1
|
Guo M, Bi M, Zhang F, Ye X, Ma P, Gao D, Song D. A dual-response ratiometric fluorescent sensor for oxytetracycline determination in milk and mutton samples. Talanta 2024; 277:126382. [PMID: 38852347 DOI: 10.1016/j.talanta.2024.126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Owing to the adverse effects of oxytetracycline (OTC) residues on human health, it is of great importance to construct a rapid and effective strategy for OTC detection. Herein, we developed a dual-response fluorescence sensing platform based on molybdenum sulfide quantum dots (MoS2 QDs) and europium ions (Eu3+) for ratiometric detection of OTC. The MoS2 QDs, synthesized through an uncomplicated one-step hydrothermal approach, upon OTC integration into the MoS2 QDs/Eu3+ sensing system, exhibit a significant quenching of blue fluorescence due to the inner filter effect (IFE), simultaneously enhancing the distinct red emission of Eu3+ at 624 nm, a phenomenon attributed to the antenna effect (AE). This sensor demonstrates exceptional selectivity and sensitivity towards OTC, characterized by a linear detection range of 0.2-10 μM and a notably low detection limit of 2.21 nM. Furthermore, we achieved a visual semi-quantitative assessment of OTC through the discernible fluorescence color transition from blue to red under a 365 nm ultraviolet lamp. The practical applicability of this sensor was validated through the successful detection of OTC in milk and mutton samples, underscoring its potential as a robust tool for OTC monitoring in foodstuffs to safeguard food safety.
Collapse
Affiliation(s)
- Mengjia Guo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ming Bi
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130012, China
| | - Fangmei Zhang
- XNA Platform, Institute of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiwen Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Dejiang Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
2
|
El-Deen AK, Hussain CM. Advances in magnetic analytical extraction techniques for detecting antibiotic residues in edible samples. Food Chem 2024; 450:139381. [PMID: 38653048 DOI: 10.1016/j.foodchem.2024.139381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of antibiotics in agricultural and animal husbandry to treat bacterial illnesses has resulted in a rise in antibiotic-resistant bacteria. These bacteria can grow when antibiotic residues are present in food items, especially in edible animal products. As a result, it is crucial to monitor and regulate the amounts of antibiotics in food. Magnetic analytical extractions (MAEs) have emerged as a potential approach for extracting antibiotic residues from food using magnetic nanoparticles (MNPs). Recent improvements in MAEs have resulted in the emergence of novel MNPs with better selectivity and sensitivity for the extraction of antibiotic residues from food samples. Consequently, this review paper addresses current developments in MAE for extracting antibiotic residues from edible samples. It also provides a critical analysis of contemporary MAE practices. The current issues and potential future developments in this field are also discussed, thereby providing a framework for future study paths.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Jiang YX, Rani A, Nguyen NT, Nguyen TMP, Chang CT. Electrochemical detection of oxytetracycline employing sugarcane carbon modified graphite electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41734-41744. [PMID: 38030840 DOI: 10.1007/s11356-023-31090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The present study used CeO2-Co3O4 quantum dots@porous carbon/multiwalled carbon nanotube (CeO2-Co3O4 QDs@PC/MWCNT/GE) composites to modify graphite electrodes to fabricate high-sensitivity electrochemical sensors to detect the presence of oxytetracycline (OTC). The quantum dots were made from waste sugarcane bagasse. The electrochemical analysis demonstrated the superior electrochemical performance of CeO2-Co3O4 QDs@PC/MWCNT/GE, with a peak current density of 1.276 mA/cm2. Electrochemical impedance spectroscopy (EIS) revealed lower impedance values for CeO2-Co3O4 QDs@PC/MWCNT/GE compared to other electrodes, indicating enhanced conductivity. The modified electrode exhibited an enlarged electrochemically active area, with values of 0.602 cm2, almost seven times that of the bare graphite electrode (0.079 cm2). The results showed that the CeO2-Co3O4 QDs@PC/MWCNT/GE had excellent performance for OTC detection, and its linear calibration range was 1.007 × 10-8 to 2.04 × 10-7 M (i.e., 0.005-0.1 ppm) and 1.007 × 10-6 to 1.209 × 10-4 M (i.e., 0.5-60 ppm). The limit of detection and limit of quantification were 1.23 nM (0.61 ppb) and 4.09 nM (2.03 ppb) (S/N = 3), respectively. The electrode demonstrated long-term stability for up to 7 weeks. This method provides a new way to prepare electrochemical sensors for OTC detection.
