1
|
Yang S, Zhang J, Xu Z, Shao W, Pang X, Li D, Huang X, Luo W, Du Z, Li Y, Wu J, Du X. Dietary resveratrol improves the flesh quality of Siberian sturgeon (Acipenser baerii) by enhancing myofiber growth, nutrient accumulation and antioxidant capacity. BMC Genomics 2024; 25:514. [PMID: 38789922 PMCID: PMC11127361 DOI: 10.1186/s12864-024-10436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.
Collapse
Affiliation(s)
- Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajin Zhang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zihan Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wuyuntana Shao
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaojian Pang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Datian Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongjun Du
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunkun Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jiayun Wu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaogang Du
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
2
|
Qin K, Feng W, Ji Z, Jiang X, Hu Y, Li Y, Che C, Wang C, Mu C, Wang H. Shrimp Cultured in Low-Salt Saline-Alkali Water has a Better Amino Acid Nutrition and Umami─Comparison of Flavors between Saline-Alkali Water- and Seawater-Cultured Litopenaeus vannamei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6585-6592. [PMID: 38494630 DOI: 10.1021/acs.jafc.3c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The advantages of Litopenaeus vannamei farming in saline-alkali water have gradually attracted attention, but few studies have focused on its flavor. In this study, L. vannamei cultured in saline-alkali water (SS) and ordinary seawater (CS) (both have a breeding time of 120 days) were selected for analysis (n = 5). High-performance liquid chromatography (HPLC) was used to measure free amino acids and flavoring nucleotides in the muscles of L. vannamei, while the taste activity value (TAV) and equivalent umami concentration (EUC) were used to analyze the degree of umami. The total essential amino acids (TEAA) in the SS group were 238.41 ± 46.24 mg/mL, significantly higher than that in the CS group (107.06 ± 15.65 mg/mL). The total amount of flavor nucleotides in the SS group was 2948.51 ± 233.66 μg/mL, significantly higher than those in the CS group (2530.37 ± 114.67 μg/mL). The content and TAV of some free amino acids (Glu, Cys-s) in the SS group were significantly higher. Meanwhile, due to the significant increase in IMP, the synergistic effect of free amino acids and flavored nucleotides leads to higher EUC. The significant separation of SS and CS samples in principal component analysis (PCA) indicates a significant difference between the two groups. Our results indicate that shrimp cultured in saline-alkali water has a stronger umami. This study enriches the basic theories related to the flavor of salt-alkali water crustaceans.
Collapse
Affiliation(s)
- Kangxiang Qin
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Weihao Feng
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Zhaoxiong Ji
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Xiaosong Jiang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Yun Hu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Yuntao Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Chenxi Che
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315000, China
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang 315000, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315000, China
| |
Collapse
|
3
|
Li Y, Ye Y, Rihan N, Zhu B, Jiang Q, Liu X, Zhao Y, Che X. Polystyrene nanoplastics exposure alters muscle amino acid composition and nutritional quality of Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168904. [PMID: 38016548 DOI: 10.1016/j.scitotenv.2023.168904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Litopenaeus vannamei were exposed to 80-nm polystyrene nanoplastics (NPs) at different concentrations (0, 0.1, 1, 5, and 10 mg/L) for 28 days to study the effects on muscle nutritional quality. Our results showed that with increasing NPs concentrations, the survival rate, specific gain rate, and protein efficiency ratio decreased but the feed conversion ratio increased. There was no significant difference in moisture, ash, and crude lipid content in the muscle, and a general