1
|
Nishitsuji Y, Whitney K, Hayakawa K, Simsek S. Structural and quantitative changes in alkali-solubilized arabinoxylan throughout the breadmaking process. Food Chem 2025; 475:143234. [PMID: 39956054 DOI: 10.1016/j.foodchem.2025.143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
Arabinoxylan (AX) substantially impacts wheat dough and bread quality; however, the behavior of water-unextractable AX (WU-AX) during breadmaking is not fully understood. This study investigates WU-AX changes during breadmaking by treating it with various sodium hydroxide (NaOH) concentrations to produce alkali-solubilized AX (AS-AX). Higher NaOH concentrations (up to 2.0 M) increase the AS-AX ratio, reaching over 80 %. The release of ferulic acid also increases with NaOH concentration but plateaus at 0.5 M NaOH. Analysis with 50 mM NaOH revealed the AS-AX ratio decreased from 46.0 % in wheat flour to 30.5 % at the proof stage, indicating WU-AX conversion to water-extractable AX (WE-AX) through the cleavage of ferulic acid-mediated bonds. High and low molecular weight AS-AX exhibit different solubilization patterns; low molecular weight AX with weaker bonds solubilizes more readily and converts preferentially to WE-AX. Understanding these dynamic changes can enhance dough properties and bread quality through targeted WU-AX.
Collapse
Affiliation(s)
- Yasuyuki Nishitsuji
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Kristin Whitney
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc., 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Senay Simsek
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Zhang S, Yang L, Nie Y, Li H, Zhu D, Cao X, Fan H. Effects of thermal treatment and Glucono-δ-lactone on the quality of alkaline dough and steamed buns. Food Chem 2025; 471:142818. [PMID: 39805167 DOI: 10.1016/j.foodchem.2025.142818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
In the present study, the effects of glucono-δ-lactone (GDL) as an acid reagent during thermal treatment on the quality of alkaline dough and steamed buns were examined. During the heating process, GDL improved the viscoelasticity and fluidity of the alkaline dough and enhanced intermolecular hydrogen bonding. The hardness of steamed buns was reduced by 61.04 %, whereas the specific volume was increased by 10.4 % with 0.8 g of GDL. The color and taste were also improved to a certain extent. Scanning electron microscopy revealed that excessive GDL caused the dissolution of the gluten network and reduced the formation of gluten protein aggregates. During the heating process, GDL is beneficial to the aggregation of the gluten network. During the process of heating from 25 °C to 60 °C, GDL reduced the -SH content and zeta potential in gluten proteins, enhanced thermal stability, and formed a more ordered gluten network. Excessive GDL reduces the pH of the system by approximately 50 %, causing gluten network dissolution and the reduced formation of gluten protein aggregates. When the temperature increased from 60 °C to 95 °C, a stable gluten network system was formed inside the alkaline dough, and GDL changed the pH of the dough by reacting with sodium bicarbonate, resulting in greater elasticity and lower hardness of the dough. These results provide a theoretical basis for using GDL as an acid reactant for chemical fermentation.
Collapse
Affiliation(s)
- Siyu Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
| | - Yuchang Nie
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Huining Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Xuehui Cao
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| | - Hongliang Fan
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
3
|
Zhang L, Yang S, Wang C, Jiang Q, Wang X, Sun B. Moderately mechanically activated starch in improving protein digestibility: Application in noodles. Int J Biol Macromol 2025; 298:139856. [PMID: 39814303 DOI: 10.1016/j.ijbiomac.2025.139856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.76 % damaged starch exhibited the highest protein digestibility of 88.97 %. This enhancement was due to the ability of moderately mechanically activated starch to hinder the cross-linking of γ-gliadin, D-LMS, and B/C-LMS via disulfide bonds and promote the transition from β-sheets to β-turns. Additionally, moderately mechanically activated starch induced protein unfolding by decreasing the α-helix content and facilitating the transformation from g-g-g to t-g-t conformations, thereby increasing the accessibility of enzymatic hydrolysis sites. However, excessively mechanically activated starch induced protein folding, as evidenced by an increase in the g-g-g conformations content and protein width (11.10), thus slightly reducing protein digestibility to 82.39 % in noodles containing 10.62 % damaged starch. Thus, the results of this study may provide new insights for the development of formulated foods with high protein digestibility for consumers in areas with limited economic resources.
Collapse
Affiliation(s)
- Lingfang Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Shuzhen Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Congcong Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Qianyi Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
4
|
Wu W, Li T, Zhao J, Fan M, Li Y, Qian H, Wang L. Leguminous proteins as beneficial baking emulsifiers: A comparative study with traditional sucrose ester. Int J Biol Macromol 2025; 306:141438. [PMID: 40043992 DOI: 10.1016/j.ijbiomac.2025.141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/09/2025]
Abstract
In recent years, pursuing healthier and more sustainable food ingredients has increased interest in plant-based alternatives to traditional synthetic emulsifiers. In this study, the properties of five legume proteins: soybean protein isolate (SPI), pea protein isolate (PPI), black bean protein isolate (BBPI), white Canavalia protein isolate (WCAI), and white kidney bean protein isolate (WKBPI) were compared with that of the conventional emulsifier sucrose ester (SE), and add them as emulsifiers to the cake making process. The centrifugal instability index of SPI stabilized emulsion (0.11) was close to that of SE stabilized emulsion (0.08). The foaming performance of WKBPI (85 %) and BBPI (82 %) is 4 times that of SE (20 %).In the simulated cake paste system, the gelatinization temperature of the cake paste with PPI was increased by 0.49 °C compared with that of the blank group and the gelatinization enthalpy decreased by 57.8 % compared with the blank cake paste system. As temperature increases, the viscoelastic curve of the batter with legume protein exhibits an initial decrease followed by a subsequent increase. The above changes are expected to have a positive impact on the quality characteristics of the final baked product. The findings of this study indicated that legume protein could potentially substitute the traditional emulsifier SE.
