1
|
Li R, Liu Y, Zhang Y, Yan Z, Cao Y, Li Q, Mei Y, Sun S, Cao X, Guo L, Gao J. Effects of high α-linolenic acid transgenic rapeseed oil diet on growth performance, fat deposition, flesh quality, antioxidant capacity, and immunity of juvenile largemouth bass (Micropterus salmoides). Lipids 2025; 60:25-37. [PMID: 39356000 DOI: 10.1002/lipd.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) increases in aquatic products contributes to improving meat quality, thereby positively impacting human health. Different from marine fish which primarily obtain n-3 LC-PUFAs directly from zooplankton and algae, freshwater fish mainly utilize dietary linolenic acid (ALA) as a substrate to synthesize n-3 LC-PUFAs. Our team has successfully created a transgenic rapeseed oil (TRO) with high ALA content. Therefore, we here assessed the impacts of four different diets (LR, low-fat rapeseed oil (RO) diet; HR, high-fat RO diet; LTR, low-fat TRO diet; HTR, high-fat TRO diet) on growth performance, lipid accumulation, fatty acid composition, antioxidant capacity, immunity and serum biochemical indexes of juvenile largemouth bass (Micropterus salmoides), an economically valuable freshwater fish. The results showed no significant difference in survival rate among the four dietary groups. No significant differences in body weight gain and final weight were found between the LR and LTR groups, as well as between HR and HTR groups. No matter if it was a high-fat or low-fat diet, compared with the RO diet, TRO diets significantly increased the content of n-3 LC-PUFA, improved meat quality, effectively alleviated lipid accumulation in livers and muscles of juvenile largemouth bass. In addition, using high-fat diets, TRO diet improved the antioxidant capacity and immune ability of juvenile largemouth bass, thereby promoting the overall health of fish. This study provides novel insights for fish feed formulation optimization from the perspective of genetically modified feed ingredients, and high-quality aquatic products for human consumption.
Collapse
Affiliation(s)
- Rongyun Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Yunhao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ze Yan
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yun Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qingshan Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Huang Y, Cao X, Liu W, Jiang G, Wang A. Effects of Oxidized Soybean Meal and Oxidized Soybean Oil on the Muscle Oxidative Stability, Flesh Quality, Amino Acid Profile, and Fatty Acid Profile of Megalobrama amblycephala. Antioxidants (Basel) 2024; 13:1356. [PMID: 39594498 PMCID: PMC11591312 DOI: 10.3390/antiox13111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the effects of oxidized soybean meal and oxidized soybean oil on the muscle oxidative stability, flesh quality, amino acid profile, and fatty acid profile of blunt snout bream Megalobrama amblycephala. Oxidized soybean meal and oxidized soybean oil were obtained from fresh soybean meal (FSM) and fresh soybean oil (FSO) by heating. In the experimental diet, the proportions of oxidized soybean meal (OSM) and oxidized soybean oil (OSO) were 30% and 4.19%, respectively. The feeding trial was conducted for 8 weeks. The findings revealed that both OSM and OSO reduced glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), hardness, chewiness, and oxymyoglobin (OxyMb) and elevated the content of malondialdehyde (MDA), protein carbonyl (PC), and metmyoglobin (MetMb) in the muscle. OSM notably decreased the content of muscle essential amino acids (EAAs), nonessential amino acids (NEAAs), delicious amino acids (DAAs), and total amino acids (TAAs) compared with CON and OSO. Compared with CON and OSM, OSO significantly reduced the content of elaidic acid (C18:1n9t), linoelaidic acid (C18:2n6c), polyunsaturated fatty acids (PUFAs), ω-6 PUFAs, and the ratio of ω-6/ω-3, while stearic acid (C18:0), γ-linolenic acid (C18:3n6) and saturated fatty acids (SFAs) were significantly elevated. In conclusion, this study demonstrated that both OSM and OSO negatively impacted muscle antioxidant capacity and flesh quality. Moreover, OSM adversely affected the amino acid profile of the muscle, while OSO impaired the fatty acid profile.
Collapse
Affiliation(s)
- Yangyang Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.C.); (W.L.)
| | - Xiufei Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.C.); (W.L.)
| | - Wenbin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.C.); (W.L.)
| | - Guangzhen Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.C.); (W.L.)