Collapse
Affiliation(s)
- Ya-Xuan Jiang
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan ROC
- Department of Environmental Engineering, National Chung Hsing University, Hsinchu, 26047, Taiwan ROC
| | - Aishwarya Rani
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan ROC
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan ROC
| | - Nhat-Thien Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan ROC
| | - Thi-Minh-Phuong Nguyen
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Chang-Tang Chang
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan ROC.
| |
Collapse
|
4
|
Li H, Cai Q, Xue Y, Jie G. HOF-101-based dual-mode biosensor for photoelectrochemical/electrochemiluminescence detection and imaging of oxytetracycline. Biosens Bioelectron 2024; 245:115835. [PMID: 37979549 DOI: 10.1016/j.bios.2023.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A unique hydrogen-bonded organic frameworks (HOF-101)-based photoelectrochemical (PEC) and electrochemiluminescence (ECL) dual-mode biosensor using polydopamine nanoparticles (PDAs) as quencher was constructed for ultrasensitive detection and imaging of oxytetracycline (OXY). In particular, HOF-101 was a superior ECL material and can be observed with the naked eye. Furthermore, it also had outstanding PEC signal, so HOF-101 was a new dual-signal material with excellent performance, thus it was explored to realize dual-mode detection. As the main component of natural melanin, PDAs not only had good biocompatibility, but also contained rich functional groups on the surface. Additionally, PDAs had excellent light absorption ability and poor conductivity, which made it the excellent photoquencher. In this work, PDAs were introduced on the surface of HOF-101 to quench its ECL and PEC signals by using the dual-aptamer sandwich method, achieving ultrasensitive detection of antibiotic OXY. Particularly for ECL detection, HOF-101 was firstly used to visually detect OXY. The detection range can reach 0.1 pM-100 nM, and the limit of detection (LOD) can reach 0.04 pM. This work showed a great contribution to the development of new ECL-PEC materials and ECL visualization analysis, which had outstanding application potential in the fields of food safety and biochemical analysis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yali Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
5
|
Kramat J, Kraus L, Gunawan VJ, Smyej E, Froehlich P, Weber TE, Spiehl D, Koeppl H, Blaeser A, Suess B. Sensing Levofloxacin with an RNA Aptamer as a Bioreceptor. BIOSENSORS 2024; 14:56. [PMID: 38275309 PMCID: PMC10813692 DOI: 10.3390/bios14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
To combat the growing threat of antibiotic resistance, environmental testing for antibiotic contamination is gaining an increasing role. This study aims to develop an easy-to-use assay for the detection of the fluoroquinolone antibiotic levofloxacin. Levofloxacin is used in human and veterinary medicine and has been detected in wastewater and river water. An RNA aptamer against levofloxacin was selected using RNA Capture-SELEX. The 73 nt long aptamer folds into three stems with a central three-way junction. It binds levofloxacin with a Kd of 6 µM and discriminates the closely related compound ciprofloxacin. Furthermore, the selection process was analyzed using a next-generation sequencing approach to better understand the sequence evolution throughout the selection. The aptamer was used as a bioreceptor for the development of a lateral flow assay. The biosensor exploited the innate characteristic of RNA Capture-SELEX to select aptamers that displace a complementary DNA oligonucleotide upon ligand binding. The lateral flow assay achieved a limit of visual detection of 100 µM. While the sensitivity of this assay constrains its immediate use in environmental testing, the present study can serve as a template for the selection of RNA aptamer-based biosensors.