decrease in crude protein content was observed. However, the total amino acid and semi-essential amino acid contents decreased. The spacing between muscle fibers and the melting morphology of muscle increased. The hardness of muscle flesh texture increased, but springiness, cohesiveness, and chewiness decreased. Regarding antioxidant enzyme activity, the activity of catalase decreased, but the total antioxidant capacity, superoxide dismutase activity, and reduced glutathione first increased and then decreased. The expression level of the growth-related genes retinoid X receptor (RXR), chitin synthase (CHS), and calmodulin A (CaM) first increased then decreased, but calcium/calmodulin-dependent protein kinase I (CaMKI), ecdysteroid receptor (EcR), chitinase 5 (CHT5), cell division cycle 2 (Cdc2), and cyclin-dependent kinase 2 (CDK2) decreased. Our results suggest that exposure to NPs can inhibit growth by inducing oxidative stress, which leads to muscle tissue damage and changes in amino acid composition. These results will provide a theoretical reference for the risk assessment of NPs and the ecological health aquaculture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Bihong Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
4
|
Guo C, Fan Y, Wu Z, Li D, Liu Y, Zhou D. Effects of Edible Organic Acid Soaking on Color, Protein Physicochemical, and Digestion Characteristics of Ready-to-Eat Shrimp upon Processing and Sterilization. Foods 2024; 13:388. [PMID: 38338522 PMCID: PMC10855478 DOI: 10.3390/foods13030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Soft-packed ready-to-eat (RTE) shrimp has gradually become popular with consumers due to its portability and deliciousness. However, the browning caused by high-temperature sterilization is a non-negligible disadvantage affecting sensory quality. RTE shrimp is processed through "boiling + vacuum soft packing + high temperature and pressure sterilization". Ultraviolet-visible (UV) spectroscopy with CIELAB color measurement showed that phytic acid (PA) + lactic acid (LA), PA + citric acid (CA), and PA + LA + CA soaking before cooking alleviated browning, as well as UVabsorbance and the browning index (BI). Meanwhile, UV spectroscopy and fluorescence spectroscopy showed that organic acid soaking reduced the content of carbonyl, dityrosine, disulfide bonds, surface hydrophobicity, and protein solubility, but promoted the content of free sulfhydryl and protein aggregation. However, in vitro digestion simulations showed that organic acid soaking unexpectedly inhibited the degree of hydrolysis and protein digestibility. This study provides the basis for the application of organic acids as color protectors for RTE aquatic muscle product.
Collapse
Affiliation(s)
| | | | | | | | | | - Dayong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (C.G.); (Y.F.); (Z.W.); (D.L.); forever-- (Y.L.)
| |
Collapse
|
5
|
Xu D, Mao L, Deng S, Xie J, Luo H. Tandem Mass Tag Proteomics Provides Insights into the Underlying Mechanism of Flesh Quality Degradation of Litopenaeus vannamei during Refrigerated Waterless Transport at 12 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20304-20313. [PMID: 38054284 DOI: 10.1021/acs.jafc.3c07146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Refrigerated waterless transport at 12 °C of live shrimp (Litopenaeus vannamei) causes flesh quality deterioration, and the underlying mechanism remains unknown. Herein, proteomics and bioinformatics analyses were used to elucidate the molecular mechanism of flesh quality changes. The result showed that 33 and 44 of the differentially abundant proteins (DAPs) were, respectively, identified in the acute cold (AC) group and the combined stress of acute cold and waterless duration (AC+WD) group, which were mostly involved in the metabolism processes and cellular structure of animal tissues, and notably enriched in biological pathways such as lysosome, glycolysis/gluconeogenesis, and focal adhesion. Furthermore, the changes in color and texture properties were closely associated with tubulin, gelsolin, laminin, trypsin-1, dipeptidyl peptidase, triosephosphate isomerase, and aldehyde dehydrogenase. Therefore, these DAPs could be used as potential biomarkers to monitor the deterioration of shrimp flesh quality during refrigerated waterless transportation.