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| |
Collapse
|
3
|
Wu X, Li W, Li S, Zhu S, Pan F, Gu Q, Song D. Hypolipidemic effect of polysaccharide from Sargassum fusiforme and its ultrasonic degraded polysaccharide on zebrafish fed high-fat diet. Int J Biol Macromol 2024; 276:133771. [PMID: 38992531 DOI: 10.1016/j.ijbiomac.2024.133771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Sargassum fusiforme is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries. The polysaccharides derived from Sargassum fusiforme (SFPS) have received much interest due to their various bioactivities, such as hypolipidemic, hypoglycemic, and antioxidant activities. In this study, we extracted and purified SFPS, and obtained the ultrasonic degradation product (SFPSUD). The lipid regulatory effects of SFPS and SFPSUD were investigated in a zebrafish model fed a high-fat diet. The results showed that SFPS significantly decreased the levels of total cholesterol (TC) and triglycerides (TG), and increased the activities of lipoprotein lipase (LPL) and hepatic lipase (HL). SFPSUD was more effective than the SFPS in reducing the TC and TG levels in zebrafish, as well as increasing the LPL and HL activities. Histopathological observations of zebrafish livers showed that SFPSUD significantly improved lipid metabolism disorder in the hepatocytes. The possible lipid-lowering mechanism in zebrafish associated with SFPS and SFPSUD may involve acceleration of the lipid metabolism rate by increasing the activities of LPL and HL. Thus, SFPSUD could be tested as a highly effective hypolipidemic drug. Our results suggest that SFPS and SFPSUD have potential uses as functional foods for the prevention and treatment of hyperlipidemia. Ultrasound can be effectively applied to degrade SFPS to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Xuhan Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Wenqing Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Shengjie Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Sunting Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Feng Pan
- Wenzhou Xingbei Seaweed Food Co., Ltd., China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Dafeng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
4
|
Shi Y, Zhong L, Liu Y, Xu S, Dai J, Zhang Y, Hu Y. Dietary sanguinarine supplementation recovers the decrease in muscle quality and nutrient composition induced by high-fat diets of grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:208-219. [PMID: 38800733 PMCID: PMC11126770 DOI: 10.1016/j.aninu.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/13/2024] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
The intake of high-fat diets (HFD) has been shown to diminish the muscle quality of aquatic animals. Sanguinarine, as an excellent additive, exhibits the capability to reduce fat deposition and alleviate inflammation. However, its role in the muscle quality reduction caused by HFD remains unclear. An eight-week trial was conducted to investigate the impacts of dietary supplementation of sanguinarine at 1200 μg/kg (HFDS; crude fat = 10%) on the muscle quality of grass carp (Ctenopharyngodon idellus) in comparison to a basic diet (CON, crude fat = 5%). Each group had 3 replicates, with 40 fish per replicate. This experiment employed one-way ANOVA and Duncan's multiple comparisons of the means. The results showed that the HFD exhibited lower growth performance, reduced protein deposition, myofiber diameter, and muscle hardness, coupled with higher levels of fat deposition and inflammation when compared with the CON. However, HFDS improved growth performance (P < 0.05), fat metabolism (ppar-α ( P = 0.001), lpl (P < 0.001), atgl (P < 0.001), and cpt1 (P = 0.001) expression exhibited a significant elevation), protein deposition (the protein and mRNA levels of AKT (P = 0.004), PI3K (P = 0.027), TOR (P = 0.005), and P70S6K (P = 0.007) demonstrated a marked increase), myofiber diameter, muscle hardness, and the total content of eicosapentaenoic acid and docosahexaenoic acid. Furthermore, the HFDS reduced oxidative damage caused by fat deposition by significantly downregulating nf-κb (P < 0.001), il-1β (P < 0.001), il-6 (P < 0.001), il-8 (P = 0.003), and tnf-α (P < 0.001) expression and markedly upregulated nrf2 (P < 0.001), gpx4 (P < 0.001), cat (P < 0.001), sod (P < 0.001), and gr (P = 0.003) expression. The findings from this study suggest that sanguinarine has the potential to alleviate the adverse effects of HFD on growth and muscle quality, providing a theoretical foundation for its practical implementation.
Collapse
Affiliation(s)
- Yong Shi
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Zhong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanxiang Liu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Shude Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yaozhengtai Zhang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
5
|
Yao K, Feng L, Jiang WD, Liu Y, Zhang L, Mi HF, Zhou XQ, Wu P. The role of vitamin E in polyunsaturated fatty acid synthesis and alleviating endoplasmic reticulum stress in sub-adult grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:275-287. [PMID: 38371478 PMCID: PMC10869583 DOI: 10.1016/j.aninu.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 02/20/2024]
Abstract
Vitamin E (VE) is an essential lipid-soluble vitamin that improves the fish flesh quality. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of VE on growth performance and flesh quality in sub-adult grass carp (Ctenopharyngodon idella). A total of 450 fish (713.53 ± 1.50 g) were randomly divided into six treatment groups (three replicates per treatment) and fed for nine weeks with different experimental diets (dietary lipid 47.8 g/kg) that contained different levels of VE (5.44, 52.07, 96.85, 141.71, 185.66, and 230.12 mg/kg diet, supplemented as dl-α-tocopherol acetate). Notably, the treatment groups that were fed with dietary VE ranging from 52.07 to 230.12 mg/kg diet showed improvement in the percent weight gain, special growth rate, and feed efficiency of grass carp. Moreover, the treatment groups supplemented with dietary VE level of 141.71, 185.66, and 230.12 mg/kg diet showed enhancement in crude protein, lipid, and α-tocopherol contents in the muscle, and the dietary levels of VE ranging from 52.07 to 141.71 mg/kg diet improved muscle pH24h and shear force but reduced muscle cooking loss in grass carp. Furthermore, appropriate levels of VE (52.07 to 96.85 mg/kg diet) increased the muscle polyunsaturated fatty acid content in grass carp. Dietary VE also increased the mRNA levels of fatty acid synthesis-related genes, including fas, scd-1, fad, elovl, srebp1, pparγ, and lxrα, and up-regulated the expression of SREBP-1 protein. However, dietary VE decreased the expression of fatty acid decomposition-related genes, including hsl, cpt1, acox1, and pparα, and endoplasmic reticulum stress-related genes, including perk, ire1, atf6, eif2α, atf4, xbp1, chop, and grp78, and down-regulated the expression of p-PERK, p-IRE1, ATF6, and GRP78 proteins. In conclusion, dietary VE increased muscle fatty acid synthesis, which may be partly associated with the alleviation of endoplasmic reticulum stress, and ultimately improves fish flesh quality. Moreover, the VE requirements for sub-adult grass carp (713.53 to 1590.40 g) were estimated to be 124.9 and 122.73 mg/kg diet based on percentage weight gain and muscle shear force, respectively.
