1
|
Chen Y, Gong H, Wang J, Liu T, Zhao M, Zhao Q. Study on the Improvement of Quality Characteristics of Pickles During Fermentation and Storage. Foods 2024; 13:3989. [PMID: 39766932 PMCID: PMC11675974 DOI: 10.3390/foods13243989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the effect of fermentation-promoting peptides (FPPs) on the improvement of the quality of cowpea pickles during fermentation and storage. FPPs were introduced to evaluate their effects on key parameters such as pH, total acidity, nitrite levels, and salinity. FPP accelerated fermentation by stimulating lactic acid bacteria (LAB) activity, leading to a rapid reduction in pH and a stable increase in total acidity. Nitrite accumulation was peaking at 0.56 mg/kg on the 7th day, compared to 1.37 mg/kg in the control, thus enhancing product safety. FPP also improved antioxidant retention, reducing ascorbic acid degradation by 30% and increasing phenolic retention by 15.97% over the control, which is essential for antioxidant capacity and color stability. Texture analysis showed higher hardness preservation in the presence of FPP, in which hardness decreased from 209.70 g to 79.98 g in the FPP group after storage, compared to a decline from 158.56 g to 41.66 g in the control. Additionally, sensory evaluations demonstrated that the FPP group maintained superior flavor, texture, and appearance, with minimized browning due to improved pectin stability. This research presents FPPs as a promising additive for producing high-quality, shelf-stable pickles in line with clean label trends.
Collapse
Affiliation(s)
- Yangyang Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Huiyu Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Junwei Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.C.); (H.G.); (J.W.); (T.L.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| |
Collapse
|
2
|
Wu C, Jike X, Yang N, Wang C, Zhang H, Lei H. Metabolomics Reveals the Regulatory Mechanisms of Antioxidant Dipeptides Enhancing the Tolerance of Lager Yeast against Ethanol Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25414-25422. [PMID: 39470994 DOI: 10.1021/acs.jafc.4c07362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The antioxidant dipeptides (Ala-His, AH; Thr-Tyr, TY; and Phe-Cys, FC) significantly enhanced the lager yeast tolerance of ethanol stress. The enhancement mechanisms were further elucidated through physiological responses and metabolomics analysis. The results indicated that antioxidant dipeptides significantly increased the lager yeast biomass and budding rate. The primary mechanisms by which antioxidant dipeptides improved lager yeast tolerance involved decreasing intracellular reactive oxygen species (ROS) levels and increasing energy metabolism. Specifically, the addition of FC resulted in a 27.44% reduction in intracellular ROS content and a 26.14% increase in the ATP level compared to the control. Metabolomics analysis further explored the potential mechanisms underlying the protective effects of FC, identifying 63 upregulated and 103 downregulated metabolites. The analysis revealed that FC altered intracellular metabolites related to glutathione metabolism, purine metabolism, starch and sucrose metabolism, and ABC transporters, thereby enhancing yeast stress tolerance. The results suggest that FC is an effective enhancer for improving lager yeast tolerance to ethanol stress.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chengxin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Kang S, Xu Y, Kang Y, Rao J, Xiang F, Ku S, Li W, Liu Z, Guo Y, Xu J, Zhu X, Zhou M. Metabolomic insights into the effect of chickpea protein hydrolysate on the freeze-thaw tolerance of industrial yeasts. Food Chem 2024; 439:138143. [PMID: 38103490 DOI: 10.1016/j.foodchem.2023.138143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The use of frozen dough is an intensive food-processing practice that contributes to the development of chain operations in the bakery industry. However, the fermentation activity of yeasts in frozen dough can be severely damaged by freeze-thaw stress, thereby degrading the final bread quality. In this study, chickpea protein hydrolysate significantly improved the quality of steamed bread made from frozen dough while enhancing the yeast survival rate and maintaining yeast cell structural integrity under freeze-thaw stress. The mechanism underlying this protective role of chickpea protein hydrolysate was further investigated by untargeted metabolomics analysis, which suggested that chickpea protein hydrolysate altered the intracellular metabolites associated with central carbon metabolism, amino acid synthesis, and lipid metabolism to improve yeast cell freeze-thaw tolerance. Therefore, chickpea protein hydrolysate is a promising natural antifreeze component for yeast cryopreservation in the frozen dough industry.
