1
|
Ahuja V, Chauhan S, Purewal SS, Mehariya S, Patel AK, Kumar G, Megharaj M, Yang YH, Bhatia SK. Microbial alchemy: upcycling of brewery spent grains into high-value products through fermentation. Crit Rev Biotechnol 2024; 44:1367-1385. [PMID: 38163946 DOI: 10.1080/07388551.2023.2286430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.
Collapse
Affiliation(s)
- Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Sukhvinder Singh Purewal
- University Institute of Biotechnology, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Norway
| | - Mallavarapu Megharaj
- Global Centre for Environmental remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
| | - Yung-Hun Yang
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Institute for Ubiquitous Information Technology and Applications, Seoul, Republic of Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Gomez-Contreras PA, Obando C, de Freitas PAV, Martin-Perez L, Chiralt A, Gonzalez-Martinez C. Applying Subcritical Water Extraction to Obtain Bioactive Compounds and Cellulose Fibers from Brewer Spent Grains. Molecules 2024; 29:4897. [PMID: 39459265 PMCID: PMC11510227 DOI: 10.3390/molecules29204897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Of the three types of waste generated in beer processing, brewer's spent grain (BSG) is the most abundant and has a high potential for valorization. In this work, defatted BSG (DB) was subjected to an extraction process with subcritical water at different temperatures to obtain extracts rich in phenols and the cellulosic fractions, which were also purified by using hydrogen peroxide (H2O2). The results showed that the dry extracts obtained at 170 °C were richer in phenolics (24 mg Gallic Acid Equivalent (GAE) g-1 DB), but with lower antioxidant capacity (71 mg DB·mg-1 2,2-diphenyl-1-pikryl-hydrazyl). This extract also showed the highest antibacterial potential against L. innocua (80 mg·mL-1) and E. coli (140 mg·mL-1) than those obtained at lower temperatures. The purification of cellulose from the treated residues, using hydrogen peroxide, revealed that DB is a limited source of cellulose material since the bleached fractions showed low yields (20-25%) and low cellulose purity (42-71%), even after four bleaching cycles (1 h) at pH 12 and 8% H2O2. Despite this, the subcritical water extraction method highlights the potential of a simple process as a technological option to convert underutilized side streams like beer bagasse into added-value, potential ingredients for innovative food and pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Chelo Gonzalez-Martinez
- Institute of Food Engineering FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (P.A.G.-C.); (C.O.); (P.A.V.d.F.); (L.M.-P.); (A.C.)
| |
Collapse
|
3
|
Tadesse SA, Emire SA, Barea P, Illera AE, Melgosa R, Beltrán S, Sanz MT. Potential of Subcritical Water Hydrolysis to Valorize Low-Valued Ray-Finned Fish ( Labeobarbus nedgia): Effects of Hydrolysis Temperature and Pressurization Agent. Foods 2024; 13:1462. [PMID: 38790762 PMCID: PMC11119829 DOI: 10.3390/foods13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Subcritical water (SCW) hydrolysis was applied to valorize the low-valued ray-finned fish (Labeobarbus nedgia) into valuable protein hydrolysates, employing N2 and CO2 as pressurization agents at varying temperatures (140, 160, 180, and 200 °C). The degree of hydrolysis (DH) and total free amino acid content increased with temperature for both pressurizing agents. The highest DH (54.5 ± 0.4%) and total free amino acid content (210 ± 1 mg/gprot) were observed at 200 °C when CO2 gas was used as the pressurizing agent. Predominantly, glycine and alanine were released for both pressurizing agents. The antioxidant activity, evaluated through three different assays, increased with temperature and was found to be the highest at 200 °C. This study illustrated the advantages of the intensified SCW technology by using CO2 as a pressurization agent in valorizing low-valued ray-finned fish (Labeobarbus nedgia), as animal residue rich in proteins, for the production of valuable protein hydrolysates with a high fraction of valuable free amino acids, which could offer potential applications as a functional ingredient in the food industry.