Collapse
Affiliation(s)
- Wenqing Wu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Province, 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, 88 Yuxiu Road, Yangzhou 225000, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
5
|
Yang Y, Zhang Q, Weng Y, Jiao A, Jin Z. Effects of xanthan gum and hydroxypropyl methylcellulose on the structure and physicochemical properties of triticale gluten during fermentation. Int J Biol Macromol 2025; 294:139413. [PMID: 39755320 DOI: 10.1016/j.ijbiomac.2024.139413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.3 % increase compared to TG. Microscopic observations indicated that the addition of XG or HPMC during fermentation resulted in a more continuous and compact network structure of triticale gluten. Analysis of secondary structure, disulfide bond formation, and macromer content revealed that 1 % XG significantly enhanced the formation of interchain disulfide bonds (1.9 μmol/g), elevated the β-folding ratio (43.58 %), and increased the gluten-macromer content (2.2 %) during fermentation. Surface hydrophobicity and electrophoresis analyses suggested that the interaction between hydrocolloids and gluten enhanced the exposure of hydrophobic groups of gluten. This study offers insights into the potential applications of XG and HPMC in fermented triticale products.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yexun Weng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Zhu Y, Yan Q, Yu Y, Wang K, Yu Z, Wang Y, Liu P, Han D. Effects of arabinoxylan extracted from vinegar residue on physicochemical and structural properties of gluten proteins obtained from freeze-thaw wheat dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2077-2085. [PMID: 39440806 DOI: 10.1002/jsfa.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 07/14/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Arabinoxylan is commonly used as a hydrocolloid in frozen dough to improve the texture and the sensory qualities of the products. The effects of vinegar residue arabinoxylan (VRAX) on the secondary structures and microstructures of gluten proteins during freeze-thaw storage were studied, and the underlying mechanism governing these effects was clarified. RESULTS The results revealed that VRAX improved the textural properties of gluten proteins, but had a negative impact on their viscoelasticity. Additionally, the addition of VRAX increased the number of disulfide bonds and also improved the freezing tolerance of the gluten proteins. It was found that the enthalpy of the gluten proteins decreased by 19.78% following VRAX addition. As a result of the use of VRAX, the freezing procedure resulted in reduced formation of ice crystals, protecting the gluten network structure and preserving the dough's elasticity. The network structure of gluten proteins after VRAX treatment was more ordered and integrated relative to that of frozen blank control gluten proteins. CONCLUSION Overall, the freeze-thaw stability of the gluten proteins was enhanced by VRAX. These results suggest that VRAX has potential as an effective cryoprotectant in frozen dough. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qian Yan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
7
|
Du C, Zhu S, Li Y, Yang T, Huang D. Exploring the impact of selenium-enriched peptides from yeast autolysate on dough properties: Insights into mechanisms from gluten perspectives. Food Chem 2025; 464:141814. [PMID: 39481151 DOI: 10.1016/j.foodchem.2024.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
This study investigated the impact of Selenium (Se)-enriched yeast autolytic peptides (SeYAP) with different Se levels on dough properties as well as the related mechanism by focusing on gluten. SeYAP prolonged the dough's development time by up to 131 % and stability time by up to 28 %. It also decreased dough's viscoelasticity and rendered dough softer. Additionally, SeYAP diminished the binding capacity of dough to water and augmented the fluidity of water. Protein composition, disulfide bonds and fluorescence spectroscopy revealed that SeYAP could induce depolymerization of glutenin aggregate through sulfhydryl/disulfide bond exchange and hydrophobic interactions. Seven Se-enriched peptides were identified from the fraction with strong ability to depolymerize gluten. Specifically, six peptides contained selenocysteine, while another peptide contained selenomethionine. Molecular docking indicated that Se-enriched peptides could interact with amino acids (such as glutamine, tyrosine and proline) in gluten via hydrophobic interactions and/or hydrogen bonds.
Collapse
Affiliation(s)
- Chaodong Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tian Yang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| |
Collapse
|
8
|
Mei Z, Wang W, Feng X, Yu C, Chen L, Chen H, Lin S. Mechanism underlying the effect of soluble oat β-glucan and tea polyphenols on wheat gluten aggregation characteristics. Int J Biol Macromol 2025; 288:138669. [PMID: 39672412 DOI: 10.1016/j.ijbiomac.2024.138669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The mechanism of how the coexistence of oat β-glucan (OβG) and tea polyphenols (TP) impacts gluten aggregation properties was investigated. The OβG might form interchain hydrogen bondings and compete for water with gluten, which could increase gluten aggregation and the gluten network's expansion, leading to its increasing average particle size (by 17.23 %) with 5%OβG. The physicochemical characteristics of TP and OβG + TP groups showed similar changing trends, indicating the predominant effect of TP; however, the effect was, to some extent, enhanced with the presence of OβG. This might be because OβG induced a more expanded network of gluten, favoring the access and attack of TP to unfold or disrupt the gluten structure by breaking disulfide bonds, as confirmed by the red-shifts in fluorogram, increasing content of free sulfhydryl by 250 % (without OβG) and 312 % (with OβG), and decreasing particle size of gluten by 10.43 % (without OβG) and 21.08 % (with OβG) when the addition of TP was 2 %. Moreover, with the increasing of TP, the tremendous unfolding or disrupting gluten structure exposed more amino acids whereas decreased the intermolecular contacts and extended chains of gluten, consequently leading to the increasing hydrogen bonds and hydrophobic interactions while reducing the content of β-sheets, respectively.
Collapse
Affiliation(s)
- Zhou Mei
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Xinlu Feng
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Chuanlong Yu
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Jiangxi Key Laboratory of Natural Products and Functional Food, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Hui Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Suyun Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
9
|
Bilal M, Li D, Xie C, Yang R, Gu Z, Jiang D, Xu X, Wang P. Recent advances of wheat bran arabinoxylan exploitation as the functional dough additive. Food Chem 2025; 463:141146. [PMID: 39255698 DOI: 10.1016/j.foodchem.2024.141146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Wheat bran is a significant byproduct of wheat flour milling and is enriched with dietary fiber. Arabinoxylan (AX), the major constituent of dietary fiber, plays a crucial role in the nutrition and processing of cereal food. This review comprehensively focuses on AX as a functional additive, specifically addressing its fractionation methods, structural characteristics, techno-functionality, and interactions with dough components. Structural features such as molecular weight (Mw), branching degree, and ferulic acid (FA) content significantly influence the functionality of AX, affecting gluten protein and starch characteristics during cereal food processing. Specifically, studies have shown that AX with optimum Mw and FA levels improved dough rheology and gas retention during bread-making. Furthermore, the solubility of AX varies across wheat bran fractions, with soluble AX fractions demonstrating notable dough-improving properties. By integrating structural complexity with functional properties, this review highlights the promising applications of wheat bran AX as a sustainable, functional dough additive.