Collapse
Affiliation(s)
- Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yang Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanyang Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Fuwen Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Wei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhijie Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yaqing Guo
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Wuhan 441300, China
| | - Xiangwei Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Mengzhou Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
4
|
Wu C, Wang C, Guo J, Jike X, Yang H, Xu H, Lei H. Plant-derived antioxidant dipeptides provide lager yeast with osmotic stress tolerance for very high gravity fermentation. Food Microbiol 2024; 117:104396. [PMID: 37919005 DOI: 10.1016/j.fm.2023.104396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Osmotic stress in the yeast limits productivity in industrial beer production under very high gravity brewing. This study focused on assessing the protective impacts of eleven plant-derived antioxidant dipeptides (PADs) on the osmotic stress tolerance of lager yeast. The results showed that PADs provided yeast with stress tolerance under osmotic stress. PADs supplementation enhanced cell membrane integrity and reduced oxidative damage. PADs upregulated the expression of SOD2, PEX11 and CTT1 genes under osmotic stress. Moreover, the volatile compounds contents and antioxidant activities of beers were improved by PADs, suggesting favorable quality characteristics. Especially, Phe-Cys and Leu-His could increase the DPPH radical scavenging activity of beer by 41.92% and 18.78% respectively, compared with control. Therefore, PADs are industrially scalable enhancers to improve the ability of yeast to resist osmotic stress and beer quality during very high gravity brewing.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Chengxin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Jiayu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Zhou L, Meng FB, Li YC, Shi XD, Yang YW, Wang M. Effect of peach gum polysaccharide on the rheological and 3D printing properties of gelatin-based functional gummy candy. Int J Biol Macromol 2023; 253:127186. [PMID: 37802441 DOI: 10.1016/j.ijbiomac.2023.127186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Excellent 3D printing materials must exhibit good extrudability and supportability, but these two characteristics are often contradictory. In this study, peach gum polysaccharide (PGP) was added to gelatin to prepare a 3D-printed functional gummy candy encapsulating curcumin. Rheology tests indicated that adding PGP could effectively improve the apparent viscosity and thermal stability and consequently improve the 3D printability and supportability of the products. When PGP addition was 6 %, the printing accuracy was higher than 90 %. Texture and microstructure analysis further revealed that PGP addition promoting a dense gel structure formed and the water holding capacity and supportability of gel materials were enhanced. Furthermore, the in vitro gastrointestinal digestion tests showed that after 6 h of simulated gastrointestinal fluid digestion, the retention rate of curcumin was nearly 80 %. The above results indicated that the composite gel of PGP and gelatin is a good 3D printing base material for nutrient delivery.
Collapse
Affiliation(s)
- Li Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China.
| | - Xiao-Dong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China
| | - Yi-Wen Yang
- Inner Mongolia Academy of Forestry Sciences, Hohhot 010010, PR China
| | - Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
6
|
Cao C, Waterhouse GIN, Sun W, Zhao M, Sun-Waterhouse D, Su G. Effects of Fermentation with Tetragenococcus halophilus and Zygosaccharomyces rouxii on the Volatile Profiles of Soybean Protein Hydrolysates. Foods 2023; 12:4513. [PMID: 38137316 PMCID: PMC10742455 DOI: 10.3390/foods12244513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The effects of fermentation with lactic acid bacteria (LAB) and yeast on the aroma of samples were analyzed in this work. The volatile features of different soybean hydrolysates were investigated using both GC-MS and GC-IMS. Only 47 volatile flavor compounds (VFCs) were detected when using GC-IMS, while a combination of GC-MS and GC-IMS resulted in the identification of 150 compounds. LAB-yeast fermentation could significantly increase the diversity and concentrations of VFCs (p < 0.05), including alcohols, acids, esters, and sulfurs, while reduce the contents of aldehydes and ketones. Hierarchical clustering and orthogonal partial least squares analyses confirmed the impact of fermentation on the VFCs of the hydrolysates. Seven compounds were identified as significant compounds distinguishing the aromas of different groups. The partial least squares regression analysis of the 25 key VFCs (ROAV > 1) and sensory results revealed that the treatment groups positively correlated with aromatic, caramel, sour, overall aroma, and most of the key VFCs. In summary, fermentation effectively reduced the fatty and bean-like flavors of soybean hydrolysates, enhancing the overall flavor quality, with sequential inoculation proving to be more effective than simultaneous inoculation. These findings provided a theoretical basis for improving and assessing the flavor of soybean protein hydrolysates.