Collapse
Affiliation(s)
- Solomon Abebaw Tadesse
- Department of Food Engineering, School of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa P.O. Box 385, Ethiopia; (S.A.T.); (S.A.E.)
- Department of Food Science and Applied Nutrition, College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
| | - Shimelis Admassu Emire
- Department of Food Engineering, School of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa P.O. Box 385, Ethiopia; (S.A.T.); (S.A.E.)
| | - Pedro Barea
- Chemical Engineering Section, Department of Biotechnology and Food Science, University of Burgos, 09001 Burgos, Spain; (P.B.); (A.E.I.); (R.M.); (S.B.)
| | - Alba Ester Illera
- Chemical Engineering Section, Department of Biotechnology and Food Science, University of Burgos, 09001 Burgos, Spain; (P.B.); (A.E.I.); (R.M.); (S.B.)
| | - Rodrigo Melgosa
- Chemical Engineering Section, Department of Biotechnology and Food Science, University of Burgos, 09001 Burgos, Spain; (P.B.); (A.E.I.); (R.M.); (S.B.)
| | - Sagrario Beltrán
- Chemical Engineering Section, Department of Biotechnology and Food Science, University of Burgos, 09001 Burgos, Spain; (P.B.); (A.E.I.); (R.M.); (S.B.)
| | - María Teresa Sanz
- Chemical Engineering Section, Department of Biotechnology and Food Science, University of Burgos, 09001 Burgos, Spain; (P.B.); (A.E.I.); (R.M.); (S.B.)
| |
Collapse
|
4
|
Hans N, Solanki D, Nagpal T, Amir H, Naik S, Malik A. Process optimization and characterization of hydrolysate from underutilized brown macroalgae (Padina tetrastromatica) after fucoidan extraction through subcritical water hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119497. [PMID: 37951112 DOI: 10.1016/j.jenvman.2023.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
The growing demand for macroalgal biomass as a source of proteins, peptides, and amino acids is garnering attention for their biological and functional properties. This study depicts the use of emerging green techniques, i.e. subcritical water, to hydrolyze protein from Padina tetrastromatica. The biomass was treated with subcritical water at varying temperatures between 100 and 220 °C for 10-40 min at a biomass to water proportion of 1:50 (w/v) and pressure of 4.0 MPa. The optimum conditions for recovering the maximum protein (127.2 ± 1.1 mg g-1), free amino acids (58.4 ± 1.0 mg g-1), highest degree of hydrolysis (58.8 ± 1.2 %) and low molecular weight peptides (<650 Da) were found to be 220 °C for 10 min. The amino acid profiling of the hydrolysate revealed that it contains 45 % essential amino acids, with the highest concentration of methionine (0.18 %), isoleucine (0.12 %) and leucine (0.10 %). It was found that the hydrolysate contains phenolics (23.9 ± 1.4 mg GAE g-1) and flavonoids (1.23 ± 0.1 mg QE g-1), which are largely responsible for antioxidant activity. The hydrolysate effectively inhibits acetylcholinesterase and α-amylase in vitro, with IC50 values of 17.9 ± 0.1 mg mL-1 and 16.0 ± 0.5 %, respectively, which can help prevent Alzheimer's disease and diabetes mellitus. Consequently, this study reveals that utilizing eco-friendly subcritical water hydrolysis method, 79 % of the protein was recovered from P. tetrastromatica, which might be an effective source of bioactive peptides in various nutraceutical, pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Divyang Solanki
- School of Agriculture and Food Science, The University of Queensland, Brisbane, 4072, Australia.