Collapse
Affiliation(s)
- Defeng Xu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang 524000, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Luo
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
6
|
Wu Q, Liu J, Malakar PK, Pan Y, Zhao Y, Zhang Z. Modeling naturally-occurring Vibrio parahaemolyticus in post-harvest raw shrimps. Food Res Int 2023; 173:113462. [PMID: 37803786 DOI: 10.1016/j.foodres.2023.113462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
There is little known about the growth and survival of naturally-occurring Vibrio parahaemolyticus in harvested raw shrimps. In this study, the fate of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps was investigated from 4℃ to 30℃ using real-time PCR combined with propidium monoazide (PMA-qPCR). The Baranyi-model was used to fit the growth and survival data. A square root model and non-linear Arrhenius model was then used to quantify the parameters derived from the Baranyi-model. The results showed that naturally-occurring V. parahaemolyticus were slowly inactivated at 4℃ and 7℃ with deactivation rates of 0.019 Log CFU/g/h and 0.025 Log CFU/g/h. Conversely, at 15, 20, 25, and 30 °C, the average maximum growth rates (μmax) of naturally-occurring V. parahaemolyticus were determined to be 0.044, 0.105, 0.179 and 0.336 Log CFU/g/h, accompanied by the average lag phases (λ) of 15.5 h, 7.3 h, 4.4 h and 3.7 h. The validation metrics, Af and Bf, for both the square root model and non-linear, indicating that the model had a good ability to predict the growth behavior of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps. Furthermore, a comparative exploration between the growth of artificially contaminated V. parahaemolyticus in cooked shrimps and naturally-occurring V. parahaemolyticus in post-harvest raw shrimps revealed intriguing insights. While no substantial distinction in deactivation rates emerged at 4 °C and 7 °C (P > 0.05), a discernible disparity in growth rates was observable at 15 °C, 20 °C, 25 °C, and 30 °C, with the former surpassing the latter. Which indicated the risk of V. parahaemolyticus using models derived from cooked shrimps may be biased. Our study also unveiled a discernible seasonal effect. The μmax and λ of V. parahaemolyticus in shrimps harvested in summer were similar to those harvested in autumn, while the initial and maximum bacterial concentration harvested in summer were higher than those harvested in autumn. This predictive microbiology model of naturally-occurring V. parahaemolyticus in raw shrimps provides relevance to modelling growth in situ.
Collapse
Affiliation(s)
- Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
7
|
Jiang JY, Wen H, Jiang M, Tian J, Dong LX, Shi ZC, Zhou T, Lu X, Liang HW. Dietary Curcumin Supplementation Could Improve Muscle Quality, Antioxidant Enzyme Activities and the Gut Microbiota Structure of Pelodiscus sinensis. Animals (Basel) 2023; 13:2626. [PMID: 37627417 PMCID: PMC10451759 DOI: 10.3390/ani13162626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This experiment aimed to assess the impact of different dietary curcumin (CM) levels on growth, muscle quality, serum-biochemical parameters, antioxidant-enzyme activities, gut microbiome, and liver transcriptome in Chinese soft-shelled turtles (Pelodiscus sinensis). Five experimental diets were formulated to include graded levels of curcumin at 0 (control, CM0), 0.5 (CM0.5), 1 (CM1), 2 (CM2) and 4 g/kg (CM4). Each diet was randomly distributed to quadruplicate groups of turtles (164.33 ± 5.5 g) for 6 weeks. Our findings indicated that dietary curcumin supplementation did not have a significant influence on growth performance (p > 0.05); however, it significantly improved the muscular texture profiles (p < 0.05). Serum total superoxide dismutase (SOD), liver catalase (CAT), and total antioxidant capacity (T-AOC) activities increased significantly as dietary curcumin levels rose from 0.5 to 4 g/kg (p < 0.05). Dietary curcumin supplementation improved gut microbiota composition, as evidenced by an increase in the proportion of dominant bacteria such as Lactobacillus and Flavobacterium. Liver transcriptome analysis revealed that curcumin altered metabolic pathways in the liver. In conclusion, based on the evaluation of the activities of SOD in serum and CAT in liver under current experimental design, it was determined that the appropriate dietary curcumin supplementation for Chinese soft-shelled turtles is approximately 3.9 g/kg.