Collapse
Affiliation(s)
- Janice Kramat
- Synthetic RNA Biology, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Leon Kraus
- Synthetic RNA Biology, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Vincent J. Gunawan
- Synthetic RNA Biology, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Elias Smyej
- Synthetic RNA Biology, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Philipp Froehlich
- Self-Organizing Systems, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| | - Tim E. Weber
- Institute for BioMedical Printing Technologies, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Dieter Spiehl
- Institute for BioMedical Printing Technologies, Technical University of Darmstadt, 64289 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Heinz Koeppl
- Self-Organizing Systems, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, 64283 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Andreas Blaeser
- Institute for BioMedical Printing Technologies, Technical University of Darmstadt, 64289 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Beatrix Suess
- Synthetic RNA Biology, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
6
|
Wu C, Li J, Song J, Guo H, Bai S, Lu C, Peng H, Wang X. Novel colorimetric detection of oxytetracycline in foods by copper nanozyme. Food Chem 2024; 430:137040. [PMID: 37527579 DOI: 10.1016/j.foodchem.2023.137040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
In this study, copper nanozyme (CuNZs) possess good laccase-like activity were synthesized by grinding method with cupric chloride dihydrate as copper source, sodium borohydride as reducing agent and β-cyclodextrin as protective agent. The CuNZs can oxidize colorless 2,4-dinitrophenol (2,4-DP) to red product. When oxytetracycline (OTC) was added to the above three solutions, the color changed from red to orange and the absorbance increased again, indicating that OTC was also an affinity substrate for CuNZs. When CuNZs was mixed with OTC alone, the color changed from colorless to yellow, and the absorption intensity was related to OTC concentration. It has good selectivity and sensitivity, and had a good linear response to the concentration of OTC in the range of 50-500 μM, and the limit of detection was 0.148 μM. Thus, a fast and simple colorimetric assay for the determination of OTC was established by using the laccase-like activity of CuNZs, and it was applied successfully to detect OTC in food samples.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jiajia Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jingping Song
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Hai Guo
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
7
|
Zhou X, Fu S, Li J, Yi Y, Hu Y, Lu J, Yang C, Miao J, Xu Y. Smartphone-based pH responsive 3-channel colorimetric biosensor for non-enzymatic multi-antibiotic residues. Food Chem 2023; 429:136953. [PMID: 37499511 DOI: 10.1016/j.foodchem.2023.136953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic residues in animal-derived food pose a risk to food safety and human health. Here, a smartphone-based pH-responsive 3-channel colorimetric biosensor is constructed for rapid detection of non-enzymatic multi-antibiotic residues in milk. In this system, a magnetic separation and enrichment approach is designed to specifically capture different antibiotic residues in complex environment. Indicators loaded on polydopamine-silver nanoparticles with excellently pH responsive visualization properties are utilized to ensure the high sensitivity of detection system. Moreover, smartphones are introduced to fulfill the demand for portable and on-site inspection of practical applications. It achieves simultaneous detection of oxytetracycline, kanamycin and streptomycin in the linear range of 1-105 pg/mL with detection limits of 0.085, 0.168, and 0.307 pg/mL, respectively. The practicality of the reported multi-antibiotic residues detection system is successfully demonstrated and evaluated challenging milk samples. Therefore, this system demonstrates the wide applications in multi-antibiotic residue analysis and food safety guarantee.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyuan Fu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahua Li
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhan Yi
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaqi Hu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Lu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Yang
- Xidian University Hangzhou Institute of Technology, Hangzhou 311231, China
| | - Jinfeng Miao
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanyuan Xu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Song P, Qu P, Wang M, Wang AJ, Xue Y, Mei LP, Feng JJ. Self-checking dual-modal aptasensor based on hybrid Z-scheme heterostructure of Zn-defective CdS/ZnS for oxytetracycline detection. Anal Chim Acta 2023; 1274:341542. [PMID: 37455075 DOI: 10.1016/j.aca.2023.341542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Electrochemical detection methods have been widely used for trace target detection with satisfactory results. However, most of the existing electrochemical sensors rely only on single signal output, which inevitably suffer from the interference of the complex matrix of real samples. Herein, we proposed a dual-modal aptasensor for oxytetracycline assay with self-checking function by integrating photoelectrochemical (PEC) and electrochemical (EC) signal outputs in one analysis system. Zn-defective CdS/ZnS heterostructure was synthesized and served as the photo-electroactive substrate for constructing the biorecognition process, while methylene blue (MB) was used as a dual-functional probe to enhance both PEC and EC signals. Due to the high activity of Zn-defective CdS/ZnS heterojunction and the unique dual-modal signal readout strategy, the biosensing platform exhibits superior analytical performance with the relatively wide linear range (0.01-50 ng mL-1), lower detection limits of 1.86 pg mL-1 (PEC mode) and 3.08 pg mL-1 (EC mode), as well as good selectivity, stability and reproducibility. The proposed dual-model analytical system with self-checking function is envisioned to provide a new approach for sensitive and reliable biosensing.