| | - Tanya Nagpal
- Food Customization and Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Hirah Amir
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
5
|
Marcet I, Carpintero M, Rendueles M, Díaz M. Antioxidant Activity of Egg Yolk Protein Hydrolysates Obtained by Enzymatic and Sub-Critical Water Hydrolysis. Molecules 2023; 28:7836. [PMID: 38067564 PMCID: PMC10708546 DOI: 10.3390/molecules28237836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Obtaining peptides with antioxidant properties by enzymatic hydrolysis has been widely described; however, the use of non-enzymatic methods to obtain peptides with antioxidant capacities has been poorly investigated. In this study, non-soluble proteins obtained from delipidated egg yolk granules were hydrolyzed with trypsin, and with a non-enzymatic method using sub-critical water hydrolysis under a non-oxidizing (nitrogen) and oxidizing (oxygen) atmosphere. The effect of the sub-critical water hydrolysis on the amino acids' composition of the hydrolysates was assessed. Furthermore, the antioxidant capacities of the hydrolysates were evaluated using the ABTS•+ scavenging assay, the DPPH radical scavenging activity assay, and by measuring the reducing power of the peptides, the peptides' ferrous ion chelating capacities, and the antioxidant effect of the peptides on beef homogenates. The hydrolysate obtained by sub-critical water hydrolysis under a nitrogen stream showed similar or better results in the antioxidant tests than those obtained using trypsin hydrolysis, except in the ferrous chelating capacity, where the trypsin hydrolysate showed the best performance. The oxidizing environment promoted by the oxygen in the other sub-critical water hydrolysis method tested produced the peptides with the lowest antioxidant capacities, due to changes in the primary structure of the peptides. These results suggest that the sub-critical water hydrolysis method under a nitrogen stream, in comparison with the enzymatic hydrolysis, is a reliable method to obtain peptides with good antioxidant capacities.
Collapse
Affiliation(s)
| | | | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julian Clavería 8, 33006 Oviedo, Spain; (I.M.); (M.C.); (M.D.)
| | | |
Collapse
|
6
|
Rodriguez LM, Camina JL, Borroni V, Pérez EE. Protein recovery from brewery solid wastes. Food Chem 2023; 407:134810. [PMID: 36565578 DOI: 10.1016/j.foodchem.2022.134810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Brewing produces significant amounts of solid waste during the process: spent cereals (BSG), hops and spent yeast (BSY). These residues are sustainable sources of valuable nutrients and functional compounds like proteins, polyphenols, and polysaccharides. This review describes the three solid wastes and the different extraction techniques for protein recovery. The protein obtained can be used as a new source of non-animal protein or as a functional and bioactive ingredient. Particular attention was given to methods using conventional technologies (alkaline and ethanolic extraction) and more innovative approaches (enzymes, microwaves, ultrasound, pressurized liquids and sub-critical water extraction). Although the BSG is used in some industrial applications, studies in operating conditions, cost, energy efficiency, and product performance are still required to consolidate these solid wastes as a source of non-animal protein. The application of proteins is also an important question when choosing the extraction method.
Collapse
Affiliation(s)
- Luciana M Rodriguez
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253. Primer Piso - Ala C, 8000 Bahía Blanca, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina.
| | - Julia L Camina
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología - ITPN (UBA-CONICET), Facultad de Arquitectura, Diseño y Urbanismo (FADU), Universidad de Buenos Aires (UBA), Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Ethel E Pérez
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253. Primer Piso - Ala C, 8000 Bahía Blanca, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
7
|
Devnani B, Moran GC, Grossmann L. Extraction, Composition, Functionality, and Utilization of Brewer’s Spent Grain Protein in Food Formulations. Foods 2023; 12:foods12071543. [PMID: 37048364 PMCID: PMC10093925 DOI: 10.3390/foods12071543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
In recent years, brewer’s spent grain (BSG) has gained attention as a plant-based protein source because it occurs in large quantities as a by-product of beer brewing. BSG can contribute to future food requirements and support the development of a circular economy. In light of the dynamic developments in this area, this review aims to understand the proteins present in BSG, and the effect of extraction techniques and conditions on the composition, physicochemical, and techno-functional properties of the obtained protein extracts. The water-insoluble hordeins and glutelins form the major protein fractions in BSG. Depending on the beer brewing process, the extraction technique, and conditions, the BSG protein isolates predominantly contain B, C, and ϒ hordeins, and exhibit a broad molecular weight distribution ranging between <5 kDa and >250 kDa. While the BSG isolates obtained through chemical extraction methods seem promising to obtain gelled food products, physical and enzymatic modifications of BSG proteins through ultrasound and proteolytic hydrolysis offer an effective way to produce soluble and functional protein isolates with good emulsifying and foaming capabilities. Specifically tailored protein extracts to suit different applications can thus be obtained from BSG, highlighting that it is a highly valuable protein source.
