1
|
Lei X, Na B, Zhou T, Qian Y, Xie Y, Zheng Y, Cheng Q, Li P, Chen C, Sun H. Effects of Dried Tea Residues of Different Processing Techniques on the Nutritional Parameters, Fermentation Quality, and Bacterial Structure of Silaged Alfalfa. Microorganisms 2024; 12:889. [PMID: 38792719 PMCID: PMC11123680 DOI: 10.3390/microorganisms12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The effects of dried tea residues on the nutritional parameters and fermentation quality, microbial community, and in vitro digestibility of alfalfa silage were investigated. In this study, dried tea residues generated from five different processing techniques (green tea, G; black tea, B; white tea, W; Pu'er raw tea, Z; Pu'er ripe tea, D) were added at two addition levels (5% and 10% fresh weight (FW)) to alfalfa and fermented for 90 days. The results showed that the tea residues increased the crude protein (CP) content (Z10: 23.85%), true protein nitrogen (TPN) content, DPPH, and ABST radical scavenging capacity, total antioxidant capacity (T-AOC), and in vitro dry matter digestibility (IVDMD) of the alfalfa silage. Moreover, the pH, ammonia-N (NH3-N) content, and acetic acid (AA) content decreased (p < 0.05). The effects of tea residues were promoted on these indicators with increasing tea residue addition. In addition, this study revealed that the influence of dried tea residues on the nutritional quality of alfalfa silage was greater than that on fermentation quality. Based on the nutrient composition, the addition of B or G to alfalfa silage can improve its silage quality, and these tea byproducts have the potential to be used as silage additives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.L.); (B.N.); (T.Z.); (Y.Q.); (Y.X.); (Y.Z.); (Q.C.); (P.L.); (C.C.)
| |
Collapse
|
2
|
Antonino C, Difonzo G, Faccia M, Caponio F. Effect of edible coatings and films enriched with plant extracts and essential oils on the preservation of animal-derived foods. J Food Sci 2024; 89:748-772. [PMID: 38161278 DOI: 10.1111/1750-3841.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Edible coatings and films for food preservation are becoming more popular thanks to their environmentally friendly properties and active ingredient-carrying ability. Their application can be effective in contrasting quality decay by limiting oxidation and deterioration of foods. Many reviews analyze the different compounds with which films and coatings can be created, their characteristics, and the effect when applied to food. However, the possibility of adding plant extracts and essential oils in edible coatings and films to preserve processed animal-derived products has been not exhaustively explored. The aim of this review is to summarize how edible coatings and films enriched with plant extracts (EXs) and essential oils (EOs) influence the physico-chemical and sensory features as well as the shelf-life of cheese, and processed meat and fish. Different studies showed that various EXs and EOs limited both oxidation and microbial growth after processing and during food preservation. Moreover, encapsulation has been found to be a valid technology to improve the solubility and stability of EOs and EXs, limiting strong flavor, controlling the release of bioactive compounds, and maintaining their stability during storage. Overall, the incorporation of EXs and EOs in edible coating and film to preserve processed foods can offer benefits for improving the shelf-life, limiting food losses, and creating a food sustainable chain.
Collapse
Affiliation(s)
- Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Huang Y, He Y, Peng Z, Hu H, Yang M, Pan H, Zhao S, Li Y. Effect of Pu-erh tea pomace on the composition and diversity of cecum microflora in Chahua chicken No. 2. Front Vet Sci 2023; 10:1289546. [PMID: 38099001 PMCID: PMC10720613 DOI: 10.3389/fvets.2023.1289546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Pu-erh tea pomace (PTP), a solid substance after extracting functional substances or steeping tea, is rich in crude protein, and crude fiber, and could be used as considerable bioactive substances in animal production. However, its application as poultry feed and its role in regulating the characteristics of gut microorganisms is unclear. The present study investigated the effects of PTP on growth performance and gut microbes of chicken. A total of 144 Chahua chickens No. 2 were individually housed and divided into three groups which were fed diets containing 0% (CK), 1% PTP (T1), and 2% PTP (T2), respectively. The serum and cecum contents were collected after slaughter for analysis. The results indicated that growth performance and carcass traits were not affected by the PTP content. Serum total triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in the T1 and T2 groups were significantly lower than in the CK group (p < 0.05). The gut microbiota α-diversity in the T2 group was significantly lower than in the CK group (p < 0.05). Based on partial least squares-discriminant analysis (PLS-DA), we observed significant segregation in gut bacterial communities among the groups. At the phylum level, Bacteroidetes and Firmicutes were dominant in the cecum, occupying about 85% of the cecum flora. The relative abundance of Bacteroidetes tended to increase. At the genus level, the relative abundance of Bacteroides is the highest in the CK、T1 and T2 groups. The relative abundances of Bacteroides and Prevotellaceae_UCG-001 microorganisms in the T2 group were significantly higher than in the CK group (p < 0.05). However, the relative abundance of CHKCI001 microorganisms in the T2 group was significantly lower compared to the CK group (p < 0.05). TG content was significantly positively correlated with CHKCI001 relative abundance, and significantly negatively correlated with Prevotellaceae_UCG-001 relative abundance (p < 0.05). Moreover, the LDL-C content was significantly positively correlated with CHKCI001 relative abundance (p < 0.05). In conclusion, PTP could decrease the cholesterol levels in the blood by improving the composition of gut microbiota, which provides a reference for the application of PTP in the poultry industry.