Collapse
Affiliation(s)
- Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China; College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ping Qu
- Zhejiang Jinhua Ecological and Environmental Monitoring Center, Jinhua, 321015, China
| | - Min Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yadong Xue
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
9
|
Jakab K, Melios N, Tsekenis G, Shaban A, Horváth V, Keresztes Z. Comparative Analysis of pH and Target-Induced Conformational Changes of an Oxytetracycline Aptamer in Solution Phase and Surface-Immobilized Form. Biomolecules 2023; 13:1363. [PMID: 37759762 PMCID: PMC10526194 DOI: 10.3390/biom13091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
To date, numerous aptamer-based biosensing platforms have been developed for sensitive and selective monitoring of target analytes, relying on analyte-induced conformational changes in the aptamer for the quantification of the analyte and the conversion of the binding event into a measurable signal. Despite the impact of these conformational rearrangements on sensor performance, the influence of the environment on the structural conformations of aptamers has rarely been investigated, so the link between parameters directly influencing aptamer folding and the ability of the aptamer to bind to the target analyte remains elusive. Herein, the effect a number of variables have on an aptamer's 3D structure was examined, including the pH of the buffering medium, as well as the anchoring of the aptamer on a solid support, with the use of two label-free techniques. Circular dichroism spectroscopy was utilized to study the conformation of an aptamer in solution along with any changes induced to it by the environment (analyte binding, pH, composition and ionic strength of the buffer solution), while quartz crystal microbalance with dissipation monitoring was employed to investigate the surface-bound aptamer's behavior and performance. Analysis was performed on an aptamer against oxytetracycline, serving as a model system, representative of aptamers selected against small molecule analytes. The obtained results highlight the influence of the environment on the folding and thus analyte-binding capacity of an aptamer and emphasize the need to deploy appropriate surface functionalization protocols in sensor development as a means to minimize the steric obstructions and undesirable interactions of an aptamer with a surface onto which it is tethered.
Collapse
Affiliation(s)
- Kristóf Jakab
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary;
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary;
| | - Nikitas Melios
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (N.M.); (G.T.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (N.M.); (G.T.)
| | - Abdul Shaban
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary;
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary;
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Zsófia Keresztes
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary;
| |
Collapse
|
10
|
Cui ML, Lin ZX, Xie QF, Zhang XY, Wang BQ, Huang ML, Yang DP. Recent advances in luminescence and aptamer sensors based analytical determination, adsorptive removal, degradation of the tetracycline antibiotics, an overview and outlook. Food Chem 2023; 412:135554. [PMID: 36708671 DOI: 10.1016/j.foodchem.2023.135554] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Tetracycline antibiotics (TCs), one of the important antibiotic groups, have been widely used in human and veterinary medicines. Their residues in foodstuff, soil and sewage have caused serious threats to food safety, ecological environment and human health. Here, we reviewed the potential harms of TCs residues to foodstuff, environment and human beings, discussed the luminescence and aptamer sensors based analytical determination, adsorptive removal, and degradation strategies of TCs residues from a recent 5-year period. The advantages and intrinsic limitations of these strategies have been compared and discussed, the potential challenges and opportunities in TCs residues degradation have also been deliberated and explored.