Collapse
Affiliation(s)
- Jia-Yuan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Li-Xue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ze-Chao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Xing Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Hong-Wei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| |
Collapse
|
8
|
Xu D, Sun L, Qin X. Waterless live transport degrades the flesh quality of Litopenaeus vannamei by disturbing neuroendocrine response: based on physiology and metabolomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3882-3895. [PMID: 36324190 DOI: 10.1002/jsfa.12306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Shrimp is one of the most popular marine foods consumed throughout the world and its freshness is a crucial indicator for consumers. However, the flesh quality degradation of shrimp during waterless live transport has been observed and the underlying mechanism remains unknown. RESULTS The present study aimed to clarify the biochemistry mechanisms of flesh degradation with integration of quality evaluation, metabolic profiling and histopathological analysis. The flesh quality indicators such as water holding capacity, protein and lipid contents, amino acid composition and myofiber components degraded with the prolongation of combined stress. In addition, the metabolites including gamma-aminobutyric acid, Val-Ala, Trh and derivatives of carnitine, phosphocholine and prostaglandin all reduced significantly under combined stress (P < 0.05). Furthermore, Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg) analysis revealed the enrichment of neuroactive ligand-receptor interaction and estrogen signaling pathways, indicating the involvement of neuroendocrine in stress response. Moreover, architecture impairment in hepatopancreas tissue verified the accumulation of metabolic disturbance. CONCLUSION Taken together, the findings of the present study indicate that neuroendocrine system mediates the flesh degradation of L. vannamei during waterless transport by disturbing the biochemical metabolic pathways and inducing architecture impairment of myofibril components. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, China
| |
Collapse
|
9
|
Cai W, Liu H, He L, Fu L, Han D, Zhu X, Jin J, Yang Y, Xie S. Exercise training combined with a high-fat diet improves the flesh flavour, texture and nutrition of gibel carp ( Carassius auratus gibelio). Food Chem X 2023; 17:100612. [PMID: 36974184 PMCID: PMC10039234 DOI: 10.1016/j.fochx.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
To meet the consumer demand for high-quality flesh sources, this study investigated the impacts of exercise training (ET) combined with a high-fat diet (HFD) on flesh quality. The results showed that HFD increased muscular fat content but reduced hardness, flexibility and adhesiveness. ET decreased fat content but increased flesh water holding capacity, hardness and stickiness. In terms of flavour, ET decreased the umami and sweet amino acid contents, which were restored when concomitantly feeding the HFD. Metabolomics further revealed that ET and HFD mainly affect the alanine, aspartate and glutamate metabolism, the citrate cycle and purine metabolism. The E-nose and volatile metabolomics analysis demonstrated that the combination of ET and HFD improved the aroma of flesh by enhancing the content of key flavour compounds within flesh such as hexadecenoic acid, ethyl ester and methyl stearate. This research provides a new strategy for improving the flesh quality of cultured fish.
Collapse
Affiliation(s)
- Wanjie Cai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Linyue He
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Fu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
| | - Junyan Jin
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Li WJ, Jiang YW, Cui ZY, Wu QC, Zhang F, Chen HW, Wang YL, Wang WK, Lv LK, Xiong FL, Liu YY, Aisikaer A, Li SL, Bo YK, Yang HJ. Dietary Guanidine Acetic Acid Addition Improved Carcass Quality with Less Back-Fat Thickness and Remarkably Increased Meat Protein Deposition in Rapid-Growing Lambs Fed Different Forage Types. Foods 2023; 12:foods12030641. [PMID: 36766172 PMCID: PMC9914891 DOI: 10.3390/foods12030641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate whether guanidine acetic acid (GAA) yields a response in rapid-growing lambs depending on forage type. In this study, seventy-two small-tailed Han lambs (initial body weights = 12 ± 1.6 kg) were used in a 120-d feeding experiment after a 7-d adaptation period. A 2 × 3 factorial experimental feeding design was applied to the lambs, which were fed a total mixed ration with two forage types (OH: oaten hay; OHWS: oaten hay plus wheat silage) and three forms of additional GAA (GAA: 0 g/kg; UGAA: Uncoated GAA, 1 g/kg; CGAA: Coated GAA, 1 g/kg). The OH diet had a greater dry matter intake, average daily gain, and hot carcass weight than the OHWS diet. The GAA supplementation increased the final body weight, hot carcass weight, dressing percentage, and ribeye area in the longissimus lumborum. Meanwhile, it decreased backfat thickness and serum triglycerides. Dietary GAA decreased the acidity of the meat and elevated the water-holding capacity in mutton. In addition, the crude protein content in mutton increased with GAA addition. Dietary GAA (UGAA or CGAA) might be an effective additive in lamb fed by different forage types, as it has potential to improve growth performance and meat quality.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao-Wen Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhao-Yang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Chao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - He-Wei Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yan-Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liang-Kang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng-Liang Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying-Yi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ailiyasi Aisikaer