Collapse
Affiliation(s)
- Ke Yao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, 610041, China
- Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, 610041, China
- Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
6
|
Ji Y, Hu B, Wang Y, Dong G, Zhang C, Yu D. Glycerol tributylate (Triacylglycerol tributanoate) promoted the liver lipid metabolism by cultivating the intestinal flora of grass carp (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1479-1488. [PMID: 38051409 DOI: 10.1007/s10695-023-01268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
To investigate the effects of glycerol tributyrin (TB) (Triacylglycerol tributanoate) on the regulation of liver lipid metabolism by intestinal flora of grass carp (Ctenopharyngodon idellus). The compound feed with soybean oil 2.8% + fish oil 1.8%, soybean oil 6.3% + fish oil 1.8%, and soybean oil 6.2% + fish oil 1.8% + TB 0.1% was added to the basal diet as a fat source and fed to the basal (control) group, high lipid (HL) group, and tributyrin (TB) group for 12 weeks. We tested the growth performance, fat content, diversity, and abundance of gut flora and other related indexes of grass carp by Soxhlet extraction, liver tissue enzyme activity, oil red O staining, and 16S rRNA high-throughput sequencing. The results showed that the liver fat number and liver fat content of grass carp in the TB group were lower than those in the HL group, while the fattening degree was significantly higher than those in the other two groups; according to the indices such as Shannon, Ace, and Coverage, it was found that the grass carp in the TB group had the highest abundance and diversity of intestinal microflora; at the portal level, Proteobacteria and Fusobacteria were the main dominant flora in the TB group, with the number of unique OUTs accounting for about 59. 9% of the total number measured; at the genus level, the relative abundance of lipase-producing, short-chain fatty acid-associated bacteria, such as Bacillus-Lactobacillus and Bifidobacterium, was significantly lower (p < 0.05). Thus, we conclude that the addition of TB to high-fat diets can alter the structure of the intestinal microbial community and promote hepatic lipid metabolism in grass carp. TB can alleviate fatty liver in grass carp by increasing the relative abundance of short-chain fatty acids in the intestine. Meanwhile, TB inhibits the conversion of primary bile acids to secondary bile acids in the host, which can block intestinal FXR signaling and the hepatic FXR-SHP pathway, thus slowing down fat synthesis and alleviating the accumulation of liver lipids in grass carp.
Collapse
Affiliation(s)
- Yan Ji
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China
| | - Bing Hu
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing, 350000, China
| | - Youzhen Wang
- Agricultural Research Institute of Dongxi Hu, Wuhan, 430000, China
| | - Guifang Dong
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China
| | - Chi Zhang
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China.
| | - Denghang Yu
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China.
| |
Collapse
|
7
|
Liu S, Yu H, Zhu L, Zhang X, Li P, Wang C, Liu G, He P, Zhang C, Ji H. Dietary nano-Se supplementation regulates lipid deposition, protein synthesis and muscle fibre formation in grass carp fed with high-fat diet. Br J Nutr 2023; 130:1678-1688. [PMID: 36999370 DOI: 10.1017/s0007114523000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The current study aims to confirm the positive effects of dietary nano-Se on nutrients deposition and muscle fibre formation in grass carp fed with high-fat diet (HFD) before overwintering and to reveal its possible molecular mechanism. The lipid deposition, protein synthesis and muscle fibre formation in grass carp fed with regular diet (RD), HFD or HFD supplemented with nano-Se (0·3 or 0·6 mg/kg) for 60 d were tested. Results show that nano-Se significantly reduced lipid content, dripping loss and fibre diameter (P < 0·05), but increased protein content, post-mortem pH24 h and muscle fibre density (P < 0·05) in muscle of grass carp fed with HFD. Notably, dietary nano-Se decreased lipid deposition in the muscle by regulating amp-activated protein kinase activity and increased protein synthesis and fibre formation in muscle by activating target of rapamycin and myogenic determining factors pathways. In summary, dietary nano-Se can regulate the nutrients deposition and muscle fibre formation in grass carp fed with HFD, which exhibit potential benefit for improving flesh quality of grass carp fed with HFD.
