity index (PDI) of 0.156 ± 0.085. Furthermore, an optimal nanoemulsion with a droplet size of 105.8 ± 10.3 nm and a PDI of 0.255 ± 0.045 was prepared using a rotor-stator mixer for 10.1 min at 20,000 rpm. High levels of retention of antioxidant activity (90.2%) and phenolics (83.1-87.2%) were reached after 30 days of storage at room temperature. Both W/O nanoemulsions showed good physical stability during this storage period.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Benito
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (S.M.N.); (M.K.); (I.E.); (M.T.S.); (S.B.)
| |
Collapse
|
23
|
Bovine serum albumin cold-set emulsion gel mediated by transglutaminase / glucono-δ-lactone coupling precursors: Fabrication, characteristics and embedding efficiency of hydrophobic bioactive components. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Campagnol PCB, Lorenzo JM, Dos Santos BA, Cichoski AJ. Recent advances in the development of healthier meat products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:123-179. [PMID: 36064292 DOI: 10.1016/bs.afnr.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meat products are an excellent source of high biological value proteins, in addition to the high content of minerals, vitamins, and bioactive compounds. However, meat products contain compounds that can cause a variety of adverse health effects and pose a serious health threat to humans. In this sense, this chapter will address recent strategies to assist in the development of healthier meat products. The main advances about the reduction of sodium and animal fat in meat products will be presented. In addition, strategies to make the lipid profile of meat products more nutritionally advantageous for human health will also be discussed. Finally, the reduction of substances of safety concern in meat products will be addressed, including phosphates, nitrites, polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, as well as products from lipid and protein oxidation.
Collapse
Affiliation(s)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain; Universidad de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | | | | |
Collapse
|
25
|
Jurčaga L, Bobko M, Kolesárová A, Bobková A, Demianová A, Haščík P, Belej Ľ, Mendelová A, Bučko O, Kročko M, Čech M. Blackcurrant ( Ribes nigrum L.) and Kamchatka Honeysuckle ( Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods 2021; 10:foods10122957. [PMID: 34945508 PMCID: PMC8701760 DOI: 10.3390/foods10122957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidation is one of the most prevalent factors responsible for meat product deterioration. Due to their potential health risks, commonly used synthetic antioxidants are beginning to be frowned upon by customers. The industry is searching for a natural replacement. In our study, we incorporated blackcurrant (Ribes nigrum L.) and Kamchatka honeysuckle (Lonicera caerulea var. Kamtschatica) extracts into raw-cooked meat products (frankfurters) as natural antioxidants. We observed that both extracts at concentrations of 3 mL·kg-1 were able to significantly (α = 0.05) postpone lipid oxidation in our samples, with results comparable to vitamin C (0.5 mg·kg-1) addition. Moreover, we did not observe negative effects of the extracts on the product's color, pH, or textural properties. Negative results were reported in the sensory evaluation of honeysuckle addition samples. This could have been caused by the natural strong and bitter taste of honeysuckle, which was transferred to the extracts and, subsequently, into the meat product.
Collapse
Affiliation(s)
- Lukáš Jurčaga
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| | - Marek Bobko
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
- Correspondence:
| | - Adriana Kolesárová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
| | - Alica Bobková
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| | - Alžbeta Demianová
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| | - Peter Haščík
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| | - Ľubomír Belej
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| | - Andrea Mendelová
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| | - Ondřej Bučko
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia;
| | - Miroslav Kročko
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| | - Matej Čech
- Institute of Foods Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 94976 Nitra, Slovakia; (L.J.); (A.B.); (A.D.); (P.H.); (Ľ.B.); (A.M.); (M.K.); (M.Č.)
| |
Collapse
|
26
|
Influence of Murta (Ugni molinae Turcz) Powder on the Frankfurters Quality. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Frankfurters are one of the most demanded meat products in the world due to their low cost and good taste. However, they contain up to 30% animal fat, which is negative for the consumer’s health. Moreover, high-fat contents could also decrease frankfurter sensory properties, since it accelerates the rancidity of the products. This fact is highly dependent on the fatty acids composition since the unsaturation promotes oxidative reactions. Currently, strategies have been developed to replace animal fat with vegetable oils or the inclusion of new raw materials. The murta (Ugni molinae Turcz), an endemic plant in Chile, is a specie that contains high levels of flavonoids in its fruits and has a pleasant flavor, as well as a sweet and floral aroma. However, the effect of the addition of these fruits in the formulation of meat products has been scarcely studied. The present study aims to reduce the use of synthetic additives using natural ones (murta powder). Therefore, this research evaluated the influence of the inclusion of murta on the chemical, sensory, and instrumental parameters of traditional frankfurters. Three batches of frankfurters were manufactured: control sausages without additives (T0); samples with chemical antioxidant (T1); and with murta fruit powder (T2). The chemical composition, physicochemical parameters and sensory properties were determined. Frankfurters made with murta (T2) presented middle values in energy, moisture and sodium compared with control. Also, the reformulated sausages (T2) presented the lowest water holding capacity, redness (a*) and yellowness and the highest values of fat and carbohydrates. Regarding fatty acids content, the most important changes were observed in the C18:0 and C14:0 (T2 presented the lowest values) and C18:2n-6 (T2 had the highest values), but minimal differences were observed in the total SFA, MUFA and PUFA content. Cholesterol content from T2 were similar to the control samples, and T1 presented the highest values. Although these differences, both chemical and nutritional quality of all frankfurters manufactured in the present study were very similar among treatments. Finally, according to the sensory analysis, T2 presented better acceptability and sensory characteristics compared with the other treatments (p ≤ 0.05). Therefore, the inclusion of murta in the production of frankfurters could be a strategy to improve the sensory characteristics of this product with minimal changes in chemical and nutritional properties. However, the effect of murta on oxidative stability and frankfurter shelf-life should be studied in depth in future research.