Collapse
Affiliation(s)
- Bhanu Devnani
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Galo Chuchuca Moran
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Trigueros E, Ramos C, Alonso-Riaño P, Beltrán S, Sanz MT. Subcritical Water Treatment for Valorization of the Red Algae Residue after Agar Extraction: Scale-Up from Laboratory to Pilot Plant. Ind Eng Chem Res 2023; 62:3503-3514. [PMID: 36880853 PMCID: PMC9983305 DOI: 10.1021/acs.iecr.2c04132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
The feasibility of industrial subcritical water treatment on Gelidium sesquipedale residue through scaling up from the lab to pilot system in discontinuous mode (geometric scale-up factor = 50), at 130 and 175 °C (5% biomass), was investigated. The maximum volumes of the reactors were 500 mL at the lab-scale and 5 L at the pilot-scale system. At 175 °C, faster extraction/hydrolysis was observed for the pilot plant, but maximum yields were similar: 71.4 and 78.6% for galactans, 9.8 and 10.4% for glucans, and 92.7 and 86.1% for arabinans in pilot scale and lab scale, respectively, while the yields for proteins accounted nearly 40%. The highest yields for amino acids were observed for the smallest ones, while lower yields were determined for polar amino acids. The total phenolic content and color intensity progressively increased along time at lab scale, while a plateau was reached at the pilot level. Lower extraction yields but reproducible results were obtained at 130 °C. Finally, the pilot scale was essayed at a higher biomass loading (15%), and successful results were obtained, supporting the feasibility of the scaling-up process.
Collapse
Affiliation(s)
- Esther Trigueros
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - Cipriano Ramos
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - Patricia Alonso-Riaño
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - Sagrario Beltrán
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, Burgos 09001, Spain
| | - María Teresa Sanz
- Department of Biotechnology and Food Science, Chemical Engineering Division, University of Burgos, Plza. Misael Bañuelos s/n, Burgos 09001, Spain
| |
Collapse
|
9
|
Production of small peptides and low molecular weight amino acids by subcritical water hydrolysis from fish meal: effect of pressurization agent and comparison with enzymatic hydrolysis. Food Chem 2023; 418:135925. [PMID: 37003201 DOI: 10.1016/j.foodchem.2023.135925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The hydrolysis of the water-soluble protein (WSP) fraction from tuna fish meal was evaluated by subcritical water (subW) by using N2 and CO2 as different pressurization agents in the temperature range from 140 to 180 °C. For both gases, the amino group release increased by increasing working temperature while the Lowry response decreased due to production of smaller-size peptides and free amino acids. The free amino acid content was higher with CO2 than with N2. At 180 °C, 344 ± 5 and 275 ± 3 mg of free amino acids per g of WSP were released, respectively; although, in both systems the smallest molecular weight amino acids, glycine and alanine, were preferentially released. The free amino acids content obtained by enzymatic hydrolysis with commercial proteases Alcalase and Novozym was much lower with the highest hydrolysis yield determined for histidine. These results have been supported by size exclusion chromatography analysis.