Collapse
Affiliation(s)
- Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongjiang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zeqin Peng
- College of Biotechnology and Engineering, West Yunnan University, Lincang, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongneng Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Wang J, Zhang T, Wan C, Lai Z, Li J, Chen L, Li M. The effect of theabrownins on the amino acid composition and antioxidant properties of hen eggs. Poult Sci 2023; 102:102717. [PMID: 37734359 PMCID: PMC10518584 DOI: 10.1016/j.psj.2023.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 09/23/2023] Open
Abstract
Pu-erh tea theabrownins (TBs) exert beneficial effect on egg quality and antioxidant properties of eggs, but the underlying mechanisms behind this response are unclear. In this study, we investigate the effect of TBs on egg antioxidative activity, amino acid and fatty acid profiles, and the underlying relationship between the TBs and oxidant-sensitive Nrf2 signaling pathway in laying hens. Eighty layers were fed a basal diet (control) and 400 mg/kg of TBs supplemented diet for 12 wk. TBs led to an increase in albumen height and Haugh unit (P < 0.05). The albumen lysine, valine, and tryptophan were higher in layers fed TBs, whereas yolk tryptophan, methionine, vitamin A, and α-tocopherol content were enhanced by TBs (P < 0.05). Eggs albumen and yolk showed higher total antioxidant capacity (T-AOC), reducing power (RP), and the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH), and lower MDA content than those of eggs from the control group (P < 0.05). Also, magnum Nrf2, hemeoxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and Bcl2 expression were up-regulated by TBs, whereas magnum proapoptotic gene (Bax, caspase 3, Cyt C) were down-regulated by TBs (P < 0.05). Our findings suggest that TBs improved egg albumen quality and antioxidant activity, and the Nrf2-ARE pathway were found to be involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhangfeng Lai
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Li
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Luojun Chen
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Maixent JM, Belaiba M, Pons O, Roulleau E, Bouajila J, Zeil JM. Biological Activities and Polyphenol Content of Qi Cha Tea ®, a Functional Beverage of White Tea Containing Botanicals and Dry Botanical Extracts with European Health Claims. PLANTS (BASEL, SWITZERLAND) 2023; 12:3231. [PMID: 37765396 PMCID: PMC10536379 DOI: 10.3390/plants12183231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Infusions of Camellia sinensis leaves have been known for their health benefits. The Bio Concentrate Assets® (ABC) method is a method of enriching organic infusion leaves (from Camellia sinensis) with organic dry and concentrated extracts using organic acacia gum, and its application to white tea has provided Qi cha tea®. In the present study, the content of tea polyphenols and caffeine, and the biochemical properties of Qi cha tea® and its botanical constituents (elderberry, tulsi, Echinacea purpurea, orange peel, lemongrass, and acacia gum) were assessed. Antioxidant and cell viability activities were determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and MTT (3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay in human Caco-2 and HCT-116 cell lines, and ascorbic acid and tamoxifen, respectively. The caffeine and polyphenol composition of Qi cha tea® was modified with less caffeine and gallic acid and more epigallocatechin gallate (EGCG) than the original white tea. The majority of the tested botanical samples including Qi cha tea® at 50 µg/mL show similar antioxidant activities, with the exception of Echinacea purpurea. The greatest effect was found for white tea. The antioxidant power of the Qi cha tea® (90% at 50 µg/mL for pressurized liquid extraction (PLE) was divided by approximately a factor of two (61% at 50 µg/mL for pressurized liquid extraction products (PLEP)), which corresponds to the 48.3% (mass/mass) white tea original content in the Qi cha tea®. Qi cha tea® shows the lowest cytotoxic activity in the viability of the two cell lines when compared to white tea. The application of the ABC method to Qi cha tea® using various botanicals and dry extract with acacia gum as blinder has allowed the development of a new innovative functional health beverage that complies with European health claims.