Collapse
Affiliation(s)
- Chenchen Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Geoffrey I. N. Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
7
|
Yang J, Xiong W, Yao Y, Zhang N, Wang L. Effect of Lactobacillus plantarum fermentation on the physicochemical properties and flavor of rice protein-carboxymethylcellulose complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6826-6836. [PMID: 37278398 DOI: 10.1002/jsfa.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fermentation is known to enhance the nutritional profile and confer unique flavors to products. However, the resultant effects on stability and physicochemical properties remain unexplored. RESULTS This study aims to elucidate the influence of fermentation on the stability and organoleptic characteristics of a rice protein beverage stabilized by carboxymethyl cellulose (CMC). The findings revealed that the average aggregate size escalated from 507 to 870 nm, concurrently exhibiting a significant increase in surface potential. The aggregation enhancement was substantiated by evident morphological changes and confocal laser scanning microscopical (CLSM) observations. A negative correlation was discerned between the physical stability of the beverage and fermentation duration. Moreover, flavor analysis of the beverage post a 3 h fermentation period highlighted an increase in aromatic ester compounds, thereby intensifying the aroma. CONCLUSION The study corroborates that fermentation can detrimentally influence product stability while concurrently improving its flavor profile. By establishing a mix ratio of 10:1 for rice protein and CMC and forming a relatively stable system through electrostatic interaction at a pH of 5.4, a flavorful rice protein beverage can be derived post 3 h-fermentation process. These findings offer insights into the impact of varying fermentation durations on the stability and flavor of polysaccharide-based rice protein beverages. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, People's Republic of China
| | - Wenfei Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yijun Yao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, People's Republic of China
| | - Lifeng Wang
- College of Food Engineering, Harbin University of Commerce, Harbin, People's Republic of China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Luo Y, Li YC, Wang M, Zhou L, Meng FB, Jiang LS. Effects of grafting methods and raw materials on the physicochemical properties and biological activities of phenolic acids grafted oat β-glucan. Food Res Int 2023; 173:113250. [PMID: 37803562 DOI: 10.1016/j.foodres.2023.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Phenolic acids are commonly used as food biological preservatives. Grafting phenolic acids onto polysaccharides could effectively enhance their biological activities and environmental stability to varying degrees. However, grafting methods and raw materials could affect the physical properties and biological activities of the phenolic acid-grafted polysaccharides. In this study, caffeic acid (CA) and gallic acid (GA) were grafted onto oat β-glucan (OG) and hydrolyzed oat β-glucan (OGH) through N,N'-carbonyldiimidazole-mediated (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride coupling N-hydroxysuccinimide (EDC/NHS) methods. Graft modification decreased the crystallinity and thermal stability of the conjugates, but retained good bioactivities for the conjugates. The antioxidant and bacteriostatic activities of the conjugates prepared by the EDC method were better than those of the CDI method, and the OGH-conjugates showed better biological activities than OG-conjugates. EDC-GAOGH showed best DPPH (89.78%) and ABTS (92.32%) scavenging activities. The inhibitory effect of EDC-GAOGH on Escherichia coli was significantly better than that of EDC-CAOGH, but for Staphylococcus aureus, the results are opposite, which indicating that different phenolic acid grafting products have different inhibitory effects on pathogenic microbes. In general, grafting phenolic acids onto OGH using EDC method is an effective strategy for preparing food biological preservative.