Collapse
|
10
|
Subcritical Water as Pretreatment Technique for Bioethanol Production from Brewer's Spent Grain within a Biorefinery Concept. Polymers (Basel) 2022; 14:polym14235218. [PMID: 36501611 PMCID: PMC9738787 DOI: 10.3390/polym14235218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Bioeconomy and environmental issues envisage industrial by-products such as Brewer's spent grain (BSG) as renewable resources for their recycling and reuse within a biorefinery concept. This study aimed to investigate the production of bioethanol from subcritical water (subW) pretreated BSG, following the conversion of the BSG biopolymers cellulose and hemicelluloses. The subW pretreatment was performed in a batch reactor at 174 °C, during 60 min and 5% (w/v) of dry BSG charge. The behavior of BSG biopolymers under subW pretreatment was monitored by evaluating the chemical composition of the liquid and solid streams and the chemical and structural changes caused in the solid residues by scanning electron microscope (SEM), CHNS elemental analysis and water retention value (WRV). The production of bioethanol from subW-pretreated BSG was assessed by separate hydrolysis and fermentation (SHF) and also by simultaneous saccharification and fermentation (SSF) by using the enzymatic cocktail Celluclast 1.5 L (40 FPU/gsolids) and the yeast Ethanol Red®. The higher bioethanol productivity (1.073 g∙L-1∙h-1) and concentration (32.18 g/L) were achieved by SSF with higher solids' loading (25%) and following a fed-batch strategy. These results suggest that subcritical water pretreatment is a promising technology for the valorization of BSG as a feedstock for second-generation bioethanol production.
Collapse
|
11
|
Filtration of subcritical water hydrolysates from red macroalgae byproducts with ultraporous ceramic membranes for oligosaccharide and peptide fractionation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Sganzerla WG, Viganó J, Castro LEN, Maciel-Silva FW, Rostagno MA, Mussatto SI, Forster-Carneiro T. Recovery of sugars and amino acids from brewers' spent grains using subcritical water hydrolysis in a single and two sequential semi-continuous flow-through reactors. Food Res Int 2022; 157:111470. [PMID: 35761701 DOI: 10.1016/j.foodres.2022.111470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
Abstract
This study evaluated the subcritical water hydrolysis (SWH) of brewer's spent grains (BSG) to obtain sugars and amino acids. The experimental conditions investigated the hydrolysis of BSG in a single flow-through reactor and in two sequential reactors operated in semi-continuous mode. The hydrolysis experiments were carried out for 120 min at 15 MPa, 5 mL water min-1, at different temperatures (80 - 180 °C) and using an S/F of 20 and 10 g solvent g-1 BSG, for the single and two sequential reactors, respectively. The highest monosaccharide yields were obtained at 180 °C in a single reactor (47.76 mg g-1 carbohydrates). With these operational conditions, the hydrolysate presented xylose (0.477 mg mL-1) and arabinose (1.039 mg mL-1) as main sugars, while low contents of furfural (310.7 µg mL-1), 5-hydroxymethylfurfural (<1 mg L-1), and organic acids (0.343 mg mL-1) were obtained. The yield of proteins at 180 °C in a process with a single reactor was 43.62 mg amino acids g-1 proteins, where tryptophan (215.55 µg mL-1), aspartic acid (123.35 µg mL-1), valine (64.35 µg mL-1), lysine (16.55 µg mL-1), and glycine (16.1 µg mL-1) were the main amino acids recovered in the hydrolysate. In conclusion, SWH pretreatment is a promising technology to recover bio-based compounds from BSG; however, further studies are still needed to increase the yield of bioproducts from lignocellulosic biomass to explore two sequential reactors.
Collapse
Affiliation(s)
| | - Juliane Viganó
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | | | - Mauricio A Rostagno
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, SP, Brazil.