Collapse
Affiliation(s)
- Sha Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Lingwei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Guohao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Pan He
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling712100, People's Republic of China
| |
Collapse
|
8
|
Van Doan H, Tapingkae W, Chaiyaso T, Wangkahart E, Panchan R, Sutthi N. Effects of Red Yeast (Sporidiobolus pararoseus) on Growth, Innate Immunity, Expression of Immune-related Genes and Disease Resistance of Nile Tilapia (Oreochromis niloticus). Probiotics Antimicrob Proteins 2023; 15:1312-1326. [PMID: 36053440 DOI: 10.1007/s12602-022-09984-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to evaluate the effects of red yeast (Sporidiobolus pararoseus) produced from crude glycerol, as a by-product of the biodiesel production process, on the growth, innate immunity, expression of immune-related gene, and resistance of Nile tilapia against challenge with Streptococcus agalactiae. Fish were fed diets supplied with different concentrations of S. pararoseus dried cells at 0.0 (control; T1), 5.0 (T2), 10.0 (T3), and 20.0 (T4) g kg-1 diets for 90 days. The results showed that final body weight, weight gain, and average daily gain were significantly higher in fish fed T3 and T4 compared to the control group (p < 0.05). Likewise, significant (p < 0.05) increases in total carotenoid content, liver superoxide dismutase activity (SOD), and serum lysozyme and albumin were observed in Nile tilapia fed S. pararoseus, with the highest (p < 0.05) values displayed in fish fed the T4 diet. Moreover, up-regulation of IL-1β transcription in Nile tilapia spleen and liver was observed in fish feeding group T4. In a challenge test against S. agalactiae, the fish survival rate was significantly higher in fish fed red yeast compared to the control group (p < 0.05). The highest bactericidal activity found in the T4 group (p < 0.05). However, no significant differences were found in hematology, blood chemical, malondialdehyde (MDA), body chemical composition, organosomatic indices, and myeloperoxidase (p > 0.05) in all treatments. The present results suggested that red yeast S. pararoseus (20.0 g kg-1) can be used as a potential supplementation on growth, immune response, and disease resistance of Nile tilapia.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thanongsak Chaiyaso
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Ruamruedee Panchan
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Nantaporn Sutthi
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
9
|
Yi C, Huang D, Yu H, Gu J, Liang H, Ren M. Enzymatically Hydrolyzed Poultry By-Product Supplementation, Instead of Fishmeal, Alone Improves the Quality of Largemouth Bass ( Micropterus salmoides) Back Muscle without Compromising Growth. Foods 2023; 12:3485. [PMID: 37761194 PMCID: PMC10529141 DOI: 10.3390/foods12183485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to investigate the effects of enzymatically hydrolyzed poultry by-products (EHPB) on the growth and muscle quality of largemouth bass. Different concentrations of EHPB (0.00, 3.10, 6.20, 9.30, and 12.40%) were added to replace fishmeal (0.00 (control), 8.89 (EHPB1), 17.78 (EHPB2), 26.67 (EHPB3), and 35.56% (EHPB4)), respectively, in dietary supplementation. The results revealed that the growth performance and muscle amino acid and fatty acid remained unaltered in EHPB1 (p > 0.05). EHPB1 showed significant reduction in muscle hardness, gumminess, chewiness, and muscle fiber count and exhibited a significant increase in muscle fiber volume. The decrease in muscle hardness, gumminess, and chewiness means that the muscle can have a more tender texture. The expression of protein metabolism-related genes reached the highest levels in EHPB1 and EHPB2 (p < 0.05). The mRNA levels of s6k and igf-1 in EHPB2 and EHPB1 were significantly lower than those in the control group. Compared to the control group, the expression of muscle production-associated genes paxbp-1 was higher in EHPB1, and myod-1, myf-5, and syndecan-4 were higher in EHPB2. The mRNA levels of muscle atrophy-related genes, in EHPB4 and EHPB2, were significantly lower than those in the control group. Therefore, the EHPB1 group plays a role in promoting the expression of genes related to muscle formation. In summary, replacing 8.89% of fishmeal with EHPB in feed has no effect on growth and may improve back muscle quality in largemouth bass.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
10
|
Deng H, Chen G, Zhang J, Yang Q, Dong X, Xie S, Liang W, Tan B, Chi S. Integrated Metabolome and Transcriptome Analyses Reveal the Efficacy of Steroidal Saponins for Glucose and Lipid Metabolism in Hybrid Grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatu) Fed Higher-Lipid Diets. Animals (Basel) 2023; 13:2894. [PMID: 37760294 PMCID: PMC10525917 DOI: 10.3390/ani13182894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
An analysis of the extent of the effect of steroidal saponin addition on glucose and lipid metabolism in hybrid grouper liver was performed at the transcriptomic and metabolomic levels. Feeds (52% crude protein, 14% crude lipid) were prepared containing 0% (S0), 0.1% (S0.1), and 0.2% (S0.2) steroidal saponins. After eight weeks of feeding trial, compared to the S0 group, the activities of serum albumin, alanine aminotransferase, and aspartate transaminase were significantly lower and the activities of lysozyme, acid phosphatase, and alkaline phosphatase were significantly higher in the S0.1 group (p < 0.05). The superoxide dismutase, catalase, and glutathione peroxidase activities in the livers of the S0.1 group were significantly higher than those of the S0 group, while the malondialdehyde content was significantly lower than that of the S0 group (p < 0.05). There were forty-two differentially expressed genes and thirty-two differential metabolites associated with glucose and lipid metabolism enriched using KEGG and GO. In the S0 group, the expression of prostaglandin-endoperoxide synthase 1, prostaglandin E synthase 1, and thromboxane-2 synthase mRNA was significantly higher than in the S0.1 group (p < 0.05). The expression levels of genes in the S0 group were significantly higher than those in the S0.1 group (p < 0.05), including for glycogen synthase kinase, glucose-6-phosphatase catalytic subunit 2, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, glucose transporter 4, and malate dehydrogenase. The expression of mRNA such as fatty acid synthase, acetyl-CoA carboxylase, and sterol regulatory element-binding protein 1 was significantly lower in the S0.1 group than in the S0 group, while the expression of carnitine acyltransferase 1, acyl-CoA synthetase, and acyl-CoA dehydrogenase genes was significantly higher in the S0 group (p < 0.05). In summary, glycogen synthesis, gluconeogenesis, and the arachidonic acid metabolism pathway were inhibited by 0.1% steroidal saponins, and glycogenolysis, glycolysis, the tricarboxylic acid cycle, and the fatty acid β-oxidation pathway were activated. This study aims to provide a reference for the formulation of grouper feeds with a higher crude-lipid level.