Collapse
Affiliation(s)
- Jean Michel Maixent
- Pierre Deniker Clinical Research Unit, Henri Laborit University Hospital, University of Poitiers, F-86000 Poitiers, France;
- Laboratory Impact of Physical Activity, Health (I.A.P.S.) Toulon University, F-83000 Toulon, France;
- School of Sciences, Poitiers University, F-86000 Poitiers, France
| | - Meriam Belaiba
- Laboratoire de Génie Chimique, University Paul Sabatier, CNRS, INPT, UPS, F-31100 Toulouse, France; (M.B.); (J.B.)
| | - Olivier Pons
- Laboratory Impact of Physical Activity, Health (I.A.P.S.) Toulon University, F-83000 Toulon, France;
| | - Enora Roulleau
- Pierre Deniker Clinical Research Unit, Henri Laborit University Hospital, University of Poitiers, F-86000 Poitiers, France;
- School of Sciences, Poitiers University, F-86000 Poitiers, France
- Thés de la Pagode, 4, Avenue Bertie Albrecht, 75008 Paris, France;
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, University Paul Sabatier, CNRS, INPT, UPS, F-31100 Toulouse, France; (M.B.); (J.B.)
| | - Jean-Marc Zeil
- Thés de la Pagode, 4, Avenue Bertie Albrecht, 75008 Paris, France;
| |
Collapse
|
6
|
Rong Y, Xie J, Yuan H, Wang L, Liu F, Deng Y, Jiang Y, Yang Y. Characterization of volatile metabolites in Pu-erh teas with different storage years by combining GC-E-Nose, GC-MS, and GC-IMS. Food Chem X 2023; 18:100693. [PMID: 37397226 PMCID: PMC10314134 DOI: 10.1016/j.fochx.2023.100693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 07/04/2023] Open
Abstract
Storage time is one of the important factors affecting the aroma quality of Pu-erh tea. In this study, the dynamic changes of volatile profiles of Pu-erh teas stored for different years were investigated by combining gas chromatography electronic nose (GC-E-Nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). GC-E-Nose combined with partial least squares-discriminant analysis (PLS-DA) realized the rapid discrimination of Pu-erh tea with different storage time (R2Y = 0.992, Q2 = 0.968). There were 43 and 91 volatile compounds identified by GC-MS and GC-IMS, respectively. A satisfactory discrimination (R2Y = 0.991, and Q2 = 0.966) was achieved by using PLS-DA based on the volatile fingerprints of GC-IMS. Moreover, according to the multivariate analysis of VIP > 1.2 and univariate analysis of p < 0.05, 9 volatile components such as linalool and (E)-2-hexenal were selected as key variables to distinguish Pu-erh teas with different storage years. The results provide theoretical support for the quality control of Pu-erh tea.
Collapse
Affiliation(s)
- Yuting Rong
- Yunnan Shuangjiang Mengku Tea Co., Ltd., Lincang 677000, China
| | - Jialing Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lilei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fuqiao Liu
- Yunnan Shuangjiang Mengku Tea Co., Ltd., Lincang 677000, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
7
|
Chen Y, Liu X, Li Q, Cai X, Wu W, Wu Q, Yuan W, Deng X, Liu Z, Zhao S, Wang B. Integrated genomics and transcriptomics reveal the extreme heavy metal tolerance and adsorption potentiality of Staphylococcus equorum. Int J Biol Macromol 2023; 229:388-400. [PMID: 36592848 DOI: 10.1016/j.ijbiomac.2022.12.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
In this study, we successfully isolated 11 species of cadmium-tolerant bacterium from Pu-erh rhizosphere soil, of which Staphylococcus equorum PU1 showed the highest cadmium tolerance, with a minimum inhibitory concentration (MIC) value of 500 mg/L. The cadmium removal efficiency of PU1 in 400 mg/L cadmium medium reached 58.7 %. Based on the Nanopore PromethION and Illumina NovaSeq platforms, we successfully obtained the complete PU1 genome with a size of 2,705,540 bp, which encoded 2729 genes. We further detected 82 and 44 indel mutations in the PU1 genome compared with the KS1039 and KM1031 genomes from the database. Transcriptional analysis showed that the expression of 11 genes in PU1 increased with increasing cadmium concentrations (from 0 to 200, then to 400 mg/L), which encoded cadmium resistance, cadmium transport, and mercury resistance genes. In addition, some genes showed differential expression patterns with changes in cadmium concentration, including quinone oxidoreductase-like protein, ferrous iron transport protein, and flavohemoprotein. Gene Ontology (GO) functions, including oxidation reduction process and oxidoreductase activity functions, and KEGG pathways, including glycolysis/gluconeogenesis and biosynthesis of secondary metals, were also considered closely related to the extreme cadmium tolerance of PU1. This study provides novel insight into the cadmium tolerance mechanism of bacteria.