Collapse
Affiliation(s)
- Yan Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Li Zhou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
9
|
Wu C, Guo J, Jian H, Liu L, Zhang H, Yang N, Xu H, Lei H. Bioactive dipeptides enhance the tolerance of lager yeast to ethanol-oxidation cross-stress by regulating the multilevel defense system. Food Microbiol 2023; 114:104288. [PMID: 37290871 DOI: 10.1016/j.fm.2023.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
Although high gravity brewing technology has been widely used for beer industries due to its economic benefits, yeast cells are subjected to multiple environmental stresses throughout the fermentation process. Eleven bioactive dipeptides (LH, HH, AY, LY, IY, AH, PW, TY, HL, VY, FC) were selected to evaluate their effects on cell proliferation, cell membrane defense system, antioxidant defense system and intracellular protective agents of lager yeast against ethanol-oxidation cross-stress. Results showed that the multiple stresses tolerance and fermentation performance of lager yeast were enhanced by bioactive dipeptides. Cell membrane integrity was improved by bioactive dipeptides through altering the structure of macromolecular compounds of the cell membrane. Intracellular reactive oxygen species (ROS) accumulation was significantly decreased by bioactive dipeptides, especially for FC, decreasing by 33.1%, compared with the control. The decrease of ROS was closely related to the increase of mitochondrial membrane potential, intracellular antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and glycerol level. In addition, bioactive dipeptides could regulate the expression of key genes (GPD1, OLE1, SOD2, PEX11, CTT1, HSP12) to enhance the multilevel defense systems under ethanol-oxidation cross-stress. Therefore, bioactive dipeptides should be potentially efficient and feasible bioactive ingredients to improve the multiple stresses tolerance of lager yeast during high gravity fermentation.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Jiayu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Haoyu Jian
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Li Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
10
|
Wang M, Li YC, Meng FB, Wang Q, Wang ZW, Liu DY. Effect of honeysuckle leaf extract on the physicochemical properties of carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film. Food Chem X 2023; 18:100675. [PMID: 37122553 PMCID: PMC10130771 DOI: 10.1016/j.fochx.2023.100675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Honeysuckle leaves are rich in bioactive ingredients, but often considered as agro-wastes. In this study, honeysuckle leaf extract (HLE) was added to the carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film (CMKH). Compared to films without HLE addition (CMK), the water vapor barrier properties of CMKH slightly decreased, but the transmittance of the CMKH films in UV region (200-400 nm) as low as zero. The elongation at break of CMKH film was 1.39 ∼ 1.5 fold higher than those of CMK films. The DPPH and ABTS scavenging activity of CMKH-Ⅱ was 85.75% and 90.93%, respectively, which is similar to the equivalent content of Vc. The inhibition rate of CMKH-Ⅰ and CMKH-Ⅱ against Escherichia coli and Listeria monocytogenes were close to 90%, and the inhibition rate against Staphylococcus aureus were up to 96%. The results emphasized that the composite film containing 25% (v/v) HLE has potential application value in food preservation.
Collapse
Affiliation(s)
- Meng Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
- Corresponding author at: College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Road, Chengdu, China.
| | - Qiao Wang
- Sichuan Institute of Food Inspection, Chengdu 610097, PR China
| | - Zheng-Wu Wang
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
11
|
Wei J, Lu J, Nie Y, Li C, Du H, Xu Y. Amino Acids Drive the Deterministic Assembly Process of Fungal Community and Affect the Flavor Metabolites in Baijiu Fermentation. Microbiol Spectr 2023; 11:e0264022. [PMID: 36943039 PMCID: PMC10100711 DOI: 10.1128/spectrum.02640-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Nutrient fluctuation is ubiquitous in fermentation ecosystems. However, the microbial community assembly mechanism and metabolic characteristics in response to nutrient variation are still unclear. Here, we used Baijiu fermentation as a case example to study the responses of microbial community assembly and metabolic characteristics to the variation of amino acids using high-throughput sequencing and metatranscriptomics analyses. We chose two fermentation groups (group A with low amino acid and group B with high amino acid contents). The two groups showed similar succession patterns in the bacterial community, whereas they showed different succession in the fungal community wherein Pichia was dominant in group A and Zygosaccharomyces was dominant in group B. The β-nearest taxon index (βNTI) revealed that bacterial community was randomly formed, whereas fungal community assembly was a deterministic process. Variance partitioning analysis and redundancy analysis revealed that amino acids showed the largest contribution to the fungal community (37.64%, P = 0.005) and were more tightly associated with it in group B. Further study revealed that serine was positively related to Zygosaccharomyces and promoted its growth and ethanol production. Metatranscriptomic analysis revealed that the differential metabolic pathways between the two groups mainly included carbohydrate metabolism and amino acid metabolism, which explained the differences of ethanol production and volatile metabolites (such as isoamylol, isobutanol, and 2-methyl-1-butanol). Then these metabolic pathways were constructed and related gene expression and active microorganisms were listed. Our study provides a systematical understanding of the roles of amino acids in both ecological maintenance and flavor metabolism in fermentation ecosystems. IMPORTANCE In spontaneous fermented foods production, nutrient fluctuation is a critical factor affecting microbial community assembly and metabolic function. Revealing the microbial community assembly mechanism and how it regulates its metabolic characteristics in response to nutrient variation is helpful to the management of the fermentation process. This study provides a systematical understanding of the effect of amino acids on the microbial community assembly and flavor metabolisms using Baijiu fermentation as a case example. The data of this study highlight the importance of the nutrient management in fermentation ecosystems.