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu-Kun Bo
- Zhangjiakou Animal Husbandry Technology Promotion Institution, Zhangjiakou 075000, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-139-1188-8062
| |
Collapse
|
11
|
Mu H, Yang C, Zhang Y, Chen S, Wang P, Yan B, Zhang Q, Wei C, Gao H. Dietary β-Hydroxy- β-Methylbutyrate Supplementation Affects Growth Performance, Digestion, TOR Pathway, and Muscle Quality in Kuruma Shrimp ( Marsupenaeus japonicas) Fed a Low Protein Diet. AQUACULTURE NUTRITION 2023; 2023:9889533. [PMID: 36860981 PMCID: PMC9973151 DOI: 10.1155/2023/9889533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
An 8-week feeding trial was performed to evaluate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) supplementation on growth performance and muscle quality of kuruma shrimp (Marsupenaeus japonicas) (initial weight: 2.00 ± 0.01 g) fed a low protein diet. The positive control diet (HP) with 490 g/kg protein and negative control diet (LP) with 440 g/kg protein were formulated. Based on the LP, 0.25, 0.5, 1, 2 and 4 g/kg β-hydroxy-β-methylbutyrate calcium were supplemented to design the other five diets named as HMB0.25, HMB0.5, HMB1, HMB2 and HMB4, respectively. Results showed that compared with the shrimp fed LP, the HP, HMB1 and HMB2 groups had significantly higher weight gain and specific growth rate, while significantly lower feed conversion ratio (p < 0.05). Meanwhile, intestinal trypsin activity was significantly elevated in the above three groups than that of the LP group. Higher dietary protein level and HMB inclusion upregulated the expressions of target of rapamycin, ribosomal protein S6 kinase, phosphatidylinositol 3-kinase, and serine/threonine-protein kinase in shrimp muscle, accompanied by the increases in most muscle free amino acids contents. Supplementation of 2 g/kg HMB in a low protein diet improved muscle hardness and water holding capacity of shrimp. Total collagen content in shrimp muscle increased with increasing dietary HMB inclusion. Additionally, dietary inclusion of 2 g/kg HMB significantly elevated myofiber density and sarcomere length, while reduced myofiber diameter. In conclusion, supplementation of 1-2 g/kg HMB in a low protein diet improved the growth performance and muscle quality of kuruma shrimp, which may be ascribed to the increased trypsin activity and activated TOR pathway, as well as elevated muscle collagen content and changed myofiber morphology caused by dietary HMB.
Collapse
Affiliation(s)
- Hua Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chenbin Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shengdi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Qingqi Zhang
- Ganyu Jiaxin Fishery Technical Development Co., Ltd., Lianyungang 222100, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
12
|
Xue R, Li H, Liu S, Hu Z, Wu Q, Ji H. Substitution of soybean meal with Clostridium autoethanogenum protein in grass carp (Ctenopharygodon idella) diets: Effects on growth performance, feed utilization, muscle nutritional value and sensory characteristics. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Wu P, Zeng Y, Qin Q, Wu C, Wang Y, Zhao R, Tao M, Zhang C, Tang C, Liu S. Comparative analysis of the texture, composition, antioxidant capacity and nutrients of natural gynogenesis blunt snout bream and its parent muscle. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
14
|
Cai W, Fu L, Liu C, He L, Liu H, Han D, Zhu X, Yang Y, Jin J, Xie S. Dietary ribose supplementation improves flesh quality through purine metabolism in gibel carp (Carassius auratus gibelio). ANIMAL NUTRITION 2022; 13:50-63. [PMID: 37009072 PMCID: PMC10064418 DOI: 10.1016/j.aninu.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
Since the aquaculture industry is currently observing a deterioration in the flesh quality of farmed fish, the use of nutrients as additives to improve the flesh quality of farmed fish species is a viable strategy. The aim of this study was to investigate the effect of dietary D-ribose (RI) on the nutritional value, texture and flavour of gibel carp (Carassius auratus gibelio). Four diets were formulated containing exogenous RI at 4 gradient levels: 0 (Control), 0.15% (0.15RI), 0.30% (0.30RI) and 0.45% (0.45RI). A total of 240 fish (150 ± 0.31 g) were randomly distributed into 12 fibreglass tanks (150 L per tank). Triplicate tanks were randomly assigned to each diet. The feeding trial was carried out in an indoor recirculating aquaculture system for 60 d. After the feeding trial, the muscle and liver of gibel carp were analysed. The results showed that RI supplementation did not result in any negative impact on the growth performance and 0.30RI supplementation significantly increased the whole-body protein content compared to the control group. The contents of collagen and glycogen in muscle were enhanced by RI supplementation. The alterations in the flesh indicated that RI supplementation improved the texture of the flesh in terms of its water-holding capacity and hardness, therefore improving the taste. Dietary RI facilitated the deposition of amino acids and fatty acids in the muscle that contributed to the meaty taste and nutritional value. Furthermore, a combination of metabolomics and expression of key genes in liver and muscle revealed that 0.30RI activated the purine metabolism pathways by supplementing the substrate for nucleotide synthesis and thereby promoting the deposition of flavour substance in flesh. This study offers a new approach for providing healthy, nutritious and flavourful aquatic products.