Collapse
Affiliation(s)
- Yaping Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, China; College of Plant Protection, Yunnan Agricultural University, Kunming, China; Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaobo Cai
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China; College of Big Data, Yunnan Agricultural University, Kunming, China; Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| | - Wendou Wu
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China; College of Big Data, Yunnan Agricultural University, Kunming, China; Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| | - Qi Wu
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Wenxia Yuan
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Xiujuan Deng
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Zhiwe Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Shengnan Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, China; College of Big Data, Yunnan Agricultural University, Kunming, China; Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China.
| |
Collapse
|
8
|
Yang W, Ren D, Shao H, Zhang X, Li T, Zhang L, Liu L, Zhao Y, Niu P, Yang X. Theabrownin from Fu Brick Tea Improves Ulcerative Colitis by Shaping the Gut Microbiota and Modulating the Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2898-2913. [PMID: 36728562 DOI: 10.1021/acs.jafc.2c06821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fu brick tea theabrownin (FBTB) is a kind of biomacromolecule produced by oxidative polymerization of tea polyphenols. Although a variety of diseases can be alleviated by TB, its ability to treat ulcerative colitis (UC) is still worth exploring. A dextran sulfate sodium (DSS)-induced chronic UC mouse model was designed to first explore the alleviatory effect of FBTB on UC and its underlying mechanism by the sequencing of fecal 16S rRNA genes, metabolomics, and fecal microbiota transplantation (FMT). Administration of FBTB at 400 mg/kg bw in DSS-damaged mice could effectively reduce colonic damage and inflammation and improve colonic antioxidant capacity to relieve the UC-caused symptoms. FBTB could correct the disrupted gut microbiota caused by UC and contribute to the proliferation of Lactobacillus and Parasutterella. FMT in combination with antibiotic treatment showed that FBTB could elevate the levels of microbial tryptophan metabolites, including indole-3-acetaldehyde (IAld) and indole-3-acetic acid (IAA), by selectively promoting the growth of Lactobacillus. Importantly, FBTB-elevated IAld and IAA could activate aromatic hydrocarbon receptors (AhRs) and enhance interleukin-22 production to repair the intestinal barrier. These findings demonstrated that FBTB alleviated UC mainly by targeting the gut microbiota involved in the AhR pathway for prophylactic and therapeutic treatment of UC.
Collapse
Affiliation(s)
- Wuqi Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Li Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Liu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
9
|
Wang Y, Li T, Liu Y, Yang C, Liu L, Zhang X, Yang X. Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food Funct 2022; 13:13014-13027. [PMID: 36449351 DOI: 10.1039/d2fo02415b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heimao tea (HMT) is a kind of fermented dark tea that has various health benefits. However, the available information regarding the anti-obesity effect of HMT and its active ingredients is still limited. Herein, we extracted the polysaccharides from Heimao tea (HMTP) and evaluated the anti-obesity effect and the underlying mechanism of HMTP. 12-Week administration of HMTP ameliorated lipid accumulation in the adipose tissue and improved glucolipid metabolism in high-fat diet (HFD)-fed mice. HMTP also induced browning of inguinal white adipose tissue (iWAT) and enhanced the thermogenic activity of interscapular brown adipose tissue (iBAT) by upregulating the expression of a series of thermogenic genes, such as Ucp1, Prdm16, and Pgc1α. Interestingly, the anti-obesity effect of HMTP was closely associated with altered relative abundance of the gut microbes, especially Dubosiella and Romboutsia, with significant increases, in which the abundance of Dubosiella and Romboutsia was negatively correlated with the body weight (r = -0.567, p < 0.05; r = -0.407, p < 0.05) and positively correlated with the iBAT index (r = 0.520, p < 0.05; r = 0.315, p < 0.05). Our data suggest that the alteration of the gut microbiota may play a critical role in HMTP-induced iWAT browning and iBAT activation, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
Xu J, Wei Y, Li F, Weng X, Wei X. Regulation of fungal community and the quality formation and safety control of Pu-erh tea. Compr Rev Food Sci Food Saf 2022; 21:4546-4572. [PMID: 36201379 DOI: 10.1111/1541-4337.13051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Pu-erh tea belongs to dark tea among six major teas in China. As an important kind of post-fermented tea with complex microbial composition, Pu-erh tea is highly praised by many consumers owing to its unique and rich flavor and taste. In recent years, Pu-erh tea has exhibited various physiological activities to prevent and treat metabolic diseases. This review focuses on the fungi in Pu-erh tea and introduces the sources, types, and functions of fungi in Pu-erh tea, as well as the influence on the quality of Pu-erh tea and potential safety risks. During the process of fermentation and aging of Pu-erh tea, fungi contribute to complex chemical