Collapse
Affiliation(s)
- Junlin Wei
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jun Lu
- Guizhou Guotai Liquor Group Co. Ltd., Guizhou, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Changwen Li
- Guizhou Guotai Liquor Group Co. Ltd., Guizhou, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Protective effects of peptides on the cell wall structure of yeast under osmotic stress. Appl Microbiol Biotechnol 2022; 106:7051-7061. [PMID: 36184688 DOI: 10.1007/s00253-022-12207-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Three peptides (LL, LML, and LLL) were used to examine their influences on the osmotic stress tolerance and cell wall properties of brewer's yeast. Results suggested that peptide supplementation improved the osmotic stress tolerance of yeast through enhancing the integrity and stability of the cell wall. Transmission electron micrographs showed that the thickness of yeast cell wall was increased by peptide addition under osmotic stress. Additionally, quantitative analysis of cell wall polysaccharide components in the LL and LLL groups revealed that they had 27.34% and 24.41% higher chitin levels, 25.73% and 22.59% higher mannan levels, and 17.86% and 21.35% higher β-1,3-glucan levels, respectively, than the control. Furthermore, peptide supplementation could positively modulate the cell wall integrity pathway and up-regulate the expressions of cell wall remodeling-related genes, including FKS1, FKS2, KRE6, MNN9, and CRH1. Thus, these results demonstrated that peptides improved the osmotic stress tolerance of yeast via remodeling the yeast cell wall and reinforcing the structure of the cell wall. KEY POINTS: • Peptide supplementation improved yeast osmotic stress tolerance via cell wall remodeling. • Peptide supplementation enhanced cell wall thickness and stability under osmotic stress. • Peptide supplementation positively modulated the CWI pathway under osmotic stress.
Collapse
|
13
|
Rao JW, Meng FB, Li YC, Chen WJ, Liu DY, Zhang JM. Effect of cooking methods on the edible, nutritive qualities and volatile flavor compounds of rabbit meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4218-4228. [PMID: 35038172 DOI: 10.1002/jsfa.11773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rabbit meat is a good edible meat source with high nutritional values. Cooking has a significant impact on the edible properties, nutritional qualities and flavor characteristics of meat. Studying the effect of cooking methods on rabbit meat qualities could encourage more understanding and acceptance of rabbit meat by consumers, and could also provide some reference for rabbit meat processing. Therefore, the effects of boiling, sous-vide cooking, steaming, microwaving, roasting, frying and pressure cooking on the edible, nutritive and volatile qualities of rabbit meat were investigated. RESULTS The sous-vide cooked rabbit meat sample showed higher moisture content, water-holding capacity and lower cooking losses than other samples, but the results of roasted rabbit meat sample were the opposite, and scanning electron microscopy observations also verified the results. There was no significant difference in 2-thiobarbituric acid reactive substance (TBARS) value in the cooked samples except for roasting. Microwaving, roasting and frying exhibited stronger antioxidant activity than the other cooked samples after in vitro digestion. A total of 38 volatiles were identified in the cooked meat samples, and the samples were well divided into four groups by principal component analysis, and 13 volatiles were considered discriminatory variables for the cooked rabbit meat. CONCLUSION The physicochemical characteristics of cooked meat differed significantly between the processing methods. Roasted meat showed lower TBARS value and stronger antioxidant activity after simulated digestion compared to the other meats. However, pressure cooked meat detected the most volatile components while roasting the least. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Wei Rao
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, P. R. China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Jia-Min Zhang
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
14
|