Collapse
Affiliation(s)
- Hongjin Deng
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
| | - Guiqiong Chen
- Guangzhou Fishtech Biotechnology Co., Ltd., Guangzhou 510640, China;
| | - Jiacheng Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
| | - Qihui Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Weixing Liang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.D.); (J.Z.); (Q.Y.); (X.D.); (S.X.); (W.L.); (B.T.)
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| |
Collapse
|
11
|
Guo M, Xu Z, Zhang H, Mei J, Xie J. The Effects of Acute Exposure to Ammonia on Oxidative Stress, Hematological Parameters, Flesh Quality, and Gill Morphological Changes of the Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2023; 13:2534. [PMID: 37570342 PMCID: PMC10417668 DOI: 10.3390/ani13152534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ammonia is considered to be the major chemical pollutant causing fish poisoning in aquaculture. This research aimed to evaluate the impact of acute ammonia exposure on the large yellow croaker's meat quality, gill morphology, liver oxidative stress, and hematological parameters. The fish were exposed to total ammonia nitrogen concentrations of 0, 2.96, 5.92, and 8.87 mg/L for 48 h, respectively. The findings demonstrated that all ammonia-exposed fish had higher liver lactate dehydrogenase and glutamic oxalate transaminase activities. The glucose, blood urea nitrogen, and creatinine levels in 8.87 mg/L total ammonia nitrogen (TAN) were higher than other samples. The total protein, albumin, and triglyceride levels in serum decreased significantly in ammonia-exposed samples. After 48 h of ammonia exposure, superoxide dismutase activities showed a 76.1%, 118.0%, and 156.8% increase when fish were exposed to 2.96, 5.92, and 8.87 mg/L TAN, respectively. Catalase activities and glutathione contents were considerably higher (p < 0.05) in all ammonia-treated samples compared to 0 mg/L TAN. The ammonia-treated gill lamellae become thicker, shorter, and curved. Additionally, the ammonia exposure resulted in the accumulation of free amino acids and the loss of nucleotides. The inosine monophosphate and adenosine monophosphate contents in the flesh were decreased after 12 h of exposure to 2.96, 5.92, and 8.87 mg/L ammonia compared to the control group. Overall, large yellow croakers exposed to ammonia for 6 h presented not only changes in serum composition but also oxidative stress, liver and gill tissue damage and flesh quality deterioration.
Collapse
Affiliation(s)
- Meijie Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
| | - Zhenkun Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
| | - Hongzhi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (M.G.); (Z.X.); (H.Z.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
12
|
Shi Y, Liu Y, Xie K, Zhang J, Wang Y, Hu Y, Zhong L. Sanguinarine Improves Intestinal Health in Grass Carp Fed High-Fat Diets: Involvement of Antioxidant, Physical and Immune Barrier, and Intestinal Microbiota. Antioxidants (Basel) 2023; 12:1366. [PMID: 37507906 PMCID: PMC10376639 DOI: 10.3390/antiox12071366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
An eight-week trial was conducted to investigate the effects of sanguinarine supplementation (600 μg and 1200 μg/kg) in high-fat (crude fat: 10%) diets (HF) on the intestinal physiological function of Ctenopharyngodon idellus (initial weight 50.21 ± 0.68 g), based on a basic diet (5% crude fat, CON), which were named HFLS and HFHS, respectively. The results showed that the HF diet significantly impaired the intestinal immune and physical barrier function, and disrupted the balance of the intestinal microbiota in grass carp. Compared to the HF diet, sanguinarine supplementation significantly improved the levels of serum C4, C3, AKP, IgA, and IgM, and enhanced the intestinal antioxidant capacity (gr, CuZnsod, gpx4, cat, gsto, and nrf2 expression were significantly up-regulated). Sanguinarine significantly down-regulated the expression of claudin-15 and up-regulated the expression of claudin-b, claudin-c, occludin, and zo-1 by inhibiting MLCK signaling molecules. Additionally, sanguinarine significantly down-regulated the expression of il-6, il-1β, and tnf-α and up-regulated the expression of il-10, tgf-β2, and tgf-β1 by inhibiting NF-κB signaling molecules, thereby alleviating intestinal inflammation caused by HF diets. Furthermore, compared to the HF diet, the abundance of Fusobacterium and Cetobacterium in the HFHS diet increased significantly, while the abundance of Firmicutes and Streptococcus showed the opposite trend. In conclusion, the HF diet had a negative impact on grass carp, while sanguinarine supplementation enhanced intestinal antioxidant ability, alleviated intestinal barrier damage, and ameliorated the homeostasis of the intestinal microbiota.