changes in bioactive components of tea. Therefore, we examine the important role that fungi play in the quality formation of Pu-erh tea. The associations among the microbial composition, chemicals excreted, and potential food hazards are discussed during the pile-fermentation of Pu-erh tea. The quality of Pu-erh tea has exhibited profound changes during the process of pile-fermentation, including color, aroma, taste, and the bottom of the leaves, which are inseparable from the fungus in the pile-fermentation of Pu-erh tea. Specifically, the application prospects of various detection methods of mycotoxins in assessing the safety of Pu-erh tea are proposed. This review aims to fully understand the importance of fungi in the production of Pu-erh tea and further provides new insights into subtly regulating the piling process to improve the nutritional properties and guarantee the safety of Pu-erh tea.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai, People's Republic of China
| | - Fanglan Li
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, Xuhui, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Li HY, Huang SY, Xiong RG, Wu SX, Zhou DD, Saimaiti A, Luo M, Zhu HL, Li HB. Anti-Obesity Effect of Theabrownin from Dark Tea in C57BL/6J Mice Fed a High-Fat Diet by Metabolic Profiles through Gut Microbiota Using Untargeted Metabolomics. Foods 2022; 11:foods11193000. [PMID: 36230076 PMCID: PMC9564053 DOI: 10.3390/foods11193000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The epidemic of obesity is a serious public health problem. In this study, the effect of theabrownin from dark tea on obesity was evaluated by biochemical tests and nuclear magnetic resonance in C57BL/6J mice fed a high-fat diet. A mixture of antibiotics was used to deplete gut microbiota and then fecal microbiota transplant was used to restore gut microbiota. Untargeted metabolomics was used to reveal the effects of theabrownin on metabolic profiles through gut microbiota. The results showed that theabrownin significantly reduced body weight gain (83.0%) and body fat accumulation (30.29%) without affecting appetite. Also, theabrownin promoted lipid clearance with a hepatoprotective effect. The extra antibiotics disrupted the regulation of theabrownin on weight control while fecal microbiota transplant restored the beneficial regulation. That is, gut microbiota was important for theabrownin to reduce body weight gain. The untargeted metabolomics indicated that 18 metabolites were related to the anti-obesity effect of theabrownin mediated by gut microbiota. Furthermore, phenylalanine metabolism, histidine metabolism, as well as protein digestion and absorption pathway played a role in the anti-obesity of theabrownin. Our findings suggested that theabrownin significantly alleviated obesity via gut microbiota-related metabolic pathways, and theabrownin could be used for the prevention and treatment of obesity.
Collapse
|
12
|
Liu L, Shi J, Yuan Y, Yue T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res Int 2022; 158:111428. [DOI: 10.1016/j.foodres.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
13
|
Chen Y, Li Q, Wu W, Liu X, Cheng J, Deng X, Cai X, Yuan W, Xie J, Zhang S, Wang B. Effects of Lightning on Rhizosphere Soil Properties, Bacterial Communities, and Active Components of Camellia sinensis var. assamica. Front Microbiol 2022; 13:911226. [PMID: 35677900 PMCID: PMC9169052 DOI: 10.3389/fmicb.2022.911226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Lightning rods have been developed to prevent damage caused by lightning to organisms. However, the biological effect of the current transmitted into the soil through lightning rods is unknown. In this study, we analyzed the effects of lightning on soil properties, the microbial community, and the active components of Pu-erh tea (Camellia sinensis var. assamica) near lightning rods. The results showed that the contents of organic matter and available potassium, copper, and calcium in rhizosphere soil near the lightning rod were significantly higher than those in control soil (P < 0.05), while the contents of total potassium, phosphorus, iron, magnesium, and aluminum decreased. Lightning significantly increased the bacterial diversity of Pu-erh rhizosphere soil compared to control soil samples (P < 0.05). Sphingomonas, Nitrospira, and Reyranella were significantly enriched in soil samples near the lightning rod compared to soil samples far from the lightning rod. Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that adenosine/AMP kinase, chitodextrinase, flavorubredoxin, nucleotide metabolism, and carbohydrate digestion and absorption were significantly enriched in the rhizosphere soil samples near the lightning rod compared to the control samples (P < 0.05). β diversity analysis indicated the grounding of the lightning rod contributed to the community differentiation of rhizosphere bacteria. Amino acids, polyphenols, and soluble sugar increased in Pu-erh tea near the lightning rod, while the contents of catechin and anthocyanin decreased in Pu-erh tea near the lightning rod compared with the control sample (P < 0.05). Significant correlations were found among microbial indicators, soil properties, and Pu 'er tea components. This study serves as the first report on the effects of lightning rods on soil properties, microecology, and plant metabolism, which promotes the understanding of the biological effects of lightning, and provides a reference for the rational use of lightning resources.