Collapse
|
15
|
Alcântara L, Sousa J, Martins ME, Silva AL, Souza Filho MDS, Souza B. Evaluation of Surface Properties of Chitosan and Scale Gelatin Coatings on Shrimp Fillets ( Litopenaeus vannamei). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lyndervan Alcântara
- Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Juliana Sousa
- Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | | | - André Luis Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | - Bartolomeu Souza
- Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
16
|
Wang JG, Rahimnejad S, Liu YC, Ren J, Qiao F, Zhang ML, Du ZY, Luo Y. Dietary L-carnitine supplementation affects flesh quality through modifying the nutritional value and myofibers morphological characteristics in largemouth bass (Micropterus salmoides). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
17
|
Zhuang J, Abdullah, Wang Y, Shen W, Zheng W, Liu T, Wang J, Feng F. Evaluating dynamic effects of dietary glycerol monolaurate on the productive performance and flesh quality of large yellow croaker (Larimichthys crocea). Food Chem 2022; 387:132833. [DOI: 10.1016/j.foodchem.2022.132833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/20/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
|
18
|
Li M, Wen H, Huang F, Wu M, Yu L, Jiang M, Lu X, Tian J. Role of arginine supplementation on muscular metabolism and flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater. Front Nutr 2022; 9:980188. [PMID: 36118779 PMCID: PMC9473507 DOI: 10.3389/fnut.2022.980188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/11/2022] [Indexed: 01/20/2023] Open
Abstract
It is no doubt that the improvement of flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater contributes to its development potential in aquaculture. In this study, we aimed to explore the effect of arginine supplementation on the flesh quality of L. vannamei reared in freshwater and its mechanism. L. vannamei were randomly fed with three diets for 56 days, of which arginine level was 10.15 g kg–1 (arginine-deficient diet), 21.82 g kg–1 (arginine-optimal diet), and 32.46 g kg–1 (arginine-excessive diet), respectively. Each diet was randomly assigned to triplicate tanks, and each tank was stocked with 35 shrimps (initial weight: 1.70 ± 0.02 g). Results showed the arginine-optimal diet increased the weight gain, flesh percentage, crude protein and flavor amino acid contents in muscle, and improved the flesh hardness by conversing fast myofibers to slow myofibers, increasing myofiber density and myofibrillar length, and promoting ornithine and collagen synthesis. The arginine-optimal diet influenced the purine metabolic pathway by reducing hypoxanthine, xanthine, and inosine contents. Ornithine, citrulline, and glutamate were identified as the key metabolites affecting flesh quality traits after arginine treatments. Only increasing the levels of dietary arginine did not result in an increase in endogenous creatine synthesis in muscle and hepatopancreas. Overall, the arginine-optimal diet improved the flesh quality traits of L. vannamei reared in freshwater due to the enhanced muscular hardness, protein deposition, and flavor, which may be contributing to the transformation of muscle fiber type and increase in protein synthesis by the metabolites of arginine (ornithine, citrulline, and glutamate).
