1
|
Aydin BS, Sagiroglu AA, Ozturk Civelek D, Gokce M, Bahadori F. Development of Curcumin and Turmerone Loaded Solid Lipid Nanoparticle for Topical Delivery: Optimization, Characterization and Skin Irritation Evaluation with 3D Tissue Model. Int J Nanomedicine 2024; 19:1951-1966. [PMID: 38435752 PMCID: PMC10907133 DOI: 10.2147/ijn.s453347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background Curcuma longa L., commonly known as turmeric, is renowned for its therapeutic benefits attributed to bioactive compounds, namely curcumin (Cur) and aromatic turmerone (Tur), present in its rhizome. These compounds exhibit diverse therapeutic properties, including anti-inflammatory, antioxidant, and anti-tumor effects. However, the topical application of these compounds has a significant potential for inducing skin irritation. This study focuses on formulating solid lipid nanoparticle (SLN) carriers encapsulating both Cur and Tur for reduced irritation and enhanced stability. Methods SLN formulations were prepared by a method using homogenization followed by ultrasonication procedures and optimized by applying response surface methodology (RSM). Results The optimized SLN formulation demonstrated entrapment efficiencies, with 77.21 ± 4.28% for Cur and 75.12 ± 2.51% for Tur. A size distribution of 292.11 ± 9.43 nm was obtained, which was confirmed to be a spherical and uniform shape via environmental scanning electron microscopy (ESEM) images. The in vitro release study indicated cumulative releases of 71.32 ± 3.73% for Cur and 67.23 ± 1.64% for Tur after 24 hours under sink conditions. Physical stability tests confirmed the stability of formulation, allowing storage at 4°C for a minimum of 60 days. Notably, in vitro skin irritation studies, utilizing the reconstructed human epidermal model (EPI-200-SIT), revealed a significant reduction in irritation with the SLN containing Cur and Tur compared to nonencapsulated Cur and Tur. Conclusion These findings collectively endorse the optimized SLN formulation as a favorable delivery system for Cur and Tur in diverse topical uses, offering enhanced stability, controlled release and reduced irritation.
Collapse
Affiliation(s)
- Beyza Sümeyye Aydin
- Bezmialem Vakif University, Health Sciences Institute, Department of Biotechnology, Istanbul, 34093, Turkey
| | - Ali Asram Sagiroglu
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul, 34500, Turkey
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul, 34093, Turkey
| | - Dilek Ozturk Civelek
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, 34093, Türkiye
| | - Mustafa Gokce
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, 34093, Türkiye
| | - Fatemeh Bahadori
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul, 34500, Turkey
| |
Collapse
|
2
|
Kępińska-Pacelik J, Biel W. Turmeric and Curcumin-Health-Promoting Properties in Humans versus Dogs. Int J Mol Sci 2023; 24:14561. [PMID: 37834009 PMCID: PMC10572432 DOI: 10.3390/ijms241914561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The growing popularity of the use of nutraceuticals in the prevention and alleviation of symptoms of many diseases in humans and dogs means that they are increasingly the subject of research. A representative of the nutraceutical that deserves special attention is turmeric. Turmeric belongs to the family Zingiberaceae and is grown extensively in Asia. It is a plant used as a spice and food coloring, and it is also used in traditional medicine. The biologically active factors that give turmeric its unusual properties and color are curcuminoids. It is a group of substances that includes curcumin, de-methoxycurcumin, and bis-demethoxycurcumin. Curcumin is used as a yellow-orange food coloring. The most important pro-health effects observed after taking curcuminoids include anti-inflammatory, anticancer, and antioxidant effects. The aim of this study was to characterize turmeric and its main substance, curcumin, in terms of their properties, advantages, and disadvantages, based on literature data.