Collapse
Affiliation(s)
- Yaping Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, China.,College of Plant Protection, Yunnan Agricultural University, Kunming, China.,Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wendou Wu
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China.,College of Big Data, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiujuan Deng
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Xiaobo Cai
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China.,College of Big Data, Yunnan Agricultural University, Kunming, China.,Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| | - Wenxia Yuan
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Jin Xie
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Shihao Zhang
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China.,Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, China.,Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China.,Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| |
Collapse
|
14
|
Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tea (Camelliasinensis) is the world’s most widely consumed non-alcoholic beverage with essential economic and health benefits since it is an excellent source of polyphenols, catechins, amino acids, flavonoids, carotenoids, vitamins, and polysaccharides. The aim of this review is to summarize the main secondary metabolites in tea plants, and the content and distribution of these compounds in six different types of tea and different organs of tea plant were further investigated. The application of these secondary metabolites on food processing, cosmetics industry, and pharmaceutical industry was reviewed in this study. With the rapid advancements in biotechnology and sequencing technology, omics analyses, including genome, transcriptome, and metabolome, were widely used to detect the main secondary metabolites and their molecular regulatory mechanisms in tea plants. Numerous functional genes and regulatory factors have been discovered, studied, and applied to improve tea plants. Research advances, including secondary metabolites, applications, omics research, and functional gene mining, are comprehensively reviewed here. Further exploration and application trends are briefly described. This review provides a reference for basic and applied research on tea plants.
Collapse
|
15
|
Bian X, Miao W, Zhao M, Zhao Y, Xiao Y, Li N, Wu JL. Microbiota drive insoluble polysaccharides utilization via microbiome-metabolome interplay during Pu-erh tea fermentation. Food Chem 2022; 377:132007. [PMID: 34999465 DOI: 10.1016/j.foodchem.2021.132007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
Polysaccharides are abundant components in Pu-erh tea, yet the utilization of insoluble polysaccharides under the actions of microbiota has rarely been studied. The aim of this work was to study how insoluble polysaccharides were utilized during fermentation through the investigation of the variations and correlation of microbiota with polysaccharides degradation products. Genomics study revealed the significant changes of microbiota. Metabolomics analysis showed monosaccharides (types 1 and 3) were consumed during early and middle fermentation stages, while carboxylic acids and other monosaccharides (type 2) were accumulated at middle and late pile-fermentation stages. Correlation revealed that type 1 and 3 monosaccharides, which act as energy providers, were positively associated with Aspergillus, while type 2 monosaccharides possessing multiple bioactivities and carboxylic acids influencing tea taste were positively related to Rasamsonia, Thermomyces, Bacillaceae, and Lactobacillaceae. This study would be beneficial to improve production efficiency and provide basis for quality control of Pu-erh tea fermentation.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Wen Miao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Ming Zhao
- College of Longrun Pu-erh Tea, Yunnan Agricultural University, Kunming, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xiao
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China.