Collapse
Affiliation(s)
- Yong Shi
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yuanxiang Liu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
| | - Kai Xie
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
| | - Junzhi Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ya Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
| | - Lei Zhong
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Deng H, Zhang J, Yang Q, Dong X, Zhang S, Liang W, Tan B, Chi S. Effects of Dietary Steroid Saponins on Growth Performance, Serum and Liver Glucose, Lipid Metabolism and Immune Molecules of Hybrid Groupers (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatu) Fed High-Lipid Diets. Metabolites 2023; 13:305. [PMID: 36837925 PMCID: PMC9966350 DOI: 10.3390/metabo13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
High-lipid diets are attributed to excessive lipid deposition and metabolic disturbances in fish. The aim of this experiment was to investigate the effects of steroidal saponins on growth performance, immune molecules and metabolism of glucose and lipids in hybrid groupers (initial weight 22.71 ± 0.12 g) fed high-lipid diets. steroidal saponins (0%, 0.1% and 0.2%) were added to the basal diet (crude lipid, 14%) to produce three experimental diets, designated S0, S0.1 and S0.2, respectively. After an 8-week feeding trial, no significant differences were found between the S0 and S0.1 groups in percent weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio and protein deposition rate (p > 0.05). All those in the S0.2 group were significantly decreased (p < 0.05). Compared to the S0 group, fish in the S0.1 group had lower contents of serum triglyceride and low-density lipoprotein cholesterol and higher high-density lipoprotein cholesterol and glucose (p < 0.05). The activities of superoxide dismutase, catalase and glutathione peroxidase were significantly higher, and malondialdehyde contents were significantly lower in the S0.1 group than in the S0 group (p < 0.05). Hepatic triglyceride, total cholesterol and glycogen were significantly lower in the S0.1 group than in the S0 group (p < 0.05). Activities of lipoprotein lipase, total lipase, glucokinase and pyruvate kinase, and gene expression of lipoprotein lipase, triglyceride lipase and glucokinase, were significantly higher in the S0.1 group than in the S0 group. Interleukin-10 mRNA expression in the S0.1 group was significantly higher than that in the S0 group, while the expression of interleukin-6 and tumor necrosis factor-α genes were significantly lower than those in the S0 group. In summary, adding 0.1% steroidal saponins to a high-lipid diet not only promoted lipolysis in fish livers, but also activated glycolysis pathways, thus enhancing the utilization of the dietary energy of the groupers, as well as supporting the fish's nonspecial immune-defense mechanism.
Collapse
Affiliation(s)
- Hongjin Deng
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiacheng Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qihui Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Weixing Liang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang 524088, China
| |
Collapse
|
14
|
Wang B, Mao H, Zhao J, Liu Y, Wang Y, Du X. Influences of oxygen and temperature interaction on the antibacterial activity, antioxidant activity, serum biochemical indices, blood indices and growth performance of crucian carp. PeerJ 2023; 11:e14530. [PMID: 36620750 PMCID: PMC9817939 DOI: 10.7717/peerj.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/16/2022] [Indexed: 01/04/2023] Open
Abstract
The well-being of fish used in aquaculture is of great interest. Oxygen and temperature are the main factors affecting the welfare of the crucian carp (carassius); however, there are few studies on the combined effects of these on the species. Therefore, this study investigated the impact of different temperatures (18 °C, 24 °C, 30 °C) and oxygen concentrations (2.1 mgL-1, 5.4 mgL-1, 9.3 mgL-1) on serum antibacterial activity, antioxidant activity, hematological parameters and growth performance of the crucian carp. The results showed that there were greater antibacterial properties under conditions of hypoxia at 18 °C (L18) and hyperoxia at 24 °C (H24). The activities of catalase, glutathione peroxidase and total superoxide dismutase were the highest at 24 °C under hypoxia and hyperoxia. In addition, the contents of glucose and total protein first increased and then decreased with the change of temperature; triglycerides were the lowest at 30 °C. The blood parameters of the carp were within a normal range at 24 °C; however, the growth rate was at its lowest under hypoxia treatment at 30 °C (L30). This study showed that high temperature impairs the antibacterial ability, antioxidant capacity and growth performance of the crucian carp, and high oxygen levels can alleviate these adverse reactions. This research provides a theoretical basis for subsequent aquaculture studies.
Collapse
Affiliation(s)
- Bin Wang
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Jian Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yong Liu
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Yafei Wang
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Xiaoxue Du
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| |
Collapse
|
15
|
Cai W, Fu L, Liu C, He L, Liu H, Han D, Zhu X, Yang Y, Jin J, Xie S. Dietary ribose supplementation improves flesh quality through purine metabolism in gibel carp (Carassius auratus gibelio). ANIMAL NUTRITION 2022; 13:50-63. [PMID: 37009072 PMCID: PMC10064418 DOI: 10.1016/j.aninu.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
Since the aquaculture industry is currently observing a deterioration in the flesh quality of farmed fish, the use of nutrients as additives to improve the flesh quality of farmed fish species is a viable strategy. The aim of this study was to investigate the effect of dietary D-ribose (RI) on the nutritional value, texture and flavour of gibel carp (Carassius auratus gibelio). Four diets were formulated containing exogenous RI at 4 gradient levels: 0 (Control), 0.15% (0.15RI), 0.30% (0.30RI) and 0.45% (0.45RI). A total of 240 fish (150 ± 0.31 g) were randomly distributed into 12 fibreglass tanks (150 L per tank). Triplicate tanks were randomly assigned to each diet. The feeding trial was carried out in an indoor recirculating aquaculture system for 60 d. After the feeding trial, the muscle and liver of gibel carp were analysed. The results showed that RI supplementation did not result in any negative impact on the growth performance and 0.30RI supplementation significantly increased the whole-body protein content compared to the control group. The contents of collagen and glycogen in muscle were enhanced by RI supplementation. The alterations in the flesh indicated that RI supplementation improved the texture of the flesh in terms of its water-holding capacity and hardness, therefore improving the taste. Dietary RI facilitated the deposition of amino acids and fatty acids in the muscle that contributed to the meaty taste and nutritional value. Furthermore, a combination of metabolomics and expression of key genes in liver and muscle revealed that 0.30RI activated the purine metabolism pathways by supplementing the substrate for nucleotide synthesis and thereby promoting the deposition of flavour substance in flesh. This study offers a new approach for providing healthy, nutritious and flavourful aquatic products.