Collapse
Affiliation(s)
- Jagoda Kępińska-Pacelik
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
3
|
Lv Z, Meng X, Sun S, Jiang T, Li Y, Feng J. Construction and formulation optimization of prothioconazole nanoemulsions for the control of Fusarium graminearum: Enhancing activity and reducing toxicity. Colloids Surf B Biointerfaces 2023; 227:113379. [PMID: 37267682 DOI: 10.1016/j.colsurfb.2023.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
In this study, the optimal emulsifier for prothioconazole nanoemulsions was initially screened based on appearance, microscopic observation, mean droplet size and polydispersity index (PDI). In addition, the BoxBehnken design method is adopted, and the optimal formula is screened with an emulsification time, emulsifier content, and solvent content as a single factor. On this basis, the nanoemulsion meets FAO standards for various indicators. The contact angle of droplets on wheat leaves was significantly reduced. This nanoemulsion also showed good inhibitory activity against Fusarium graminearum (EC50 =1.94 mg L-1), low acute toxicity to zebrafish (LC50 =26.35 mg L-1) and good biosafety to BEAS-2B cells. The nanoemulsion reduced the adverse effects of pesticide on wheat seed germination and growth. This study can help promote the design and manufacture of stable, efficient and safe agricultural nanoemulsions, and is expected to benefit the sustainable development of green plant protection.
Collapse
Affiliation(s)
- Ze Lv
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shaoyang Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianzhen Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yan Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Luo Z, Tian M, Ahmad N, Qiu W, Zhang Y, Li C, Zhao C. A switchable temperature-responsive ionic liquid-based surfactant-free microemulsion for extraction and separation of hydrophilic and lipophilic compounds from Camptotheca acuminata and extraction mechanism. Colloids Surf B Biointerfaces 2023; 222:113067. [PMID: 36469979 DOI: 10.1016/j.colsurfb.2022.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
In this study, a switchable temperature-responsive ionic liquid-based surfactant-free microemulsion (TRIL-SFME) for extraction and in-situ separation of hydrophilic and lipophilic compounds from Camptotheca acuminata was firstly developed and systematically characterized. This TRIL-SFME was obtained using 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]), 1,2-propanediol and H2O. The prepared TRIL-SFME presented low viscosity and rapid response to temperature. Firstly, the effect of temperatures on TRIL-SFME phase behavior was studied followed by determination of effect of liquid/solid ratio and extraction time on the extraction yields of the targeted compounds. The TRIL-SFME demulsified rapidly by thermal stimulus, resulting in in-situ separation and enrichment of compounds with varying polarity. The results of present study revealed that TRIL-SFME had higher extraction yields (1.50-5.79 folds) compared to traditional solvents and individual components of TRIL-SFME. Besides, in-situ separation and enrichment of hydrophilic compounds (phenolic acids) and lipophilic compounds (alkaloids) was accomplished in short time (within 3 min) by cooling the system to 4 ℃. Furthermore, the mesoscopic behavior between TRIL-SFME and targeted compounds was simulated by dissipative particle dynamics (DPD) to explore the extraction mechanism for the first time. The results illustrated the formation of W/IL structure of TRIL-SFME and clarified solubilization mechanism of TRIL-SFME system for targeted compounds, which is related to its special "water pool" structure. This novel and switchable TRIL-SFME is an environmentally friendly and promising alternative to simultaneously extract, in-situ separate and enrich the natural active compounds with different polarity from plant matrices.
Collapse
Affiliation(s)
- Zidan Luo
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China; Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China
| | - Mengfei Tian
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China; Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China
| | - Naveed Ahmad
- Department of Chemistry, Division of Science andTechnology, University of Education, Lahore, Pakistan
| | - Wu Qiu
- Center for Control Theory and GuidanceTechnology, Harbin Institute of Technology, P.O. Box 416, Harbin 150001, China
| | - Yu Zhang
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China; Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China
| | - Chunying Li
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China; Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China.
| | - Chunjian Zhao
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China; Collaborative Innovation Center for Development and Utilization of Forest Resources, Harbin 150040, China.