Collapse
Affiliation(s)
- Muhammad Bilal
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Xueming Xu
- Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China.
| |
Collapse
|
10
|
Chen J, Shi W, Shen Z, Ma Y, Zhang S. Comparison of the effects of pectin with different esterification degrees on the thermal aggregation of wheat glutenin and gliadin. Int J Biol Macromol 2025; 286:138394. [PMID: 39643181 DOI: 10.1016/j.ijbiomac.2024.138394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Our previous study found that pectin with different degrees of esterification (DE) could affect the thermal aggregation of gluten, but the mechanism was not clear. Analyzing the thermal aggregation of glutenin and gliadin supplemented with pectin can clarify this mechanism. With the increase of temperature, the particle size, disulfide bonds and β-sheet of glutenins increased, the surface hydrophobicity (H0) and fluorescence intensity decreased, and the network gradually aggregated, but the change trend of gliadins was opposite. These results suggested that the thermal aggregation of gluten mainly depended on glutenin. Glutenin and gliadin supplemented with low ester pectin (LEP) were in an aggregated state. At 95 °C, LEP (DE = 37 %) increased the particle size of glutenin and gliadin (141.83 μm and 19.91 μm), promoted the conversion of thiol to disulfide bonds, increased β-sheet (34.01 % and 31.13 %), decreased fluorescence intensity (2186.33 and 5165.33) and H0 (49.65 and 369.26). Scanning electron microscope (SEM) indicated that glutenin and gliadin supplemented with LEP retained a dense network structure, especially glutenin. This study elucidated the specific mechanism of how pectin affected the thermal aggregation of gluten. These results provide a more comprehensive theoretical support and scientific basis for understanding how pectin regulates the final quality of gluten-based products.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| | - Wanlu Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Zheyu Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| |
Collapse
|
11
|
Su T, Zhang Y, Du W, Zeng J, Gao H. Effect of modified trehalose on regulation of gluten protein structure and steamed bread quality. Int J Biol Macromol 2024; 283:137969. [PMID: 39592055 DOI: 10.1016/j.ijbiomac.2024.137969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
The trehalose (TL) was modified with sodium alginate, starch, and the effects of modified trehalose particle on the gluten protein and steamed bread properties were investigated. The results showed that for dough frozen after 30 d, the addition of 0.8 % modified TL significantly increased water-holding capacity by 12.12 %, improved the freezing rate, and the change of binding water could be better controlled. Besides, the α-helix content and random coil content of gluten protein was increased and decreased after adding modified TL, respectively, improving the ordered structure of wheat gluten protein and maintaining its aggregation characteristics and structural stability to some extent. Meanwhile, the brightness, water-holding capacity and specific volume of steamed bread was increased after adding 0.8 % modified TL, which improved and maintained the normal texture and internal structure of steamed bread. The results can provide a basis for the application of trehalose in flour products.
Collapse
Affiliation(s)
- Tongchao Su
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Youtong Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wenkai Du
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
12
|
Li M, Ma S. Effects of interaction between wheat bran dietary fiber and gluten protein on gluten protein aggregation behavior. Int J Biol Macromol 2024; 283:137692. [PMID: 39549795 DOI: 10.1016/j.ijbiomac.2024.137692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Effects of wheat bran dietary fiber (WBDF) as a nutritional additive on flour products quality mainly depends on the interaction between WBDF and gluten protein. In this study, the effects and mechanisms of WBDF with different particle sizes and additive amounts on gluten protein aggregation behavior were investigated. The results showed that the addition of WBDF led to a decrease in free sulfhydryl content, particle size, molecular weight and gluten macromer (GMP) content, an increase in zeta potential and SDS-extractable protein content, and a deterioration in the gluten network morphology compared to the control group, suggesting that the aggregation behavior of gluten protein was inhibited. When WBDF was added at 3 % and 6 %, dilution effect, mechanical shear, steric hindrance, and non-covalent binding were the main mechanisms leading to depolymerization. Further addition of WBDF (9 %, 12 %) inhibited the depolymerization of gluten protein due to competitive hydration and non-covalent binding. However, when WBDF was added at 15 %, the dilution effect, mechanical shear and steric hindrance of WBDF (88 μm < particle size<150 μm) dominated, and their inhibitory of aggregation induced the formation of a loose gluten network structure. In contrast, the weaker mechanical shear and steric hindrance effects of WBDF (particle size<88 μm) mitigated the degradation of gluten network structures by WBDF.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
13
|
Du C, Zhu S, Li Y, Yang T, Huang D. Selenium-enriched yeast, a selenium supplement, improves the rheological properties and processability of dough: From the view of yeast metabolism and gluten alteration. Food Chem 2024; 458:140256. [PMID: 38959802 DOI: 10.1016/j.foodchem.2024.140256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.
Collapse
Affiliation(s)
- Chaodong Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tian Yang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| |
Collapse
|
14
|
Wang Y, Chen J, Xu F, Xue Y, Wang L. Effects of Moisture Migration and Changes in Gluten Network Structure during Hot Air Drying on Quality Characteristics of Instant Dough Sheets. Foods 2024; 13:3171. [PMID: 39410206 PMCID: PMC11475067 DOI: 10.3390/foods13193171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The impact of hot air drying temperature on instant dough sheets' qualities was investigated based on water migration and gluten network structure changes. The results revealed that the drying process redistributed the hydrogen proton, with deeply bound water accounting for more than 90%. The T2 value decreased as the drying temperature increased, effectively restricting moisture mobility. Meanwhile, microstructural analysis indicated that instant dough sheets presented porous structures, which significantly reduced the rehydration time of instant dough sheets (p < 0.05). In addition, elevated drying temperatures contributed to the cross-linking of proteins, as evidenced by increased GMP and disulfide bond content (reaching a maximum at 80 °C), which improved the texture and cooking properties. Hence, the water mobility was effectively reduced by controlling the drying temperature. The temperature had a facilitating impact on promoting the aggregation of the gluten network structure, which improved the quality of the instant dough sheets.
Collapse
Affiliation(s)
- Yuwen Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
- Henan Province Zhongyuan Food Laboratory, Luohe 462000, China
| | - Fei Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Yuqi Xue
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| | - Lei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (Y.W.); (F.X.); (Y.X.); (L.W.)
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Center, Zhengzhou 450001, China
| |
Collapse
|
15
|
Lin Q, Liang W, Shen H, Niu L, Zhao W, Li W. Enhanced B-type starch granules proportion modulates starch-gluten interactions during the thermal processing of reconstituted doughs. Food Chem 2024; 454:139712. [PMID: 38795618 DOI: 10.1016/j.foodchem.2024.139712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
This work investigated structure-properties changes of reconstituted wheat A/B starch doughs under different ratios during dynamic thermal processing. Results indicated that a change in spatial conformation and aggregation structure of the starch-gluten system was induced with heating (30 °C-86 °C). Moderately increased B starch ratio can effectively fill the gluten network and improve starch-protein interactions, which promotes the free sulfhydryl group oxidation and results in the formation of more glutenin macropolymer; this contributes to a higher degree of cross-linking and stability to the gluten network matrix. This improvement is enhanced as the heating temperature is increased. Notably, the B starch ratio requires to be controlled within a suitable range (≤ 75%) to avoid aggregation and accumulation on the gluten matrix triggered by its excess. This work may provide insights and optimization for clarifying the on-demand regulation strategy of A/B starch in dough processing.