Collapse
Affiliation(s)
- Ma-Lin Cui
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Zi-Xuan Lin
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Qing-Fan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiao-Yan Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Bing-Qing Wang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Miao-Ling Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
11
|
Label-free selective and sensitive colorimetric detection of ampicillin in milk and water using silver nanoparticles. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
12
|
Wu H, Chen Y, Xu M, Ling Y, Ju S, Tang Y, Tong C. Dual-response fluorescent probe based on nitrogen-doped carbon dots and europium ions hybrid for ratiometric and on-site visual determination of oxytetracycline and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160533. [PMID: 36574552 DOI: 10.1016/j.scitotenv.2022.160533] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Tetracyclines residues, particularly oxytetracycline (OTC) and tetracycline (TC), have raised extensive concern because of their serious adverse effects on human health. Herein, a dual-response fluorescent probe based on nitrogen-doped carbon dots (N-CDs) and Eu3+ hybrid (N-CDs-Eu3+) was developed to selectively determine OTC and TC. The N-CDs act as ancillary ligands of Eu3+ and recognition units of OTC/TC, while the Eu3+ ions chelated with N-CDs can also specifically recognize OTC/TC. Upon inclusion of OTC/TC, an enhancement in Eu3+ emission occurs due to the energy transfer from OTC/TC to Eu3+ and the efficient elimination of quenching effect caused by H2O molecule, which is attributed to the incorporation of N-CDs; while the blue fluorescence emitted by the N-CDs decreases under the inner filter effect and static quenching effect caused by OTC/TC. Based on the double and reverse response signals, the ratiometric detection of OTC and TC in the range of 0.1-45 μΜ and 0.1-30 μΜ is achieved with a detection limit of 0.017 and 0.041 μM, respectively. In addition, the noticeable variation in fluorescence color of the probe is integrated with a smartphone-assisted analysis device for the rapid on-site quantitative assay of OTC, where the detection limit is 0.15 μΜ. The results show that this probe performs with excellent specificity and anti-interference for both OTC and TC, and satisfactory detection results are obtained in lake water, milk, and honey samples, thereby confirming that the probe exhibits promising application in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yubing Chen
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Mengqi Xu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuwei Ling
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shiying Ju
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Changlun Tong
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
A label-free fluorescent biosensor based on specific aptamer-templated silver nanoclusters for the detection of tetracycline. J Nanobiotechnology 2023; 21:22. [PMID: 36670418 PMCID: PMC9854182 DOI: 10.1186/s12951-023-01785-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Tetracycline (TET) is a broad-spectrum antibiotic commonly used in the treatment of animals. TET residues in food inevitably threaten human health. High-performance analytical techniques for TET detection are required in food quality assessment. The objective of this study was to establish a label-free fluorescent biosensor for TET detection using specific aptamer-templated silver nanoclusters (AgNCs). An aptamer with a high specific binding ability to TET was used to synthesize a novel DNA-templated AgNCs (DNA-AgNCs). When TET is present, the aptamer's conformation switched from an antiparallel G-quadruplex to a hairpin structure, altering the connection between AgNCs and the aptamer. Following the transformation of AgNCs into large sized silver nanoparticles (AgNPs), a fluorescence decrease was detected. When used to detect TET in milk, the proposed biosensor displayed high sensitivity and selectivity, with a limit of detection of 11.46 ng/mL, a linear range of 20 ng/mL-10 g/mL, and good recoveries of 97.7-114.6% under optimized conditions. These results demonstrate that the proposed biosensor was successfully used to determine TET quantitatively in food samples, suggesting that our method provides an efficient and novel reference for detecting antibiotics in food while expanding the application of DNA-AgNCs in related fields.