| |
Collapse
|
5
|
Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life (Basel) 2023; 13:life13020261. [PMID: 36836619 PMCID: PMC9962739 DOI: 10.3390/life13020261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Plant-derived bioactive compounds are gaining wide attention for their multiple health-promoting activities and in particular for their anti-cancer properties. Several studies have highlighted how they can prevent cancer initiation and progression, improve the effectiveness of chemotherapy, and, in some cases, limit some of the side effects of chemotherapy agents. In this paper, we provide an update of the literature on the anti-cancer effects of three extensively studied plant-derived compounds, namely resveratrol, epigallocatechin gallate, and curcumin, with a special focus on the anti-cancer molecular mechanisms inducing apoptosis in the major types of cancers globally.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-0984-496204
| |
Collapse
|
6
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
7
|
Shaik MI, Azhari MF, Sarbon NM. Gelatin-Based Film as a Color Indicator in Food-Spoilage Observation: A Review. Foods 2022; 11:foods11233797. [PMID: 36496605 PMCID: PMC9739830 DOI: 10.3390/foods11233797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The color indicator can monitor the quality and safety of food products due to its sensitive nature toward various pH levels. A color indicator helps consumers monitor the freshness of food products since it is difficult for them to depend solely on their appearance. Thus, this review could provide alternative suggestions to solve the food-spoilage determination, especially for perishable food. Usually, food spoilage happens due to protein and lipid oxidation, enzymatic reaction, and microbial activity that will cause an alteration of the pH level. Due to their broad-spectrum properties, natural sources such as anthocyanin, curcumin, and betacyanin are commonly used in developing color indicators. They can also improve the gelatin-based film's morphology and significant drawbacks. Incorporating natural colorants into the gelatin-based film can improve the film's strength, gas-barrier properties, and water-vapor permeability and provide antioxidant and antimicrobial properties. Hence, the color indicator can be utilized as an effective tool to monitor and control the shelf life of packaged foods. Nevertheless, future studies should consider the determination of food-spoilage observation using natural colorants from betacyanin, chlorophyll, and carotenoids, as well as the determination of gas levels in food spoilage, especially carbon dioxide gas.
Collapse
|
8
|
Dalla E, Koumentakou I, Bikiaris N, Balla E, Lykidou S, Nikolaidis N. Formulation, Characterization and Evaluation of Innovative O/W Emulsions Containing Curcumin Derivatives with Enhanced Antioxidant Properties. Antioxidants (Basel) 2022; 11:2271. [PMID: 36421457 PMCID: PMC9687020 DOI: 10.3390/antiox11112271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
In the present study, a series of semisolid Oil in Water (O/W) emulsions containing different Curcumin (Cur) derivatives (Cur powder, Cur extract and Cur complexed with β-cyclodextrin) in varying concentrations, were prepared. Initially, Dynamic Light Scattering (DLS), microscopy, pH and viscosity measurements were performed to evaluate their stability over time. Moreover, the effect of the active cosmetic substances on the Sun Protection Factor (SPF), antimicrobial and antioxidant properties of the prepared emulsions was investigated. It was observed that emulsions containing Cur extract and Cur β-cyclodextrin complex presented great viscosity and pH stability for up to 90 days of storage contrary to the emulsions containing Cur powder which showed unstable behavior due to the formation of agglomerates. All samples presented SPF values between 2.6 and 3.2. The emulsions with Cur in all forms exhibited high antioxidant activity, whereas the emulsion containing Cur β-cyclodextrin complex presented the highest value. Despite their improved stability and antioxidant activity, the emulsions containing Cur extract and Cur-β-cyclodextrin exhibited a low percentage of antimicrobial activity against E. coli and Staphylococcus bacteria. Instead, the emulsions containing Cur powder presented a reduction rate over 90 % against E. coli and Staphylococcus colonies.
Collapse
|
9
|
Nie F, Feng C, Ahmad N, Tian M, Liu Q, Wang W, Lin Z, Li C, Zhao C. A new green alternative solvent for extracting echinacoside and acteoside from Cistanche deserticola based on ternary natural deep eutectic solvent. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Racz LZ, Racz CP, Pop LC, Tomoaia G, Mocanu A, Barbu I, Sárközi M, Roman I, Avram A, Tomoaia-Cotisel M, Toma VA. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022; 27:molecules27206854. [PMID: 36296447 PMCID: PMC9608994 DOI: 10.3390/molecules27206854] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, β-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein–curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.