Collapse
Affiliation(s)
- Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Li Niu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
16
|
Chang T, Bian L, Zhang X, Chen S, Lyu Y, Li G, Zhang C. Impacts of transglutaminase on the processing and digestion characteristics of glutinous rice flour: Insight of the interactions between enzymic crossing-linked protein and starch. Food Res Int 2024; 189:114533. [PMID: 38876603 DOI: 10.1016/j.foodres.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Glutinous rice is extensively consumed due to its nutritious content and wonderful flavor. However, glutinous rice flour has a high glycemic index, and the storage deterioration of sweet dumplingsissevere. Transglutaminase (TG) was used to cross-link glutinous rice protein and improve the characteristics of glutinous rice products. The findings demonstrated that TG significantly catalysed protein cross-linking to form a dense protein network, reduced the viscosity of glutinous rice paste and improved the thermal stability. The protein network may physically block the access of starch granules to digestive enzymes to lower the digestion rate of starch, and attenuate the damage of ice crystal molecules to the starch structure to improve the freezing stability of starch gels. The cracking rate and water loss of sweet dumplings prepared using glutinous rice flour with TG treated for 60 min reduced significantly. In conclusion, this study broadened the application of TG in starch products.
Collapse
Affiliation(s)
- Tingting Chang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luyao Bian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoxuan Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Siyu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
17
|
Huang M, Bai J, Buccato DG, Zhang J, He Y, Zhu Y, Yang Z, Xiao X, Daglia M. Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health. Foods 2024; 13:2369. [PMID: 39123560 PMCID: PMC11311280 DOI: 10.3390/foods13152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.
Collapse
Affiliation(s)
- Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Xu K, Kuang J. Rheological, thermal, and structural properties of heat-induced gluten gel: Effects of starch with varying degrees of debranching. Int J Biol Macromol 2024; 272:132678. [PMID: 38801851 DOI: 10.1016/j.ijbiomac.2024.132678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study evaluated the effects of starch with varying degree of debranching on the rheological, thermal, and structural properties of heat-induced gluten gel. As the duration of starch debranching treatment increased from 0 to 8 h, the viscoelasticity of the gel containing debranched starch (DBS) improved. Compared with the gluten gel (G), the gel strength of the G + DBS (8 h) sample increased by 65.2 %. The degradation temperature of gluten was minimally affected by DBS, while the weight loss rate increased by 4.4 %. Furthermore, the α-helical structure of gluten decreased, concomitant with an increase in β-sheet content. Notably, DBS treated for 8 h exhibited more hydrogen bonds with the tyrosine of gluten and triggered disulfide bridge conformation to transition from g-g-g to t-g-g, thereby reducing the stability of the molecular conformation of gluten proteins, as evidenced by the decreased height and width of the molecular chains observed in atomic force microscopy images. Overall, the composite gel structure induced by DBS exhibited a more continuous and homogeneous owing to the improved compatibility between DBS and gluten proteins, favoring the formation of a robust gel. These findings provide valuable insights for utilizing DBS to enhance gluten gel properties.
Collapse
Affiliation(s)
- Ke Xu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province 810016, China
| | - Jiwei Kuang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China.
| |
Collapse
|
19
|
Yang Y, Zhang Q, Zhang R, Jiao A, Jin Z. Effects of different polysaccharide colloids on the structure and physicochemical properties of peanut protein and wheat gluten composite system under extrusion. Int J Biol Macromol 2024; 272:132773. [PMID: 38823746 DOI: 10.1016/j.ijbiomac.2024.132773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The structure and physicochemical properties of the complex system of peanut protein and gluten with different concentrations (0 %, 0.5 %, 1 %, and 2 %) of carboxymethyl cellulose (CMC) or sodium alginate (SA) under high-moisture extrusion were studied. The water absorption index and low-field nuclear magnetic resonance showed that adding 0.5 % SA could significantly improve the water uniformity of peanut protein extrudates, while the increase in water absorption was not significant. The texture properties showed that adding CMC or SA increased the hardness, vertical shearing force, and parallel shearing force of the system. Furthermore, adding 0.5 % SA increased approximately 33 % and 75.2 % of the tensile distance and strength of the system, respectively. The secondary structure showed that CMC or SA decreased the proportion of α-helix, β-turn, and random coil, while increased β-sheet proportion. The results of hydrophobicity, unextractable protein, and endogenous fluorescence revealed that CMC and SA reduced the surface hydrophobicity of the system and caused fluorescence quenching in the system. Additionally, it was found that CMC generally increased the free sulfhydryl group content, while SA exhibited the opposite effect.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruixin Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Liang Y, Liu H, Jie Y, Liu M, He B, Wang J. Amyloid-like Aggregation of Wheat Gluten and Its Components during Cooking: Mechanisms and Structural Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11080-11093. [PMID: 38690996 DOI: 10.1021/acs.jafc.3c09451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Amyloid-like aggregation widely occurs during the processing and production of natural proteins, with evidence indicating its presence following the thermal processing of wheat gluten. However, significant gaps remain in understanding the underlying fibrillation mechanisms and structural polymorphisms. In this study, the amyloid-like aggregation behavior of wheat gluten and its components (glutenin and gliadin) during cooking was systematically analyzed through physicochemical assessment and structural characterization. The presence of amyloid-like fibrils (AFs) was confirmed using X-ray diffraction and Congo red staining, while Thioflavin T fluorescence revealed different patterns and rates of AFs growth among wheat gluten, glutenin, and gliadin. AFs in gliadin exhibited linear growth curves, while those in gluten and glutenin showed S-shaped curves, with the shortest lag phase and fastest growth rate (t1/2 = 2.11 min) observed in glutenin. Molecular weight analyses revealed AFs primarily in the 10-15 kDa range, shifting to higher weights over time. Glutenin-derived AFs had the smallest ζ-potential value (-19.5 mV) and the most significant size increase post cooking (approximately 400 nm). AFs in gluten involve interchain reorganization, hydrophobic interactions, and conformational transitions, leading to additional cross β-sheets. Atomic force microscopy depicted varying fibril structures during cooking, notably longer, taller, and stiffer AFs from glutenin.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangyi Jie
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
21
|