Collapse
Affiliation(s)
- Meifeng Li
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Feng Huang
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Meili Wu
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Lijuan Yu
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, The Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- *Correspondence: Juan Tian,
| |
Collapse
|
19
|
Jin Y, Xu M, Jin Y, Deng S, Tao N, Qiu W. Simultaneous Detection and Analysis of Free Amino Acids and Glutathione in Different Shrimp. Foods 2022; 11:foods11172599. [PMID: 36076785 PMCID: PMC9455249 DOI: 10.3390/foods11172599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
An amino acid analyzer method for the simultaneous determination of 20 free amino acids (FAAs) and glutathione (GSH) in Penaeus vannamei (PV), Penaeus vannamei, Penaeus hidulis (PH) and Penaeus japonicus (PJ) were developed. The effects of different concentrations of trichloroacetic acid (TCA) and ethanol on the extraction of free amino acids were investigated, and 120 g·L−1 TCA was found to be ideal. The target analytes were eluted in sodium citrate buffer B1 (pH = 3.3) containing 135 mL·L−1 ethanol and 1 mol·L−1 sodium hydroxide (7 mL) and at the optimizing conversion time of sodium citrate buffer B2 (pH = 3.2) and sodium citrate buffer B3 (pH = 4.0) of 5.6 min, and the effective separation was achieved within 29.5 min. The developed method showed good linearity (R2 ≥ 0.9991) in the range of 1–250 µg·mL−1 with good intra-day and inter-day precision (relative standard deviations ≤ 2.38%) and spike recovery (86.42–103.64%). GSH and cysteine were used to identify marine prawn and freshwater shrimp. Hydroxyproline and serine were used to distinguish PV and Macrobrachium nipponense (MN) from others, respectively. The highest content of the total FAAs was found in PV, and principal component analysis revealed that PV had the highest comprehensive score for FAAs and GSH. Arginine was found to have the greatest influence on shrimp flavor.
Collapse
Affiliation(s)
- Yinzhe Jin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Minhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingshan Jin
- College of Bioscience and Technology, Yangzhou University, Yangzhou 277600, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.T.); (W.Q.)
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (N.T.); (W.Q.)
| |
Collapse
|
20
|
Prokic VZ, Rankovic MR, Draginic ND, Andjic MM, Sretenovic JZ, Zivkovic VI, Jeremic JN, Milinkovic MV, Bolevich S, Jakovljevic VLJ, Pantovic SB. Guanidinoacetic acid provides superior cardioprotection to its combined use with betaine and (or) creatine in HIIT-trained rats. Can J Physiol Pharmacol 2022; 100:772-786. [PMID: 35894232 DOI: 10.1139/cjpp-2021-0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to determine how guanidinoacetic acid (GAA) or its combined administration with betaine (B) or creatine (C) influences the cardiac function, morphometric parameters, and redox status of rats subjected to high-intensity interval training (HIIT). This research was conducted on male Wistar albino rats exposed to HIIT for 4 weeks. The animals were randomly divided into five groups: HIIT, HIIT + GAA, HIIT + GAA + C, HIIT + GAA + B, and HIIT + GAA + C + B. After completing the training protocol, GAA (300 mg/kg), C (280 mg/kg), and B (300 mg/kg) were applied daily per os for 4 weeks. GAA supplementation in combination with HIIT significantly decreased the level of both systemic and cardiac prooxidants ( O 2 - , H2O2, NO 2 - , and thiobarbituric acid reactive substances) compared with nontreated HIIT (p < 0.05). Also, GAA treatment led to an increase in glutathione and superoxide dismutase levels. None of the treatment regimens altered cardiac function. A larger degree of cardiomyocyte hypertrophy was observed in the HIIT + GAA group, which was reflected through an increase of the cross-sectional area of 27% (p < 0.05) and that of the left ventricle wall thickness of 27% (p < 0.05). Since we showed that GAA in combination with HIIT may ameliorate oxidative stress and does not alter cardiac function, the present study is a basis for future research exploring the mechanisms of cardioprotection induced by this supplement in an HIIT scenario.