Collapse
Affiliation(s)
- Levente Zsolt Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Csaba Pal Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Lucian-Cristian Pop
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Gen. Traian Mosoiu Str., RO-400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Aurora Mocanu
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Ioana Barbu
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
| | | | - Ioana Roman
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
| | - Alexandra Avram
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
11
|
Mirmohammad Meiguni MS, Salami M, Rezaei K, Ghaffari SB, Aliyari MA, Emam-Djomeh Z, Barazandegan Y, Gruen I. Curcumin-loaded complex coacervate made of mung bean protein isolate and succinylated chitosan as a novel medium for curcumin encapsulation. J Food Sci 2022; 87:4930-4944. [PMID: 36190116 DOI: 10.1111/1750-3841.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
A novel complex coacervate based on mung bean protein (MBP) and succinylated chitosan (SC) was developed in order to encapsulate curcumin to enhance its antioxidant and release properties. The optimum pH and MBP/SC ratio for fabrication of the complex coacervate were determined as 5.5 and 3:1, respectively. The MBP/SC complexes exhibited high affinity toward curcumin with encapsulation efficiency of 89.65%. The curcumin-loaded MBP with succinyl chitosan (c-MBP/SC) exhibited antioxidant properties investigated by DPPH and reducing power assays. c-MBP/SC also showed significant photo stability and acceptable controlled release behavior in simulated gastrointestinal conditions. Fluorescence results indicated that curcumin interacted with the hydrophobic areas available in c-MBP/SC. FTIR results showed the successful encapsulation of curcumin in the hydrophobic core of the complex, followed by minor changes in MBP conformation. Analysis of zeta potential revealed that MBP/SC particles were synthesized successfully at the pH value of 5.5 due to conformational changes of MBP. The conformational changes in protein structure were confirmed by Nile Red fluorescence anisotropy. As a result, c-MBP/SC could be considered as a promising carrier for curcumin encapsulation in food formulations with enhanced dispersity characteristic.
Collapse
Affiliation(s)
- Maryam Sadat Mirmohammad Meiguni
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Maryam Salami
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Seyed-Behnam Ghaffari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Amin Aliyari
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Zahra Emam-Djomeh
- Department of Food Science, Engineering, and Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj Campus, Karaj, Iran
| | - Yasmin Barazandegan
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Ingolf Gruen
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Kongpol K, Sermkaew N, Makkliang F, Khongphan S, Chuaboon L, Sakdamas A, Sakamoto S, Putalun W, Yusakul G. Extraction of curcuminoids and ar-turmerone from turmeric (Curcuma longa L.) using hydrophobic deep eutectic solvents (HDESs) and application as HDES-based microemulsions. Food Chem 2022; 396:133728. [PMID: 35870240 DOI: 10.1016/j.foodchem.2022.133728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
The extraction of curcuminoids and aromatic (ar)-turmerone from Curcuma longa L. using organic solvents produces chemical waste, and is therefore incompatible with food applications. To address this issue, this study presents the design of hydrophobic deep eutectic solvents (HDESs) and HDES-based microemulsions. Using the response surface methodology (RSM), the optimal extraction conditions were identified as follows: HDES = OA:menthol (1:3.6 M ratio), solid-to-liquid ratio = 10:1 (mg/mL), and extraction duration = 90 min (prediction accuracy ≥ 85 %). Under these conditions, the HDES extraction yields of bisdemethoxycurcumin, demethoxycurcumin, curcumin, and ar-turmerone were 2.49 ± 0.25, 5.61 ± 0.45, 9.40 ± 0.86, and 3.83 ± 0.19 % (w/w, dry basis), respectively, while those obtained using the HDES-based microemulsion were 2.10 ± 0.18, 6.31 ± 0.48, 12.6 ± 1.20, and 2.58 ± 0.19 % (w/w, dry basis), respectively. The HDES and its microemulsions are more effective and environmentally friendly than conventional organic solvents for the extraction of curcuminoids and ar-turmerone, and these solvents are also compatible with food and pharmaceutical formulations.
Collapse
Affiliation(s)
- Kantapich Kongpol
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand; Research Excellence Center for Innovation and Health Product, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Namfa Sermkaew
- School of Pharmacy, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand; Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si, Thammarat, Thailand.
| | - Fonthip Makkliang
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Sirinan Khongphan
- School of Pharmacy, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand
| | - Litavadee Chuaboon
- School of Pharmacy, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand; Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Attapon Sakdamas
- School of Pharmacy, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand.