Collapse
|
16
|
Kou H, Hu J, Liu X, Zhao L, Zhang K, Pan X, Wang A, Miao Y, Lin L. Dietary protein improves flesh quality by enhancing antioxidant ability via the NF-E2-related factor 2/Kelch-like ECH-associated protein 1 signaling pathway in softshell turtle ( Pelodiscus sinensis). Front Nutr 2022; 9:1030583. [PMID: 36438722 PMCID: PMC9685656 DOI: 10.3389/fnut.2022.1030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 08/13/2023] Open
Abstract
An 8-week feeding trial was performed to assess the influence of a gradient of protein levels (14.38-45.23%) on flesh quality, skin color, amino acid profile, collagen, antioxidant capability, and antioxidant-related signaling molecule expression of the softshell turtle (Pelodiscus sinensis). Hardness, gumminess, chewiness, and yellowness values in the plastron and carapace, along with collagen, superoxide dismutase, catalase, total antioxidant capacity, and glutathione peroxidase, all improved with elevating dietary protein up to 26.19%, after which they leveled off. Additionally, total amino acids, flavor amino acids, essential amino acids, and non-essential amino acids in the muscle, as well as the expression of copper/zinc superoxide dismutase, glutathione peroxidase, catalase, manganese superoxide dismutase, NF-E2-related factor 2 were all enhanced by increasing the dietary protein level but not changed by higher protein levels. When dietary protein levels were less than 26.19%, the mRNA expression of Kelch-like ECH-associated protein 1, malondialdehyde, and redness values in the carapace and plastron were reduced, as was the lightness values of the carapace, all of which plateaued at higher protein levels. Using catalase activity and malondialdehyde as the indicators and applying a broken-line analysis, the optimal dietary protein level for P. sinensis was inferred to be 26.07 and 26.06% protein, respectively. In summary, an optimal protein input improved turtle flesh quality by strengthening antioxidant capacity in muscle tissue and by regulating the expression of antioxidant-related enzymes via the Nrf2/keap1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xueting Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kai Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xunbin Pan
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Anli Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
- Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
17
|
Microbiota derived butyrate affected the muscle texture of Nile tilapia (Oreochromis niloticus) fed with different protein sources. Food Chem 2022; 393:133392. [DOI: 10.1016/j.foodchem.2022.133392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022]
|
18
|
Li K, Zhu J, Li K, Liang W, Zhang J, Zhang Q, Jiao X, Wang X, Wei X, Yang J. High-fat diet blunts T-cell responsiveness in Nile tilapia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104495. [PMID: 35863514 DOI: 10.1016/j.dci.2022.104495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The reduced stress resistance and increased disease risk associated with high-fat diet (HFD) in animals have attracted increasing attention. However, the effects of HFD on adaptive immunity in early vertebrates, especially non-tetrapods, remain unknown. In this study, using Nile tilapia (Oreochromis niloticus) as a model, we investigated the effects of HFD on the primordial T-cell response in fish. Tilapia fed with an HFD for 8 weeks showed impaired lymphocyte homeostasis in the spleen, as indicated by the decreased number of both T and B lymphocytes and increased transcription of proinflammatory cytokines interferon-γ and interleukin-6. Moreover, lymphocytes isolated from HFD-fed fish or cultured in lipid-supplemented medium exhibited diminished T-cell activation in response to CD3ε monoclonal antibody stimulation. Moreover, HFD-fed tilapia infected by Aeromonas hydrophila showed decreased T-cell expansion, increased T-cell apoptosis, reduced granzyme B expression, and impaired infection elimination. Additionally, HFD attenuated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activity in tilapia lymphocytes, which in turn upregulated fatty acid synthesis but downregulated fatty acid β-oxidation. Altogether, our results suggest that HFD impairs lymphocyte homeostasis and T cell-mediated adaptive immune response in tilapia, which may be associated with the abnormal lipid metabolism in lymphocytes. These findings thus provide a novel perspective for understanding the impact of HFD on the adaptive immune response of early vertebrates.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiahua Zhu
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
19
|
Wang JG, Rahimnejad S, Liu YC, Ren J, Qiao F, Zhang ML, Du ZY, Luo Y. Dietary L-carnitine supplementation affects flesh quality through modifying the nutritional value and myofibers morphological characteristics in largemouth bass (Micropterus salmoides). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
20
|
Naiel MAE, Negm SS, Ghazanfar S, Shukry M, Abdelnour SA. The risk assessment of high-fat diet in farmed fish and its mitigation approaches: A review. J Anim Physiol Anim Nutr (Berl) 2022; 107:948-969. [PMID: 35934925 DOI: 10.1111/jpn.13759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