Collapse
|
14
|
Fata F, Gabriele F, Angelucci F, Ippoliti R, Di Leandro L, Giansanti F, Ardini M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020949. [PMID: 36679744 PMCID: PMC9866807 DOI: 10.3390/s23020949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.
Collapse
|
15
|
Kumar P, Birader K, Suman P. Development of an Impedimetric Aptasensor for Detection of Progesterone in Undiluted Biological Fluids. ACS Pharmacol Transl Sci 2023; 6:92-99. [PMID: 36654753 PMCID: PMC9841775 DOI: 10.1021/acsptsci.2c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 12/03/2022]
Abstract
A cost-effective, deployable, and quantitative progesterone biosensor is desirable for regular progesterone sensing in biological and environmental samples to safeguard public health. Aptasensors have been shown to be affordable as compared to antibody-based sensors, but so far, none of the progesterone aptamers could detect it in undiluted and unprocessed biological samples. Thus, to select an aptamer suitable for biosensing in unprocessed biological samples, a modified magnetic bead-based approach with counter-selection in milk and serum was performed. G-quadruplex forming progesterone aptamers were preferentially screened through in silico, gold nanoparticle-based adsorption-desorption assay and circular dichroism spectroscopy. GQ5 aptamer showed extended stability and a high progesterone binding affinity (K D 5.29 ± 2.9 nM) as compared to any other reported progesterone aptamers (P4G11 and P4G13). Under optimized conditions, GQ5 aptamer was coated on the gold electrode to develop an impedimetric aptasensor (limit of detection: 0.53, 0.91, and 1.9 ng/mL in spiked buffer, undiluted milk, and serum, respectively, with the dynamic range of detection from 0.1 to 50 ng/mL in buffer and 0.1 to 30 ng/mL in both milk and serum). The aptasensor exhibited a very high level of κ value (>0.9) with ELISA to detect progesterone in milk and serum. The aptasensor could be regenerated three times and can be stored for up to 10 days at 4 °C. Therefore, GQ5 may be used to develop a portable impedimetric aptasensor for clinical and on-site progesterone sensing in various biological and environmental samples.
Collapse
Affiliation(s)
- Pankaj Kumar
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| | - Komal Birader
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
| | - Pankaj Suman
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| |
Collapse
|
16
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
17
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
18
|
Tang J, Zheng X, Jiang S, Cao M, Wang S, Zhou Z, Nie X, Fang Y, Le T. Dual fluorescent aptasensor for simultanous and quantitative detection of sulfadimethoxine and oxytetracycin residues in animal-derived foods tissues based on mesoporous silica. Front Nutr 2022; 9:1077893. [PMID: 36618689 PMCID: PMC9811004 DOI: 10.3389/fnut.2022.1077893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Herein, we developed a dual fluorescent aptasensor based on mesoporous silica to simultaneously detect sulfadimethoxine (SDM) and oxytetracycline (OTC) in animal-derived foods. We immobilized two types of aptamers modified with FAM and CY5 on the silica surface by base complementary pairing reaction with the cDNA modified with a carboxyl group and finally formed the aptasensor detection platform. Under optimal conditions, the detection range of the aptasensor for SDM and OTC was 3-150 ng/mL (R 2 = 0.9831) and 5-220 ng/mL (R 2 = 0.9884), respectively. The limits of detection for SDM and OTC were 2.2 and 1.23 ng/mL, respectively. The limits of quantification for SDM and OTC were 7.3 and 4.1 ng/mL, respectively. Additionally, the aptasensor was used to analyze spiked samples. The average recovery rates ranged from 91.75 to 114.65% for SDM and 89.66 to 108.94% for OTC, and all coefficients of variation were below 15%. Finally, the performance and practicability of our aptasensor were confirmed by HPLC, demonstrating good consistency. In summary, this study was the first to use the mesoporous silica-mediated fluorescence aptasensor for simultaneous detection of SDM and OTC, offering a new possibility to analyze other antibiotics, biotoxins, and biomolecules.