Liang Y, Zhu X, Liu H, Wang J, He B, Wang J. Effect of sanxan on the composition and structure properties of gluten in salt-free frozen-cooked noodles during freeze-thaw cycles. Food Chem X 2024; 21:101229. [PMID: 38406761 PMCID: PMC10884818 DOI: 10.1016/j.fochx.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, the mechanisms by which sanxan protected the quality of salt-free frozen-cooked noodles (SFFCNs) were investigated, with a focus on the composition and structural properties of gluten. The results showed that sanxan facilitated the formation of glutenin macropolymer and maintained the stabilization of glutenin subunits in freeze-thaw cycles (FTs). In terms of protein structure, sanxan weakened the disruption of secondary structure caused by FTs and increased the proportion of gauche-gauche-gauche (g-g-g) conformations in the disulfide (S-S) bonds bridge conformation. Simultaneously, sanxan reduced the exposure degree of tryptophan (Trp) and tyrosine (Tyr) residues on the protein surface. Moreover, the intermolecular interaction forces indicated that sanxan inhibited S-S bonds breakage and enhanced the intermolecular crosslinking of gluten through ion interactions, which was crucial for improving the stability of gluten. This study provides a more comprehensive theoretical basis for the role of sanxan in improving the quality of SFFCNs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiuling Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
22
|
Teobaldi AG, Barrera GN, Ribotta PD. Effect of Damaged Starch and Wheat-Bran Arabinoxylans on Wheat Starch and Wheat Starch-Gluten Systems. Foods 2024; 13:689. [PMID: 38472801 DOI: 10.3390/foods13050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigated the impact of damaged starch and arabinoxylans on the thermal and pasting behavior of mixtures containing starch and gluten. The mixtures containing starch, arabinoxylans, and gluten were dispersed in water and a 50% sucrose solution. When arabinoxylans were added to native starch in water, it did not modify the viscosity profiles. An increase in viscosity parameters was observed due to the addition of arabinoxylans to starch with a higher level of damage. Gluten did not influence the effects caused by arabinoxylans. In the sucrose solution, arabinoxylans caused an increase in the viscosity parameters of native starch and starch with higher damage content dispersions. Gluten caused greater viscosity increases when arabinoxylans were added. In water, the addition of arabinoxylans to native starch caused a decrease in the enthalpy of gelatinization and an increase in the onset temperature. Adding arabinoxylans to starch with a higher level of damage caused the opposite effects. In the presence of sucrose, arabinoxylans caused a decrease in the enthalpy of gelatinization. These results lay the foundations for studying the influence of damaged starch and arabinoxylans in water-rich systems characterized by the presence of substantial proportions of sucrose, such as batter formulations.
Collapse
Affiliation(s)
- Andrés Gustavo Teobaldi
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Av. Filloy S/N, Córdoba CP X5000HUA, Argentina
| | - Gabriela Noel Barrera
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Av. Filloy S/N, Córdoba CP X5000HUA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba CP X5000HUA, Argentina
| | - Pablo Daniel Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, Av. Filloy S/N, Córdoba CP X5000HUA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba CP X5000HUA, Argentina
| |
Collapse
|
23
|
Li F, Li T, Zhao J, Fan M, Qian H, Li Y, Wang L. Unraveling the deterioration mechanism of dough during whole wheat flour processing: A case study of gluten protein containing arabinoxylan with different molecular weights. Food Chem 2024; 432:137199. [PMID: 37633141 DOI: 10.1016/j.foodchem.2023.137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
This study aims to the effect of arabinoxylan (AX) on gluten quality. Ultrasonic treatment is utilized to degrade water unextractable arabinoxylans (WUAX) from wheat bran, which obtains three molecular weights of AX. The results indicate that the shear viscosity and particle size of AX were decreased and the ζ-potential was increased after ultrasonic treatment. Analysis of the gluten shows that the free SH of gluten with 6% WUAX, SAX10, and SAX30 (ultrasound duration for 10 min and 30 min) was increased by 51.9%, 48.1%, and 17.0%, respectively, whereas the free SH of 2% SAX30-gluten was increased by 19.8%. Furthermore, WUAX impaired the viscoelasticity properties of gluten, while SAX30 improved the viscoelasticity of gluten. WUAX induced the open, fragile, and discontinuous structure of gluten. On the contrary, SAX30 promoted the formation of the compact and regular gluten structure. Overall, ultrasonic as a non-chemical treatment could be used to improve the quality of whole-wheat foods.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou, 225000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
24
|
Li M, Li L, Sun B, Ma S. Interaction of wheat bran dietary fiber-gluten protein affects dough product: A critical review. Int J Biol Macromol 2024; 255:128199. [PMID: 37979754 DOI: 10.1016/j.ijbiomac.2023.128199] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Wheat bran dietary fiber (WBDF) is an emerging food additive used for improving the nutritional value of dough products, albeit its adverse effects cannot be ignored. The dilution effect, mechanical shear effect, competitive water absorption, and steric hindrance of WBDF, as well as the non-covalent binding between WBDF and gluten protein, are considered the key mechanisms underlying the WBDF-gluten protein interaction. However, current studies on the interaction are mostly limited to the impact of the interaction on gluten protein and are rarely focused on the quality of products. Therefore, the effects of the interaction on the structural characteristics and aggregation behavior of gluten protein and multiple involved mechanisms are discussed in this review. On this basis, these changes are systematically related to the gluten network structure, dough properties, and product quality. Mitigation measures corresponding to negative impacts also need to be elaborated to guide and standardize the production and development of dough products containing WBDF.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Li Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
Liu M, Fan M, Qian H, Li Y, Wang L. Effect of different enzymes on thermal and structural properties of gluten, gliadin, and glutenin in triticale whole-wheat dough. Int J Biol Macromol 2023; 253:127384. [PMID: 37838124 DOI: 10.1016/j.ijbiomac.2023.127384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Three enzymes promoted the development of the gluten network in triticale whole-wheat noodles (TWWN). To further understand the mechanism of gluten enhancement, the effects of three enzymes on the structure of gluten and its fractions (gliadin and glutenin) were evaluated. The results showed that glucose oxidase (GOD), xylanase (XYL), and laccase (LAC) decreased the content of sodium dodecyl sulfate (SDS) extractable proteins. The content of glutenin subunits was reduced by 17.25 %, 30.60 %, and 20.09 % with the addition of GOD, XYL, and LAC, respectively. Furthermore, GOD and LAC increased the content of glutenin macropolymer (GMP) by 2.64 % and 7.71 %, respectively, suggesting the promotion of glutenin aggregation. The addition of three enzymes decreased the weight loss and increased the degradation temperature of the gluten and its fractions. GOD and XYL decreased the fluorescence intensity of gluten and its fractions, except for XYL which increased the fluorescence intensity of glutenin by 10.50 %. Intermolecular interactions and surface hydrophobicity were enhanced by XYL in gluten and its fractions. GOD and LAC decreased the free sulfhydryl content and increased the β-sheet content, suggesting that the covalent interaction between gluten fractions was enhanced. Therefore, this research can enrich the theoretical study of enzymatic cross-linking.