| |
Collapse
|
16
|
Pu-erh tea: A review of a healthful brew. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Wang S, Qiu Y, Gan RY, Zhu F. Chemical constituents and biological properties of Pu-erh tea. Food Res Int 2022; 154:110899. [DOI: 10.1016/j.foodres.2021.110899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
18
|
Xue J, Zhang X, Cheng C, Sun C, Yang S. The aroma analysis of asparagus tea processed from different parts of green asparagus (
Asparagus officinalis
L.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Junxiu Xue
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Xinfu Zhang
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chenxia Cheng
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Chao Sun
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| | - Shaolan Yang
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao) Ministry of Agriculture and Rural Affairs Qingdao City China
- College of Horticulture Qingdao Agricultural University Qingdao City China
| |
Collapse
|
19
|
Ma W, Shi Y, Yang G, Shi J, Ji J, Zhang Y, Wang J, Peng Q, Lin Z, Lv H. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components. Food Chem 2021; 375:131877. [PMID: 34953244 DOI: 10.1016/j.foodchem.2021.131877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022]
Abstract
In order to investigate the hypolipidaemic and antioxidant effects of various dark teas produced from different post-fermentation using the same raw material, a hyperlipidaemia zebrafish model combined with binding bile salts assay and antioxidant assays were performed in this study. Results showed that the hypolipidaemic effect of dark tea extracts increased significantly (p < 0.05) while the antioxidant ability decreased sharply compared with raw material. Particularly, Liupao tea (50%) and Pu-erh tea (48%) showed promising hypolipidaemic potential; however, the antioxidant capacity of Pu-erh tea decreased (31-49%) most dramatically. Besides, the levels of total polyphenols and catechins decreased sharply, but theabrownin, gallic acid, and caffeine increased significantly after post-fermentation. Moreover, the potential mechanisms of regulating hyperlipidaemia by dark tea extracts were discussed. These results suggest that microbial fermentation significantly affects the bioactivity of dark teas, and provide theoretical basis for processing and improving of dark tea products for hyperlipidaemia therapy.
Collapse
Affiliation(s)
- Wanjun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yali Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Junpeng Ji
- Hunter Biotechnology, Inc, Hangzhou 310051, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
20
|
Jamróz E, Cabaj A, Juszczak L, Tkaczewska J, Zimowska M, Cholewa-Wójcik A, Krzyściak P, Kopel P. Active Double-Layered Films Enriched with AgNPs in Great Water Dock Root and Pu-Erh Extracts. MATERIALS 2021; 14:ma14226925. [PMID: 34832324 PMCID: PMC8625606 DOI: 10.3390/ma14226925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/04/2023]
Abstract
A novel, eco-friendly, and biocompatible method was applied to form silver nanoparticles (AgNPs) in great water dock (Lapathi radix) (KB) and pu-erh (Camellia sinensis) (PE) extracts. The surface plasma resonance peak of green synthesized AgNPs at 451.8 nm for AgNPs+KB and 440.8 nm for AgNPs+PE was observed via spectral analysis of UV absorbance. In this study, double-layered biopolymer films (FUR/CHIT+HGEL) with AgNPs incorporated in KB solution (AgNPs+KB) and AgNPs in PE solution (AgNPs+PE), were successfully prepared using the casting method. The SEM, XRD, zeta potential and size analyses confirmed the presence of AgNP in the films. The addition of AgNPs in plant extracts improved antimicrobial and antioxidant activity and thermal stability, whereas WVTR experienced a decrease. The nanocomposite films’ orange-brown colour may aid in the protection of food products against UV rays. The composite films demonstrated antibacterial activity against food-borne pathogens and may offer potential in food packaging applications.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland;
| | - Agnieszka Cabaj
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland; (A.C.); (L.J.)
| | - Lesław Juszczak
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture, ul. Balicka 122, 30-149 Krakow, Poland; (A.C.); (L.J.)
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland;
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland;
| | - Agnieszka Cholewa-Wójcik
- Department of Product Packaging, Cracow University of Economics, ul. Rakowicka 27, 30-510 Kraków, Poland;
| | - Paweł Krzyściak
- Department of Infections Control and Mycology, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-585-634-352
| |
Collapse
|
21
|
Wang C, Gao Z, Qian Y, Li X, Wang J, Ma J, Guo J, Fu F. Effects of Different Concentrations of Ganpu Tea on Fecal Microbiota and Short Chain Fatty Acids in Mice. Nutrients 2021; 13:3715. [PMID: 34835972 PMCID: PMC8618378 DOI: 10.3390/nu13113715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/01/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Ganpu tea is composed of tangerine peel and Pu-erh tea. Current research suggests that both products can interact with gut microbes and thus affect health. However, as a kind of compound health food, little information is available about the effect of Ganpu tea on intestinal microorganisms. In this study, the basic physiological parameters (body weight, white adipose tissue and serum fat), the regulation of intestinal microorganisms and content of short-chain fatty acids (SCFAs) in feces of healthy mice were studied. The Ganpu tea can reduce the weight gain of mice and the increase in white adipose tissue (p < 0.01). After the intake of Ganpu tea, the abundance of Bacteroidetes increased (p < 0.05), whereas that of Firmicutes decreased (p < 0.01), indicating the latent capacity of Ganpu tea in adjusting the gut microbiota. Moreover, Ganpu tea differentially affected the content of different types of SCFAs in feces. Ganpu tea at the lowest concentrations showed positive effects on the concentrations of SCFAs such as acetic acid and propionic acid, whereas the concentration of butyric acid was decreased. For branched short-chain fatty acids (BSCFAs) such as isobutyric acid, isovaleric acid, etc., Ganpu tea reduced their concentrations. Our results indicated that Ganpu tea may have positive effects on preventing obesity in humans, but further research is needed before introducing such dietary therapy.