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kongens Lyngby, Denmark
| | - Tânia Forster-Carneiro
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
13
|
Valorization of brewer’s spent grain by consecutive supercritical carbon dioxide extraction and enzymatic hydrolysis. Food Chem 2022; 396:133493. [DOI: 10.1016/j.foodchem.2022.133493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
|
14
|
Feng L, Yang Y, Liu SS, Tan DY, Tan C, Yu AN. The study of volatile products formation from the self-degradation of l-ascorbic acid in hot compressed water. Food Chem 2022; 371:131155. [PMID: 34571410 DOI: 10.1016/j.foodchem.2021.131155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
The volatile products (VPs) formation from the self-degradation of l-ascorbic acid (ASA) in hot compressed water (HCW) was investigated with different reaction parameters, such as time, temperature, pH and ratio of ASA/water. The results showed that various reaction parameters had varying degrees of influence on the reaction, while the most significant effect factor was the initial pH of the solution. Furfural was the major product under acidic conditions, while furan derivatives were the main products under alkaline conditions. The above results showed that pH played the dominant role for yields and distribution of VPs in HCW. In the HCW system, the yields and classifications of VPs and conversion rate of ASA were not the same as those of VPs and ASA under traditional conditions. Based on the experimental results, the possible formation mechanism of VPs from the self-degradation of ASA was proposed in HCW.
Collapse
Affiliation(s)
- Liang Feng
- School of Chemistry & Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China; Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Yan Yang
- School of Chemistry & Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China; Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei 445000, China.
| | - Shuang-Shuang Liu
- School of Chemistry & Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China; Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Ding-Yun Tan
- School of Chemistry & Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China; Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Chun Tan
- School of Chemistry & Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China; Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei 445000, China
| | - Ai-Nong Yu
- School of Chemistry & Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, China; Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, Hubei 445000, China
| |
Collapse
|
15
|
Spent Grain from Malt Whisky: Assessment of the Phenolic Compounds. Molecules 2021; 26:molecules26113236. [PMID: 34072250 PMCID: PMC8199313 DOI: 10.3390/molecules26113236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
In order to extract antioxidant phenolic compounds from spent grain (SG) two extraction methods were studied: the ultrasound-assisted method (US) and the Ultra-Turrax method (high stirring rate) (UT). Liquid to solid ratios, solvent concentration, time, and temperature/stirring rate were optimized. Spent grain extracts were analyzed for their total phenol content (TPC) (0.62 to 1.76 mg GAE/g SG DW for Ultra-Turrax pretreatment, and 0.57 to 2.11 mg GAE/g SG DW for ultrasound-assisted pretreatment), total flavonoid content (TFC) (0.6 to 1.67 mg QE/g SG DW for UT, and 0.5 to 1.63 mg QE/g SG DW for US), and antioxidant activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical (25.88% to 79.58% for UT, and 27.49% to 78.30% for UT). TPC was greater at a high stirring rate and high exposure time up to a certain extent for the Ultra-Turrax method, and at a high temperature for the ultrasound-assisted method. P-coumaric acid (20.4 ± 1.72 mg/100 SG DW for UT, and 14.0 ± 1.14 mg/100 SG DW for US) accounted for the majority of the phenolic found compounds, followed by rosmarinic (6.5 ± 0.96 mg/100 SG DW for UT, and 4.0 ± 0.76 mg/100 SG DW for US), chlorogenic (5.4 ± 1.1 mg/100 SG DW for UT, and non-detectable for US), and vanillic acids (3.1 ± 0.8 mg/100 SG DW for UT, and 10.0 ± 1.03 mg/100 SG DW for US) were found in lower quantities. Protocatechuic (0.7 ± 0.05 mg/100 SG DW for UT, and non-detectable for US), 4-hydroxy benzoic (1.1 ± 0.06 mg/100 SG DW for UT, and non-detectable for US), and caffeic acids (0.7 ± 0.03 mg/100 SG DW for UT, and non-detectable for US) were present in very small amounts. Ultrasound-assisted and Ultra-Turrax pretreatments were demonstrated to be efficient methods to recover these value-added compounds.
Collapse
|