Collapse
Affiliation(s)
- Minnan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
26
|
Bao Q, Yan J, Ma S. Effect of heat treatment on conformation and aggregation properties of wheat bran dietary fiber-gluten protein. Int J Biol Macromol 2023; 253:127164. [PMID: 37778582 DOI: 10.1016/j.ijbiomac.2023.127164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
To understand the heat mediated cross-linking mechanism of gluten in the presence of wheat bran dietary fiber (WBDF), the effect of heat treatment on conformation and aggregation properties of wheat bran dietary fiber-gluten protein was comparatively investigated in this study. The results showed G' and G" increased after adding WBDF, then decreased after heating. The SE-HPLC, chemical interaction and surface hydrophobicity analysis revealed the WBDF participated in the rearrangement of intermolecular interactions and induced depolymerization behavior behavior of gluten via disulfide and non-covalent bonds at low temperatures (25 °C and 60 °C), but heating (at 95 °C) promoted these interactions via disulfide bonds. Besides, changes in the secondary structure of gluten protein induced by WBDF during heating were correlated with the steric hindrance and hydroxyl groups on WBDF. These results suggested that WBDF impeded the cross-linking and aggregation of gluten through the rearrangement of chemical bonds and physical entanglements, then this effect was weakened at high temperatures, most likely by improving the disulfide bonds among gluten proteins. This study consummates the understanding of the cross-linking mechanisms of gluten with WBDF during heating, and provides the theoretical basis for improving the quality and acceptability of whole wheat-based products.
Collapse
Affiliation(s)
- Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jingyao Yan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
27
|
Kuang J, Xu K, Dang B, Zheng W, Yang X, Zhang W, Zhang J, Huang J. Interaction with wheat starch affect the aggregation behavior and digestibility of gluten proteins. Int J Biol Macromol 2023; 253:127066. [PMID: 37748592 DOI: 10.1016/j.ijbiomac.2023.127066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Understanding the interplay between gluten and wheat starch is crucial for elucidating the digestibility mechanism of gluten in wheat-based products. However, this mechanism remains under-investigated. This study sought to elucidate the influence of starch-induced protein structural modifications on gluten digestion. Our findings revealed that starch considerably enhanced gluten digestion. In the presence of starch, gluten protein digestibility increased from 10.91 % (in the control group with a gluten-to-starch ratio of 1:0) to 14.40 % (in the complex with a gluten-to-corn starch ratio of 1:1). The diminished gluten protein digestibility due to starch may be ascribed to modifications in protein configuration and aggregation behavior. Morphological studies suggested that starch not only functioned as filler particles but also diluted the gluten matrix. A protein network assessment further affirmed that both the junction density and branching rate of gluten proteins decreased notably by 29.9 % and 25.1 %, respectively. Conversely, lacunarity increased by 1.92-fold, compromising the cohesiveness and connectivity of the gluten matrix. Elevated starch concentrations suppressed the formation of disulfide bonds, impeding gluten protein aggregation. Concurrently, gluten-starch interactions were governed by hydrogen bonds and hydrophobic associations. In summary, starch augmented gluten protein digestibility by curtailing their polymerization. This revelation might offer novel perspectives on optimizing gluten protein digestion and utilization.
Collapse
Affiliation(s)
- Jiwei Kuang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Ke Xu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, China
| | - Bin Dang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Wancai Zheng
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Xijuan Yang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China.
| | - Wengang Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Jie Zhang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai Province, 810016, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agriculture and Forestry Sciences, Xining, Qinghai Province 810016, China
| | - Junrong Huang
- School of Food and Biological Engineering, Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China.
| |
Collapse
|
28
|
Li F, Li T, Zhao J, Fan M, Qian H, Li Y, Wang L. Entanglement between Water Un-Extractable Arabinoxylan and Gliadin or Glutenins Induced a More Fragile and Soft Gluten Network Structure. Foods 2023; 12:foods12091800. [PMID: 37174338 PMCID: PMC10178768 DOI: 10.3390/foods12091800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to investigate the effects of water-unextractable arabinoxylan (WUAX) on the gluten network structure, especially on gliadins and glutenins. The results indicated that the free sulfhydryl (free SH) of gliadins increased by 25.5% with 100 g/kg WUAX, whereas that of glutenins increased by 65.2%, which inhibited the formation of covalent bonds. Furthermore, β-sheets content decreased 5.63% and 4.75% for gliadins and glutenins with 100 g/kg WUAX, respectively, compared with the control. WUAX increased β-turns prevalence for gliadins, while the content of α-helixes and random coils had less fluctuation. In glutenins, the contents of α-helixes and β-sheets decreased and β-turns increased. Moreover, compared with the control, the weight loss rate for gliadins and glutenins increased by 2.49% and 2.04%, respectively, with 60 g/kg WUAX. The dynamic rheological analysis manifested that WUAX impaired the viscoelasticity property of gliadin and glutenin. Overall, WUAX weakened the structure of the gliadins and glutenins, leading to quality deterioration of gluten.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou 225000, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
29
|
Guo X, Gu F, Li Y, Zhang Q, Hu R, Jiao B, Wang F, Wang Q. Precooking treatments affect the sensory and tensile properties of autoclaved recooked noodles via moisture distribution and protein structure. Food Chem 2023; 421:136218. [PMID: 37105120 DOI: 10.1016/j.foodchem.2023.136218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
To improve the quality of autoclaved recooked noodles (ARNs), this study explored the effects of precooking on the sensory and tensile properties of ARNs from the perspectives of changes in protein structure and water distribution. The results showed that the ARNs of two kinds of pretreatments (Boiling 2 min, Boiling 1 min + Steaming 2 min) presented the best sensory quality (average score ≥ 7.50) and high tensile properties (tensile distance ≥ 45.24 mm). After autoclaving and recooking, the proportion of tightly bound water increased by 11.30%-12.52%, resulting in stronger water-solid interaction. The results of laser confocal microscopy (CLSM) proved that a strengthened gluten network (protein percentage area ≥ 40.28%; junction density ≥ 10.96 × 10-4) appeared. Therefore, appropriate precooking treatment could effectively improve the sensory quality and tensile properties of ARNs by enhancing the tightly bound water ratio and strengthening the gluten network.