Collapse
Affiliation(s)
- Jiaming Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuang Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Mingdong Cao
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Sixian Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhaoyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yu Fang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
A novel ratiometric electrochemical aptasensor for highly sensitive detection of carcinoembryonic antigen. Anal Biochem 2022; 659:114957. [PMID: 36265690 DOI: 10.1016/j.ab.2022.114957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
A novel ratiometric electrochemical aptasensor was proposed for carcinoembryonic antigen (CEA) detection based on exonuclease III (Exo III)-assisted recycling and rolling circle amplification (RCA) strategies. A thiolated ferrocene-labeled hairpin probe 2 (Fc-HP2) was fixed on the gold nanoparticles (AuNPs)-modified gold electrode (AuE) surface through Au-S bonds. The presence of CEA led to the release of trigger, which hybridized with the 3'-protruding of hairpin probe 1 (HP1) and triggered the Exo III cleavage reaction, accompanied by the releasing of trigger and generation of new DNA fragment which was used for the successive hybridization with Fc-HP2. After the Exo III cleavage process, the remaining Fc-HP2 fragments hybridized as primers with the RCA template to initiate the RCA process, and long single-stranded polynucleotides were produced for methylene blue (MB) binding. Such changes resulted in the signal of Fc (IFc) decreased and that of MB (IMB) increased, achieving a linear relationship between IMB/IFc and logarithm of CEA concentrations ranging from 1.0 pg mL-1 to 100.0 ng mL-1 with a detection limit of 0.59 pg mL-1. Additionally, the developed aptasensor had been successfully applied to detect CEA in human serum samples. Therefore, the proposed strategy might provide a new platform for clinical detections of CEA.
Collapse
|
20
|
Wu H, Xu M, Chen Y, Zhang H, Shen Y, Tang Y. A Highly Sensitive and Selective Nano-Fluorescent Probe for Ratiometric and Visual Detection of Oxytetracycline Benefiting from Dual Roles of Nitrogen-Doped Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234306. [PMID: 36500929 PMCID: PMC9735690 DOI: 10.3390/nano12234306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The specific detection of oxytetracycline (OTC) residues is significant for food safety and environmental monitoring. However, rapid specific determination of OTC from various tetracyclines is still challenging due to their similar chemical structures. Here, nitrogen-doped carbon dots (NCDs) with excitation and pH-dependent optical properties and a high-fluorescence quantum yield were successfully synthesized, which were directly employed to fabricate a dual-response fluorescence probe by self-assembly with Eu3+ (NCDs/Eu3+) for the ratiometric determination of OTC. The addition of OTC into the probe greatly enhances the characteristic emission of Eu3+ due to the "antenna effect", and the incorporation of NCDs into the probe further improves the Eu3+ fluorescence by remarkably weakening the quenching effect caused by H2O molecules and efficiently shortening the distance of energy transfer from OTC to Eu3+. Meanwhile, the fluorescence of NCDs apparently decreases due to aggregation-caused quenching. The results demonstrate that a ratiometric detection of OTC (0.1-25 µM) with a detection limit of 29 nM based on the double response signals is achieved. Additionally, visual semi-quantitative assay of OTC can be realized with the naked eye under a 365 nm UV lamp according to the fluorescence color change of the as-fabricated probe. This probe exhibits acceptable specificity and anti-interference for OTC assay, holding promise for the fast detection of OTC in real water and milk samples.