Collapse
Affiliation(s)
- Veljko Z Prokic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina R Rankovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena D Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marijana M Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Z Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir I Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica V Milinkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir L J Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suzana B Pantovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
21
|
Alterations of amino acid metabolism and intestinal microbiota in Chinese mitten crab (Eriocheir sinensis) fed on formulated diet and iced trash fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100924. [PMID: 34678634 DOI: 10.1016/j.cbd.2021.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022]
Abstract
Formulated diet (FD) and iced trash fish (ITF) are common diets during E. sinensis farming. However, whether FD can completely replace ITF during long-term E. sinensis farming is still unclear. Thus this study was conducted to compare the differences in amino acid metabolism and intestinal microbiota of the E. sinensis fed on different diets. The crabs were randomly divided into three groups fed on FD, ITF and mixed diet (MD, FD: ITF = 1:1), respectively. The results showed that there were no significant differences in amino acid composition among FD, MD and ITF groups. The activities of AST and ALT, and the mRNA levels of amino acid metabolism-related genes were significantly up-regulated in FD or/and MD groups compared with ITF group. The diversity of intestinal bacterial community was similar between the FD and ITF groups, but the relative abundance of dominant taxa showed marked differences between the two groups. At the phylum level, the relative abundance of Firmicutes was significantly higher, but the relative abundance of Proteobacteria was significantly lower in the FD group than that in ITF group. Meanwhile, at genus level, the relative abundance of Candidatus_Hepatoplasma in FD was higher than that in ITF group. Data related to functional prediction demonstrated that the significantly differenced pathways between the two groups were observed in metabolism (Pyrimidine metabolism, Glycolysis/Gluconeogenesis and Citrate cycle) and environmental information processing (transporters). The overall results indicated that replacement of ITF by FD did not affect amino acid composition, but altered amino acid metabolism and the relative abundance of intestinal microbiota. Our data provided a valuable reference for FD application replacing ITF during long-term E. sinensis farming.
Collapse
|
22
|
Cheng Y, Ge C, Li W, Yao H. The Intestinal Bacterial Community and Functional Potential of Litopenaeus vannamei in the Coastal Areas of China. Microorganisms 2021; 9:1793. [PMID: 34576689 PMCID: PMC8470311 DOI: 10.3390/microorganisms9091793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal bacteria are crucial for the healthy aquaculture of Litopenaeus vannamei, and the coastal areas of China are important areas for concentrated L. vannamei cultivation. In this study, we evaluated different compositions and structures, key roles, and functional potentials of the intestinal bacterial community of L. vannamei shrimp collected in 12 Chinese coastal cities and investigated the correlation between the intestinal bacteria and functional potentials. The dominant bacteria in the shrimp intestines included Proteobacteria, Bacteroidetes, Tenericutes, Firmicutes, and Actinobacteria, and the main potential functions were metabolism, genetic information processing, and environmental information processing. Although the composition and structure of the intestinal bacterial community, potential pathogenic bacteria, and spoilage organisms varied from region to region, the functional potentials were homeostatic and significantly (p < 0.05) correlated with intestinal bacteria (at the family level) to different degrees. The correlation between intestinal bacteria and functional potentials further suggested that L. vannamei had sufficient functional redundancy to maintain its own health. These findings help us understand differences among the intestinal bacterial communities of L. vannamei cultivated in different regions and provide a basis for the disease management and healthy aquaculture of L. vannamei.
Collapse
Affiliation(s)
- Yimeng Cheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China; (Y.C.); (W.L.); (H.Y.)
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
23
|
Wang W, Ning M, Fan Y, Liu X, Chen G, Liu Y. Comparison of physicochemical and umami characterization of aqueous and ethanolic Takifugu obscurus muscle extracts. Food Chem Toxicol 2021; 154:112317. [PMID: 34087407 DOI: 10.1016/j.fct.2021.112317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Most umami substances were developed in aqueous extracts. In this study, we compared the molecular weight distributions and sensory characteristics of ethanol and aqueous Takifugu obscurus muscle extracts, and assessed their taste-related metabolites and peptide profile (<3 kDa) using nuclear magnetic resonance and nano liquid chromatography-mass spectrometry. The potential antioxidant peptide in ethanolic fraction was screened using Peptide Ranker, BIOPEP and quantum chemical simulations. The results indicated that 60% ethanolic extract fraction (60%-F) had the highest umami intensity and more palatable overall taste among all pufferfish extracts. It can be caused by more umami enhancing components such as Asp, Asn, Ala and 5'-AMP, and considerable umami-potential smaller peptides in 60%-F. 60%-F also showed an antioxidant activity, and several antioxidant peptides was screened. The present study indicated the relationship between extract solution and taste characterization, which provided more possibility for the exploitation of umami substances and screening potential activity peptides.
Collapse
Affiliation(s)
- Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Menghua Ning
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxia Fan
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xia Liu
- Department of Resources & Environment, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gaole Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|