Collapse
Affiliation(s)
- Xin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengying Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; School of Food Science and Biology, Hebei University of Science and Technology, Hebei 050018,China
| | - Qiaozhen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Runrun Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
30
|
Li G, Lan N, Huang Y, Mo C, Wang Q, Wu C, Wang Y. Preparation and Characterization of Gluten/SDS/Chitosan Composite Hydrogel Based on Hydrophobic and Electrostatic Interactions. J Funct Biomater 2023; 14:jfb14040222. [PMID: 37103311 PMCID: PMC10146719 DOI: 10.3390/jfb14040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite hydrogels by electrostatic and hydrophobic interactions. Specifically, gluten is modified by SDS to give it a negatively charged surface, and then it conjugates with positively charged chitosan to form the hydrogel. In addition, the composite formative process, surface morphology, secondary network structure, rheological property, thermal stability, and cytotoxicity are investigated. Moreover, this work demonstrates that the change can occur in surface hydrophobicity caused by the pH-eading influence of hydrogen bonds and polypeptide chains. Meanwhile, the reversible non-covalent bonding in the networks is beneficial to improving the stability of the hydrogels, which shows a prominent prospect in biomedical engineering.
Collapse
Affiliation(s)
- Guangfeng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Ni Lan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Yanling Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chou Mo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiaoli Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chaoxi Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510642, China
| |
Collapse
|
31
|
Wang G, Qu X, Li D, Yang R, Gu Z, Jiang D, Wang P. Enhancing the technofunctionality of γ-aminobutyric acid enriched germinated wheat by modification of arabinoxylan, gluten proteins and liquid lamella of dough. Food Chem 2023; 404:134523. [PMID: 36228476 DOI: 10.1016/j.foodchem.2022.134523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
To enhance the technofunctionality of germinated wheat enriched with γ-aminobutyric acid, xylanase (Xyn) and glucose oxidase (Gox) were incorporated with emphasis on modifying the key components. Combination of Xyn and Gox enhanced steamed bread quality with optimum loaf volume and textural property. Continuous and dense gluten network was facilitated and improved viscoelasticity of dough. Water solubility of arabinoxylan (AX) enhanced with Xyn and the molecular weight was more homogeneous distributed throughout bread making process with Xyn and Gox. Polymerization behavior of α-/γ-gliadin and glutenin was suppressed in steamed bread, while incorporation of AX to insoluble proteins was enhanced by enzymes. In addition, the promoted formation of high molecular weight glycoprotein in the liquid lamella of dough enhanced the thermal stability of foams and contribute to superior quality of steamed bread. Results demonstrated that germinated wheat could be exploited as a functional ingredient with desirable technofunctionality by modification of the components.
Collapse
Affiliation(s)
- Guangzheng Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xu Qu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
32
|
Ying R, Zhou T, Xie H, Huang M. Synergistic effect of arabinoxylan and (1,3)(1,4)-β-glucan reduces the starch hydrolysis rate in wheat flour. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
33
|
Compound treatment of thiolated citrus high-methoxyl pectin and sodium phosphate dibasic anhydrous improved gluten network structure. Food Chem 2023; 404:134770. [DOI: 10.1016/j.foodchem.2022.134770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
34
|
Effect of hydrocolloids on gluten proteins, dough, and flour products: A review. Food Res Int 2023; 164:112292. [PMID: 36737896 DOI: 10.1016/j.foodres.2022.112292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrocolloids are among the most common components in the food industry, which are used for thickening, gel formation, emulsification, and stabilization. Previous studies have also found that hydrocolloids can affect the structures and properties of gluten proteins, dough, and flour products. In this review, hydrocolloids were separated into three categories: anionic, nonionic, and other hydrocolloids, and reviewed the effects of common hydrocolloids on gluten proteins, dough, and flour products. Hydrocolloids can affect the structures and properties of gluten proteins through gluten-hydrocolloids interaction, secondary structures, disulfide bonds, environment of aromatic amino acids, and chemical bonds. The properties of dough are affected by rheological, fermentation, and thermomechanical properties. Hydrocolloids are widely used in bread, Chinese steamed bread, noodles, yellow layer cake, and so on, which mainly affect their appearance, texture, and aging speed. This comprehensive review provides a scientific guide for the development and utilization of hydrocolloids and their applications in flour products, and provides a theoretical basis for improving the processing characteristics of products.
Collapse
|
35
|
Li C, Tilley M, Chen R, Siliveru K, Li Y. Effect of bran particle size on rheology properties and baking quality of whole wheat flour from four different varieties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Zhao PH, Hou YC, Wang Z, Liao AM, Pan L, Zhang J, Dong YQ, Hu ZY, Huang JH, Ou XQ. Effect of fermentation on structural properties and antioxidant activity of wheat gluten by Bacillus subtilis. Front Nutr 2023; 10:1116982. [PMID: 36908923 PMCID: PMC9998043 DOI: 10.3389/fnut.2023.1116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Bacillus subtilis has been extensively studied for its ability to inhibit the growth of harmful microorganisms and its high protease activity. In this study, Bacillus subtilis was used to ferment gluten and assess the effects of the fermentation process on the physicochemical, microstructure and antioxidant properties of gluten. The results of Fourier infrared spectroscopy (FT-IR) and circular chromatography (CD) showed a significant decrease in the content of α-helix structures and a significant increase in the content of β-sheet structures in gluten after fermentation (p < 0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that glutenin was degraded into small molecular peptides with a molecular weight of less than 26 kDa after 24 h of fermentation; meanwhile, the fermentation process significantly increased the free amino acid content of the samples (p < 0.05), reaching 1923.38 μg/mL at 120 h of fermentation, which was 39.46 times higher than that at 24 h of fermentation (p < 0.05). In addition, the fermented back gluten has higher free radical scavenging activity and iron reduction capacity. Therefore, fermented gluten may be used as a functional food to alleviate oxidative stress. This study provides a reference for the high-value application of gluten.