Meng FB, Lei YT, Zhang Q, Li YC, Chen WJ, Liu DY. Encapsulation of Zanthoxylum bungeanum essential oil to enhance flavor stability and inhibit lipid oxidation of Chinese-style sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4035-4045. [PMID: 34997590 DOI: 10.1002/jsfa.11752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/10/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zanthoxylum bungeanum essential oil (ZBEO) is a popular seasoning, commonly used in the food industry. It contains many easily degraded and highly volatile bioactive substances. Control of the stability of the bioactive substances in ZBEO is therefore very important in the food industry. RESULTS In this study, microencapsulation was applied to improve ZBEO stability. The key parameters for microcapsule preparation were optimized by the Box-Behnken design method, and the optimum conditions were as follows: ratio of core to wall, 1:8; ratio of hydroxypropyl-α-cyclodextrin (HPCD) to soy protein isolate (SPI), 4; total solids content, 12%; and homogenization speed, 12 000 rpm. Antioxidant experiments have indicated that tea polyphenols (TPPs) effectively inhibited hydroxy-α-sanshool degradation in ZBEO microcapsules. Application of ZBEO microcapsules in Chinese-style sausage effectively inhibited lipid oxidation in sausages and protected hydroxy-α-sanshool and typical volatiles from volatilization and degradation during sausage storage. CONCLUSION The results suggested that ZBEO microencapsulation is an effective strategy for improving the stability of its bioactive components and flavor ingredients during food processing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, PR China
| | - Yu-Ting Lei
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Qian Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, PR China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| |
Collapse
|
15
|
Xiao L, Lapu M, Kang S, Jiang P, Li J, Liu Y, Liu D, Liu M. Effects of Tartary buckwheat on physicochemical properties and microbial community of low salt natural fermented soybean paste. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kang J, Jia L, Zhang Z, Zhang M, Huang X, Chen X, Han BZ. Comparison of physicochemical characteristics and microbiome profiles of low-temperature Daqu with and without adding tartary buckwheat. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Jin X, Yang H, Chen M, Coldea TE, Zhao H. Improved osmotic stress tolerance in brewer's yeast induced by wheat gluten peptides. Appl Microbiol Biotechnol 2022; 106:4995-5006. [PMID: 35819513 DOI: 10.1007/s00253-022-12073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
The influences of three wheat gluten peptides (WGP-LL, WGP-LML, and WGP-LLL) on the osmotic stress tolerance and membrane lipid component in brewer's yeast were investigated. The results demonstrated that the growth and survival of yeast under osmotic stress were enhanced by WGP supplementation. The addition of WGP upregulated the expressions of OLE1 (encoded the delta-9 fatty acid desaturase) and ERG1 (encoded squalene epoxidase) genes under osmotic stress. At the same time, WGP addition enhanced palmitoleic acid (C16:1) content, unsaturated fatty acids/saturated fatty acids ratio, and the amount of ergosterol in yeast cells under osmotic stress. Furthermore, yeast cells in WGP-LL and WGP-LLL groups were more resistant to osmotic stress. WGP-LL and WGP-LLL addition caused 25.08% and 27.02% increase in membrane fluidity, 22.36% and 29.54% reduction in membrane permeability, 18.38% and 14.26% rise in membrane integrity in yeast cells, respectively. In addition, scanning electron microscopy analysis revealed that the addition of WGP was capable of maintaining yeast cell morphology and reducing cell membrane damage under osmotic stress. Thus, alteration of membrane lipid component by WGP was an effective approach for increasing the growth and survival of yeast cells under osmotic stress. KEY POINTS: •WGP addition enhanced cell growth and survival of yeast under osmotic stress. •WGP addition increased unsaturated fatty acids and ergosterol contents in yeast. •WGP supplementation improved membrane homeostasis in yeast at osmotic stress.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
18
|
Meng FB, Zhou L, Li JJ, Li YC, Wang M, Zou LH, Liu DY, Chen WJ. The combined effect of protein hydrolysis and Lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Res Int 2022; 157:111416. [DOI: 10.1016/j.foodres.2022.111416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
|
19
|
Jin X, Yang H, Coldea TE, Andersen ML, Zhao H. Wheat Gluten Peptides Enhance Ethanol Stress Tolerance by Regulating the Membrane Lipid Composition in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5057-5065. [PMID: 35426662 DOI: 10.1021/acs.jafc.2c00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat gluten peptides (WGPs), identified as Leu-Leu (LL), Leu-Leu-Leu (LLL), and Leu-Met-Leu (LML), were tested for their impacts on cell growth, membrane lipid composition, and membrane homeostasis of yeast under ethanol stress. The results showed that WGP supplementation could strengthen cell growth and viability and enhance the ethanol stress tolerance of yeast. WGP supplementation increased the expressions of OLE1 and ERG1 and enhanced the levels of oleic acid (C18:1) and ergosterol in yeast cell membranes. Moreover, LLL and LML exhibited a better protective effect for yeast under ethanol stress compared to LL. LLL and LML supplementation led to 20.3 ± 1.5% and 18.9 ± 1.7% enhancement in cell membrane fluidity, 21.8 ± 1.6% and 30.5 ± 1.1% increase in membrane integrity, and 26.3 ± 4.8% and 27.6 ± 4.6% decrease in membrane permeability in yeast under ethanol stress, respectively. The results from scanning electron microscopy (SEM) elucidated that WGP supplementation is favorable for the maintenance of yeast cell morphology under ethanol stress. All of these results revealed that WGP is an efficient enhancer for improving the ethanol stress tolerance of yeast by regulating the membrane lipid composition.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Mogens Larsen Andersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| |