Collapse
Affiliation(s)
- Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (C.W.); (Y.Q.); (X.L.); (J.W.)
- International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Sciences, Hunan Agriculture Product Processing Institute, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.G.); (J.M.)
| | - Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (C.W.); (Y.Q.); (X.L.); (J.W.)
| | - Xiang Li
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (C.W.); (Y.Q.); (X.L.); (J.W.)
| | - Jieyi Wang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (C.W.); (Y.Q.); (X.L.); (J.W.)
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.G.); (J.M.)
| | - Jiajing Guo
- International Joint Lab on Fruits &Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Academy of Sciences, Hunan Agriculture Product Processing Institute, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; (C.W.); (Y.Q.); (X.L.); (J.W.)
| |
Collapse
|
22
|
Wu Z, Huang S, Li T, Li N, Han D, Zhang B, Xu ZZ, Zhang S, Pang J, Wang S, Zhang G, Zhao J, Wang J. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. MICROBIOME 2021; 9:184. [PMID: 34493333 PMCID: PMC8424887 DOI: 10.1186/s40168-021-01115-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Alteration of the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Epigallocatechin-3-gallate (EGCG), a major bioactive constituent of green tea, is known to be beneficial in IBD alleviation. However, it is unclear whether the gut microbiota exerts an effect when EGCG attenuates IBD. RESULTS We first explored the effect of oral or rectal EGCG delivery on the DSS-induced murine colitis. Our results revealed that anti-inflammatory effect and colonic barrier integrity were enhanced by oral, but not rectal, EGCG. We observed a distinct EGCG-mediated alteration in the gut microbiome by increasing Akkermansia abundance and butyrate production. Next, we demonstrated that the EGCG pre-supplementation induced similar beneficial outcomes to oral EGCG administration. Prophylactic EGCG attenuated colitis and significantly enriched short-chain fatty acids (SCFAs)-producing bacteria such as Akkermansia and SCFAs production in DSS-induced mice. To validate these discoveries, we performed fecal microbiota transplantation (FMT) and sterile fecal filtrate (SFF) to inoculate DSS-treated mice. Microbiota from EGCG-dosed mice alleviated the colitis over microbiota from control mice and SFF shown by superiorly anti-inflammatory effect and colonic barrier integrity, and also enriched bacteria such as Akkermansia and SCFAs. Collectively, the attenuation of colitis by oral EGCG suggests an intimate involvement of SCFAs-producing bacteria Akkermansia, and SCFAs, which was further demonstrated by prophylaxis and FMT. CONCLUSIONS This study provides the first data indicating that oral EGCG ameliorated the colonic inflammation in a gut microbiota-dependent manner. Our findings provide novel insights into EGCG-mediated remission of IBD and EGCG as a potential modulator for gut microbiota to prevent and treat IBD. Video Abstract.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 214122 China
| | - Shiyi Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shilan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
23
|
Hong M, Zhang R, Liu Y, Wu Z, Weng P. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J Food Biochem 2021; 46:e13870. [PMID: 34287960 DOI: 10.1111/jfbc.13870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TP) are one of the most functional and bioactive substances in tea. The interactions between TP and intestinal microbiota suggest that probiotics intervention is a useful method to ameliorate neurological diseases. Now, numerous researches have suggested that TP plays a significant role in modulating intestinal bacteria, especially in the area of sustaining a stable state of intestinal microbial function and abundance. Furthermore, homeostatic intestinal bacteria can enhance the immunity of the host. The close reciprocity between intestinal microbiota and the central nervous system provides a new chance for TP to modulate neural-related diseases depending on intestinal microbiota. Therefore, based on the bidirectional relationship between the brain and the intestines, this review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study the bidirectional effects of TP and intestinal microbiota on the improvement of host health. PRACTICAL APPLICATIONS: This review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study bidirectional effects of TP and intestinal microbiota on the improvement of host health.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| |
Collapse
|