Collapse
Affiliation(s)
- Peng-Hui Zhao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yin-Chen Hou
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Ai-Mei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jie Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yu-Qi Dong
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhe-Yuan Hu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ji-Hong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou, China.,State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China.,School of Food and Pharmacy, Xuchang University, Xuchang, China
| | - Xing-Qi Ou
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
37
|
Lv Y, Ma S, Yan J, Sun B, Wang X. Effect of Heat–Moisture Treatment on the Physicochemical Properties, Structure, Morphology, and Starch Digestibility of Highland Barley (Hordeum vulgare L. var. nudum Hook. f) Flour. Foods 2022; 11:foods11213511. [PMID: 36360123 PMCID: PMC9659211 DOI: 10.3390/foods11213511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
This study modified native highland barley (HB) flour by heat–moisture treatment (HMT) at different temperatures (90, 110, and 130 °C) and moisture contents (15%, 25%, and 35%). The effects of the treatment on the pasting, thermal, rheological, structural, and morphological properties of the native and HMT HB flour were evaluated. The results showed that HMT at 90 °C and 25% moisture content induced the highest pasting viscosity (3626–5147 cPa) and final viscosity (3734–5384 cPa). In all conditions HMT increased gelatinization temperature (To, 55.77–73.72 °C; Tp, 60.47–80.69 °C; Tc, 66.16–91.71 °C) but decreased gelatinization enthalpy (6.41–0.43 J/g) in the HMT HB flour compared with that in the native HB flour. The HB flour treated at 15% moisture content had a higher storage modulus and loss modulus than native HB flour, indicating that HMT (moisture content, 15%, 25%, and 35%) favored the strengthening of the HB flour gels. X-ray diffraction and Fourier-transform infrared spectroscopy results showed that HMT HB flour retained the characteristics of an A-type crystal structure with an increased orderly structure of starch, while the relative crystallinity could be increased from 28.52% to 41.32%. The aggregation of starch granules and the denaturation of proteins were observed after HMT, with additional breakage of the starch granule surface as the moisture content increased. HMT could increase the resistant starch content from 24.77% to 33.40%, but it also led to an increase in the rapidly digestible starch content to 85.30% with the increase in moisture content and heating temperature. These results might promote the application of HMT technology in modifying HB flour.
Collapse
|
38
|
Improving the property of a reproducible bioplastic film of glutenin and its application in retarding senescence of postharvest Agaricus bisporus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Sun J, Si X, Li T, Zhao J, Qian H, Li Y, Zhang H, Qi X, Wang L. The Influence of Water-Unextractable Arabinoxylan and Its Hydrolysates on the Aggregation and Structure of Gluten Proteins. Front Nutr 2022; 9:877135. [PMID: 35464022 PMCID: PMC9033236 DOI: 10.3389/fnut.2022.877135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the influence of water-unextractable arabinoxylan (WUAX) and its hydrolysates on the aggregation and structure of gluten proteins and reveal the underlying mechanism. In this work, the WUAX was treated with enzymatic hydrolysis and the changes of their molecular weights and structures were analyzed. Meanwhile, the conformation and aggregation of gluten were determined by reversed-phase HPLC, FT-Raman spectroscopy, and confocal laser scanning microscopy. The results showed that the extra WUAX could impair the formation of high Mw glutenin subunits, and the enzymatic hydrolysis arabinoxylan (EAX) could induce the aggregation of gluten subunits. And, the gluten microstructure was destroyed by WUAX and improved by EAX. Besides, the interactions of WUAX and EAX with gluten molecules were different. In summary, these results indicated that enzymatic hydrolysis changed the physicochemical properties of arabinoxylan and affected the interaction between arabinoxylan and gluten proteins.
Collapse
Affiliation(s)
- Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Xiaojing Si
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- *Correspondence: Li Wang,
| |
Collapse
|
40
|
Wang X, Liang Y, Wang Q, Zhang X, Wang J. Effect of low-sodium salt on the physicochemical and rheological properties of wheat flour doughs and their respective gluten. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
A Systematic Comparison of the Intrinsic Properties of Wheat and Oat Bran Fractions and Their Effects on Dough and Bread Properties: Elucidation of Chemical Mechanisms, Water Binding, and Steric Hindrance. Foods 2021; 10:foods10102311. [PMID: 34681360 PMCID: PMC8534771 DOI: 10.3390/foods10102311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed at elucidating the contribution of chemical interactions, water binding, and steric hindrance on the effect of wheat and oat brans and of their fractions, i.e., soluble and insoluble, on dough and bread properties. For such purpose, an inert filler, i.e., glass beads of comparable particle size and with no water binding capacity and moisture sorption properties, was also studied. The glass beads provided breads most similar to the control, indicating the limited role of steric hindrance. Brans and bran fractions showed distinct compositional and physical properties. The soluble fraction from oat bran, rich in β-glucan, was less hygroscopic than the wheat counterpart and could bind more water, resulting in larger detrimental effects on bread quality. The β-glucan content showed a prevalent role in affecting gluten development, the thermo-setting behaviour of the dough, and crumb texture, i.e., cohesiveness and resilience. Overall, the comparison between the two brans and their fractions indicated that the interplay between water binding, mainly provided by the insoluble fraction, and the plasticizing properties of the soluble bran fraction controlled the effects on bread volume and texture. From a compositional standpoint, β-glucan content was a determining factor that discriminated the effects of wheat and oat brans.
Collapse
|
42
|
Yao H, Wang Y, Yin J, Nie S, Xie M. Isolation, Physicochemical Properties, and Structural Characteristics of Arabinoxylan from Hull-Less Barley. Molecules 2021; 26:3026. [PMID: 34069493 PMCID: PMC8161004 DOI: 10.3390/molecules26103026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Arabinoxylan (HBAX-60) was fractioned from alkaline-extracted arabinoxylan (HBAX) in the whole grain of hull-less barley (Hordeum vulgare L. var. nudum Hook. f. Poaceae) by 60% ethanol precipitation, which was studied for physicochemical properties and structure elucidation. Highly purified HBAX-60 mainly composed of arabinose (40.7%) and xylose (59.3%) was created. The methylation and NMR analysis of HBAX-60 indicated that a low-branched β-(1→4)-linked xylan backbone possessed un-substituted (1,4-linked β-Xylp, 36.2%), mono-substituted (β-1,3,4-linked Xylp, 5.9%), and di-substituted (1,2,3,4-linked β-Xylp, 12.1%) xylose units as the main chains, though other residues (α-Araf-(1→, β-Xylp-(1→, α-Araf-(1→3)-α-Araf-(1→ or β-Xylp-(1→3)-α-Araf-(1→) were also determined. Additionally, HBAX-60 exhibited random coil conformation in a 0.1 M NaNO3 solution. This work provides the properties and structural basis of the hull-less barley-derived arabinoxylan, which facilitates further research for exploring the structure-function relationship and application of arabinoxylan from hull-less barley.
Collapse
Affiliation(s)
- Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (H.Y.); (Y.W.); (J.Y.); (S.N.)
| | - Yuxiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (H.Y.); (Y.W.); (J.Y.); (S.N.)
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (H.Y.); (Y.W.); (J.Y.); (S.N.)
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (H.Y.); (Y.W.); (J.Y.); (S.N.)
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (H.Y.); (Y.W.); (J.Y.); (S.N.)
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|