Collapse
|
27
|
Badar IH, Liu H, Chen Q, Xia X, Kong B. Future trends of processed meat products concerning perceived healthiness: A review. Compr Rev Food Sci Food Saf 2021; 20:4739-4778. [PMID: 34378319 DOI: 10.1111/1541-4337.12813] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
The 21st-century consumer is highly demanding when it comes to the health benefits of food and food products. In the pursuit of attracting these consumers and easing the rise in demand for high-quality meat products, the processed meat sector is intensely focused on developing reformulated, low-fat, healthy meat products. Meat and meat products are considered the primary sources of saturated fatty acids in the human diet. Therefore, these reformulation strategies aim to improve the fatty acid profile and reduce total fat and cholesterol, which can be achieved by replacing animal fat with plant-based oils; it could be performed as direct inclusion of these oils or pre-emulsified oils. However, emulsions offer a viable option for incorporating vegetable oils while avoiding the multiple issues of direct inclusion of these oils in meat products. Processed meat products are popular worldwide and showing a gradually increasing trend of consumption. Various types of plant-based oils have been studied as fat replacers in meat products. This review will focus on possible methods to reduce the saturated fatty acid content in meat products.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
28
|
|
29
|
Current Progress in the Utilization of Soy-Based Emulsifiers in Food Applications-A Review. Foods 2021; 10:foods10061354. [PMID: 34199220 PMCID: PMC8231891 DOI: 10.3390/foods10061354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Soy-based emulsifiers are currently extensively studied and applied in the food industry. They are employed for food emulsion stabilization due to their ability to absorb at the oil–water interface. In this review, the emulsifying properties and the destabilization mechanisms of food emulsions were briefly introduced. Herein, the effect of the modification process on the emulsifying characteristics of soy protein and the formation of soy protein–polysaccharides for improved stability of emulsions were discussed. Furthermore, the relationship between the structural and emulsifying properties of soy polysaccharides and soy lecithin and their combined effect on the protein stabilized emulsion were reviewed. Due to the unique emulsifying properties, soy-based emulsifiers have found several applications in bioactive and nutrient delivery, fat replacer, and plant-based creamer in the food industry. Finally, the future trends of the research on soy-based emulsifiers were proposed.
Collapse
|
30
|
Novel lipid materials based on gelling procedures as fat analogues in the development of healthier meat products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Ruiz-Capillas C, Herrero AM, Pintado T, Delgado-Pando G. Sensory Analysis and Consumer Research in New Meat Products Development. Foods 2021; 10:foods10020429. [PMID: 33669213 PMCID: PMC7919803 DOI: 10.3390/foods10020429] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023] Open
Abstract
This review summarises the main sensory methods (traditional techniques and the most recent ones) together with consumer research as a key part in the development of new products, particularly meat products. Different types of sensory analyses (analytical and affective), from conventional methods (Quantitative Descriptive Analysis) to new rapid sensory techniques (Check All That Apply, Napping, Flash Profile, Temporal Dominance of Sensations, etc.) have been used as crucial techniques in new product development to assess the quality and marketable feasibility of the novel products. Moreover, an important part of these new developments is analysing consumer attitudes, behaviours, and emotions, in order to understand the complex consumer–product interaction. In addition to implicit and explicit methodologies to measure consumers’ emotions, the analysis of physiological responses can also provide information of the emotional state a food product can generate. Virtual reality is being used as an instrument to take sensory analysis out of traditional booths and configure conditions that are more realistic. This review will help to better understand these techniques and to facilitate the choice of the most appropriate at the time of its application at the different stages of the new product development, particularly on meat products.
Collapse
|
32
|
Ruiz-Capillas C, Herrero AM. Development of Meat Products with Healthier Lipid Content: Vibrational Spectroscopy. Foods 2021; 10:foods10020341. [PMID: 33562823 PMCID: PMC7914705 DOI: 10.3390/foods10020341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the importance of developing meat products with healthier lipid content and strategies such as the use of structured lipids to develop these enriched products. The review also conducts a critical analysis of the use of vibrational spectroscopy as a tool to further these developments. Meat and meat products are extensively recognized and consumed in the world. They are an important nutritional contribution in our diet. However, their consumption has also been associated with some negative consequences for health due to some of its components. There are new trends in the design of healthy meat products focusing mainly on improving their composition. From among the different strategies, improving lipid content is the one that has received the most attention. A novel development is the formation of lipid materials based on structured lipids such emulsion gels (EGs) or oil-bulking agents (OBAs) that offer attractive applications in the reformulation of health-enhanced meat products. A deeper interpretation is required of the complicated relationship between the structure of their components and their properties in order to obtain structured lipids and healthier meat products with improved lipid content and acceptable characteristics. To this end, vibrational spectroscopy techniques (Raman and infrared spectroscopy) have been demonstrated to be suitable in the elucidation of the structural characteristics of lipid materials based on structured lipids (EGs or OBAs) and the corresponding reformulated health-enhanced meat products into which these fat replacers have been incorporated. Future research on these structures and how they correlate to certain technological properties could help in selecting the best lipid material to achieve specific technological properties in healthier meat products with improved lipid content.
Collapse
|