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, Thailand; Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
13
|
Patel AD, Desai MA. Progress in the field of hydrotropy: mechanism, applications and green concepts. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sustainability and greenness are the concepts of growing interest in the area of research as well as industries. One of the frequently encountered challenges faced in research and industrial fields is the solubility of the hydrophobic compound. Conventionally organic solvents are used in various applications; however, their contribution to environmental pollution, the huge energy requirement for separation and higher consumption lead to unsustainable practice. We require solvents that curtail the usage of hazardous material, increase the competency of mass and energy and embrace the concept of recyclability or renewability. Hydrotropy is one of the approaches for fulfilling these requirements. The phenomenon of solubilizing hydrophobic compound using hydrotrope is termed hydrotropy. Researchers of various fields are attracted to hydrotropy due to its unique physicochemical properties. In this review article, fundamentals about hydrotropes and various mechanisms involved in hydrotropy have been discussed. Hydrotropes are widely used in separation, heterogeneous chemical reactions, natural product extraction and pharmaceuticals. Applications of hydrotropes in these fields are discussed at length. We have examined the significant outcomes and correlated them with green engineering and green chemistry principles, which could give an overall picture of hydrotropy as a green and sustainable approach for the above applications.
Collapse
Affiliation(s)
- Akash D. Patel
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| | - Meghal A. Desai
- Department of Chemical Engineering , Sardar Vallabhbhai National Institute of Technology , Surat 395007 , Gujarat , India
| |
Collapse
|
14
|
Saffarionpour S, Diosady LL. Delivery of curcumin through colloidal systems and its applications in functional foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Improvement of the Solubilization and Extraction of Curcumin in an Edible Ternary Solvent Mixture. Molecules 2021; 26:molecules26247702. [PMID: 34946787 PMCID: PMC8703436 DOI: 10.3390/molecules26247702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022] Open
Abstract
A water-free, ternary solvent mixture consisting of a natural deep eutectic solvent (NADES), ethanol, and triacetin was investigated concerning its ability to dissolve and extract curcumin from Curcuma longa L. To this purpose, 11 NADES based on choline chloride, acetylcholine, and proline were screened using UV–vis measurements. A ternary phase diagram with a particularly promising NADES, based on choline chloride and levulinic acid was recorded and the solubility domains of the monophasic region were examined and correlated with the system’s structuring via light scattering experiments. At the optimum composition, close to the critical point, the solubility of curcumin could be enhanced by a factor of >1.5 with respect to acetone. In extraction experiments, conducted at the points of highest solubility and evaluated via HPLC, a total yield of ~84% curcuminoids per rhizome could be reached. Through multiple extraction cycles, reusing the extraction solvent, an enrichment of curcuminoids could be achieved while altering the solution. When counteracting the solvent change, even higher concentrated extracts can be obtained.
Collapse
|
16
|
Chen Z, Wang X, Shi L, Liu Q, Gao Y, Chen W, Yang J, Yuan X, Feng J. Fabrication and Characterization of Prochloraz Nanoemulsion against Penicillium citrinum for the Postharvest Storage of Navel Oranges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13757-13766. [PMID: 34748347 DOI: 10.1021/acs.langmuir.1c02528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoemulsions have become extremely popular water-insoluble pesticide delivery systems in recent years. In this study, prochloraz nanoemulsions were obtained by selecting the mixing ratio of surfactants (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, and 1:6), surfactant concentration, and shearing time. The optimal formula was 10 wt % prochloraz, 6 wt % surfactant (2 wt % CO-100 + 4 wt % CO-360) dissolved in 6 wt % hydrocarbon solvent (S-100A), and deionized water replenished to 100 wt %. This formula meets the quality index standards of the Food and Agriculture Organization. Compared with oil-in-water emulsion (EW), the prochloraz nanoemulsion exhibited higher antifungal activity against Penicillium citrinum in vitro (lower LC50 of 1.17 mg L-1) and in vivo (fewer lesions). In addition, the L02 cells treated with the nanoemulsion had a higher survival rate and lower apoptosis rate at the same concentration. Results showed that the toxicity of the prochloraz nanoemulsion on L02 cells was lower than that of EW. The findings provide an important method for developing an efficient, safe, and environment-friendly nanoemulsion for postharvest fruit storage.