Collapse
|
20
|
Systematic analysis of the aroma profiles produced by Zygosaccharomyces rouxii Y-8 in different environmental conditions and its contribution to doubanjiang (broad bean paste) fermentation with different salinity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Li YC, Luo Y, Meng FB, Li J, Chen WJ, Liu DY, Zou LH, Zhou L. Preparation and characterization of feruloylated oat β-glucan with antioxidant activity and colon-targeted delivery. Carbohydr Polym 2022; 279:119002. [PMID: 34980350 DOI: 10.1016/j.carbpol.2021.119002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023]
Abstract
Ferulic acid (FA) is an effective chemopreventive and therapeutic agent for colorectal cancer. However, FA cannot stably reach the colon through human digestive system, and it can be grafted into oligosaccharides to improve its digestion stability. Therefore, in this study, different degrees of substitution of feruloylated oat β-glucan (FA-OβG) were prepared by grafting FA onto water soluble oat β-glucan. FA grafting changed the crystallinity and surface morphology of OβG, and the thermal stability of the FA-OβG improved. As the DS increased, the antioxidant activity of FA-OβG increased, and FA-OβG III with DS of 0.184 showed the same antioxidant activities compared to the equal amount of free FA. The FA-OβG showed higher stability under gastrointestinal and colonic conditions than free FA. Furthermore, the FA-OβG conjugates exhibited good in vitro anticancer activity against human colorectal cancer cells, while FA-OβG III showed better anticancer activity than an equal amount of free FA.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
| | - Yan Luo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610106, China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Jian Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Long-Hua Zou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Li Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
22
|
Meng FB, Li JJ, Zhang Q, Li YC, Liu DY, Chen WJ, Zhang Y. Complex wall materials of polysaccharide and protein effectively protected numb-taste substance degradation of Zanthoxylum bungeanum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4605-4612. [PMID: 33474726 DOI: 10.1002/jsfa.11103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/26/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hydroxyl-sanshools are mainly responsible for the numb taste and biological activities of Zanthoxylum bungeanum, but they show low water solubility, high volatility and easy degradation, which limit their application in the catering and food industries. Thus microcapsules of Z. bungeanum essential oil (ZBEO) were prepared to prevent numb-taste substance attenuation. RESULTS The complex effects of hydroxypropyl-β-cyclodextrin (HPCD) with other materials, such as konjac glucomannan octenyl succinate (KGOS), octenyl succinic anhydride-modified starch (OSAS), soy protein isolate (SPI) and gum arabic (GA), on the protection of the main numb-taste substance of ZBEO were investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis indicated that ZBEO was successfully encapsulated in the complex wall materials. X-ray diffraction indicated that the loaded essential oil did not affect the crystalline form of the wall material. The stability of the numb-taste substance α-sanshool in the microcapsules prepared with the complex microcapsule wall materials was higher than that in single-wall microcapsules. Storage stability evaluation indicated that microcapsules prepared with a combination of HPCD and SPI showed the greatest effect in maintaining the stability of the main numb-taste substance α-sanshool in ZBEO at room temperature, low pH and in high-salt conditions. CONCLUSION Complex wall materials of polysaccharide and protein could effectively protect the numb-taste substance degradation of Z. bungeanum during processing and storage. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan-Bing Meng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Jia Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qian Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yun-Cheng Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei-Jun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory for Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
23
|
Zhu F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|