In the era of intensification of fish farms, the high-fat diet (HFD) has been applied to promote growth and productivity, provide additional energy and substitute partial protein in fish feeds. Certainly, HFD within specific concentrations was found to be beneficial in boosting fish performance throughout a short-term feeding. However, excessive dietary fat levels displayed vast undesirable impacts on growth, feed efficiency, liver function, antioxidant capacity and immune function and finally reduced the economic revenue of cultured fish. Moreover, studies have shown that fish diets containing a high level of fats resulted in increasing lipid accumulation, stimulated endoplasmic reticulum stress and suppressed autophagy in fish liver. Investigations showed that HFD could impair the intestinal barrier of fish via triggering inflammation, metabolic disorders, oxidative stress and microbiota imbalance. Several approaches have been widely used for reducing the undesirable influences of HFD in fish. Dietary manipulation could mitigate the adverse impacts triggered by HFD, and boost growth and productivity via reducing blood lipids profile, attenuating oxidative stress and hepatic lipid deposition and improving mitochondrial activity, immune function and antioxidant activity in fish. As well, dietary feed additives have been shown to decrease hepatic lipogenesis and modulate the inflammatory response in fish. Based on the literature, previous studies indicated that phytochemicals could reduce apoptosis and enhance the immunity of fish fed with HFD. Thus, the present review will explore the potential hazards of HFD on fish species. It will also provide light on the possibility of employing some safe feed additives to mitigate HFD risks in farmed fish.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Samar S Negm
- Fish Biology and Ecology Department, Central Lab for Aquaculture Research (CLAR), Abassa, Agriculture Research Center, Giza, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Feng K, Fang H, Liu G, Dai W, Song M, Fu J, Wen L, Kan Q, Chen Y, Li Y, Huang Q, Cao Y. Enzymatic Synthesis of Diacylglycerol-Enriched Oil by Two-Step Vacuum-Mediated Conversion of Fatty Acid Ethyl Ester and Fatty Acid From Soy Sauce By-Product Oil as Lipid-Lowering Functional Oil. Front Nutr 2022; 9:884829. [PMID: 35571905 PMCID: PMC9093691 DOI: 10.3389/fnut.2022.884829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Soy sauce by-product oil (SSBO), a by-product of the soy sauce production process, is the lack of utilization due to an abundance of free fatty acid (FFA) and fatty acid ethyl ester (EE). The utilization of low-cost SSBO to produce value-added diacylglycerol (DAG)-enriched oil and its applications are promising for the sustainability of the oil industry. The objective of this study was to utilize SSBO containing a high content of EE and FFA as raw material to synthesize DAG-enriched oil and to evaluate its nutritional properties in fish. Based on different behaviors between the glycerolysis of EE and the esterification of FFA in one-pot enzymatic catalysis, a two-step vacuum-mediated conversion was developed for the maximum conversions of EE and FFA to DAG. After optimization, the maximum DAG yield (66.76%) and EE and FFA conversions (96 and 93%, respectively) were obtained under the following optimized conditions: lipase loading 3%, temperature 38°C, substrate molar ratio (glycerol/FFA and EE) 21:40, a vacuum combination of 566 mmHg within the initial 10 h and 47 mmHg from the 10th to 14th hour. Further nutritional study in fish suggested that the consumption of DAG-enriched oil was safe and served as a functional oil to lower lipid levels in serum and liver, decrease lipid accumulation and increase protein content in body and muscle tissues, and change fatty acid composition in muscle tissues. Overall, these findings were vital for the effective utilization of SSBO resources and the development of future applications for DAG-enriched oil as lipid-lowering functional oil in food.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Huaiyi Fang
- College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Weijie Dai
- Guangdong Huiertai Biotechnology Co., Ltd., Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., Zhongshan, China
| | - Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Assan D, Huang Y, Mustapha UF, Addah MN, Li G, Chen H. Fish Feed Intake, Feeding Behavior, and the Physiological Response of Apelin to Fasting and Refeeding. Front Endocrinol (Lausanne) 2021; 12:798903. [PMID: 34975769 PMCID: PMC8715717 DOI: 10.3389/fendo.2021.798903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Feed is one of the most important external signals in fish that stimulates its feeding behavior and growth. The intake of feed is the main factor determining efficiency and cost, maximizing production efficiency in a fish farming firm. The physiological mechanism regulating food intake lies between an intricate connection linking central and peripheral signals that are unified in the hypothalamus consequently responding to the release of appetite-regulating genes that eventually induce or hinder appetite, such as apelin; a recently discovered peptide produced by several tissues with diverse physiological actions mediated by its receptor, such as feed regulation. Extrinsic factors have a great influence on food intake and feeding behavior in fish. Under these factors, feeding in fish is decontrolled and the appetite indicators in the brain do not function appropriately thus, in controlling conditions which result in the fluctuations in the expression of these appetite-relating genes, which in turn decrease food consumption. Here, we examine the research advancements in fish feeding behavior regarding dietary selection and preference and identify some key external influences on feed intake and feeding behavior. Also, we present summaries of the results of research findings on apelin as an appetite-regulating hormone in fish. We also identified gaps in knowledge and directions for future research to fully ascertain the functional importance of apelin in fish.
Collapse
Affiliation(s)
- Daniel Assan
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yanlin Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Umar Farouk Mustapha
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Mercy Nabila Addah
- Department of Fisheries and Aquatic Resources Management, Faculty of Bioscience, University for Development Studies, Tamale, Ghana
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- *Correspondence: Huapu Chen,
| |
Collapse
|