Collapse
Affiliation(s)
- Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinlian Wang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Liyin Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Yuan Gao
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyong Yuan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Degot P, Funkner D, Huber V, Köglmaier M, Touraud D, Kunz W. Extraction of curcumin from Curcuma longa using meglumine and pyroglutamic acid, respectively, as solubilizer and hydrotrope. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin. Food Chem 2021; 364:130401. [PMID: 34174648 DOI: 10.1016/j.foodchem.2021.130401] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this paper was to overcome the challenges of curcumin by zein/tea saponin composite nanoparticles (Z/TSNPs) without any organic reagents and high-energy equipment. The spherical Z/TSNPs exhibited good physical stability, the conditions of which included pH at 5.0-8.0, heating at 80 ℃, ionic strength within 100 mM, and storage at 25 ℃ for 30 days. Meanwhile, Z/TSNPs showed excellent redispersibility. Z/TSNPs were used to encapsulate and deliver curcumin (Cur-Z/TSNPs), showing encapsulation efficiency and loading capacity of 83.73% and 22.33%, respectively. Cur-Z/TSNPs exhibited good chemical stability during storage, and the effect of light on Cur-Z/TSNPs was smaller than that of free curcumin. Furthermore, Cur-Z/TSNPs improved the solubilization and bioaccessibility of curcumin about 290 and 5 times, respectively. Besides, the encapsulation changed the crystalline state of curcumin to amorphous, and the pH-driven mechanism was probably related to hydrogen bonding, hydrophobic and electrostatic interactions.
Collapse
|
19
|
Degot P, Huber V, El Maangar A, Gramüller J, Rohr L, Touraud D, Zemb T, Gschwind RM, Kunz W. Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma longa. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Abstract
The recent development of several methods for extracting curcumin from the root of the plant Curcuma longa has led to intensified research on the properties of curcumin and its fields of application. Following the studies and the accreditation of curcumin as a natural compound with antifungal, antiviral, and antibacterial properties, new fields of application have been developed in two main directions—food and medical, respectively. This review paper aims to synthesize the fields of application of curcumin as an additive for the prevention of spoilage, safety, and quality of food. Simultaneously, it aims to present curcumin as an additive in products for the prevention of bacterial infections and health care. In both cases, the types of curcumin formulations in the form of (nano)emulsions, (nano)particles, or (nano)composites are presented, depending on the field and conditions of exploitation or their properties to be used. The diversity of composite materials that can be designed, depending on the purpose of use, leaves open the field of research on the conditioning of curcumin. Various biomaterials active from the antibacterial and antibiofilm point of view can be intuited in which curcumin acts as an additive that potentiates the activities of other compounds or has a synergistic activity with them.
Collapse
|
21
|
Huber V, Muller L, Degot P, Touraud D, Kunz W. NADES-based surfactant-free microemulsions for solubilization and extraction of curcumin from Curcuma Longa. Food Chem 2021; 355:129624. [PMID: 33799268 DOI: 10.1016/j.foodchem.2021.129624] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
A choline chloride + lactic acid (1:1) natural deep eutectic solvent (NADES) is used as an adjuvant to ethanol/triacetin mixtures to solubilize and extract curcumin from Curcuma Longa. The obtained NADES/ethanol/triacetin mixtures are homogeneous, transparent and of low viscosity even in the absence of water. Dynamic light scattering revealed significant nanostructures, typical of surfactant-free microemulsions. A twofold increase of curcumin solubility and remarkable extraction power (yield of ~90%) can be achieved in the ternary system including the NADES, although curcumin is hydrophobic and the used NADES are very polar. Due to the elevated solubility of curcumin, more extraction cycles can be made than in the previously published aqueous systems with the same amount of solution. As a result, less solvent is required to achieve the same extraction yield.
Collapse
Affiliation(s)
- Verena Huber
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Laurie Muller
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Pierre Degot
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Didier Touraud
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|