Collapse
|
21
|
Recent development of microfluidic biosensors for the analysis of antibiotic residues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Duan N, Ren K, Lyu C, Wang Z, Wu S. Discovery and Optimization of an Aptamer and Its Sensing Ability to Amantadine Based on SERS via Binary Metal Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14805-14815. [PMID: 36354154 DOI: 10.1021/acs.jafc.2c06681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the growing concern of illegal abuse of amantadine (AMD) and its potential harmful impact on humans, detection of AMD has become an urgent food safety and environmental topic. Biosensing is a promising method for this, but the effective recognition of AMD still remains a challenge. Herein, we isolated an aptamer (Am-20) for AMD through a 14-round iterative selection based on capture-SELEX. The preliminary interaction mechanism between AMD and Am-20 was clarified with the help of docking simulations. Facilitated by a base mutation and truncation strategy, an optimized aptamer Am-20-1 with a short length of 62-mer was obtained, which exhibited competitive affinity with a Kd value of 33.90 ± 5.16 nM. A structure-switching SERS-based aptasensor based on Am-20-1 was then established for AMD quantification via a binary metal nanoparticle-embedded Raman reporter substrate (AuNRs@ATP@AgNPs). The fabricated strategy showed a wide linear range (0.005∼25 ng/mL) and a low limit of detection (0.001 ng/mL) for AMD determination. We envision that the novel aptamer identified in this study will provide a complementary tool for specific recognition and detection of AMD and could assist in the supervision of illegal abuse of AMD.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510624, China
| | - Kexin Ren
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chen Lyu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510624, China
| |
Collapse
|
23
|
Feng J, Wu Y, Zhang J, Jin R, Li Y, Shen Q. An aptamer lateral flow assay for visual detection of Microcystins-LR residue in fish. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Geng L, Huang J, Zhai H, Shen Z, Han J, Yu Y, Fang H, Li F, Sun X, Guo Y. Molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for specific recognition and determination of chloramphenicol in milk. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Topçu A, Kılıç S, Özgür E, Türkmen D, Denizli A. Inspirations of Biomimetic Affinity Ligands: A Review. ACS OMEGA 2022; 7:32897-32907. [PMID: 36157742 PMCID: PMC9494661 DOI: 10.1021/acsomega.2c03530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Affinity chromatography is a well-known method dependent on molecular recognition and is used to purify biomolecules by mimicking the specific interactions between the biomolecules and their substrates. Enzyme substrates, cofactors, antigens, and inhibitors are generally utilized as bioligands in affinity chromatography. However, their cost, instability, and leakage problems are the main drawbacks of these bioligands. Biomimetic affinity ligands can recognize their target molecules with high selectivity. Their cost-effectiveness and chemical and biological stabilities make these antibody analogs favorable candidates for affinity chromatography applications. Biomimetics applies to nature and aims to develop nanodevices, processes, and nanomaterials. Today, biomimetics provides a design approach to the biomimetic affinity ligands with the aid of computational methods, rational design, and other approaches to meet the requirements of the bioligands and improve the downstream process. This review highlighted the recent trends in designing biomimetic affinity ligands and summarized their binding interactions with the target molecules with computational approaches.
Collapse
Affiliation(s)
- Aykut
Arif Topçu
- Medical
Laboratory Program, Vocational School of Health Service, Aksaray University, 68100 Aksaray, Turkey
| | - Seçkin Kılıç
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Erdoğan Özgür
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Deniz Türkmen
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06230 Ankara, Turkey
| |
Collapse
|
26
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Transformation of oxytetracycline on MnO2@polyelectrolyte layers modified anode and toxicity assessment of its electrochemical oxidation intermediates. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
A novel fluorescent aptasensor based on mesoporous silica nanoparticles for the selective detection of sulfadiazine in edible tissue. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Zhao T, Chen Q, Wen Y, Bian X, Tao Q, Liu G, Yan J. A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Food Chem 2022; 377:132072. [PMID: 35008020 DOI: 10.1016/j.foodchem.2022.132072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
We developed a rapid and sensitive colorimetric biosensor based on competitive recognition between kanamycin (KAN), magnetic beads-kanamycin (MBs-KAN) and aptamer and terminal deoxynucleotidyl transferase (TdT)-mediated signal amplification strategy. In the absence of KAN, aptamers recognize MBs-KAN. TdT can amplify oligonucleotides to the 3'-OH ends of aptamers, with biotin-dUTP being embedded in the long single stranded DNA (ssDNA). Then the assay produced visual readout due to the horseradish peroxidase (HRP)-catalyzed color change of the substrate after the linkage between biotin and streptavidin (SA)-HRP. In the presence of KAN, however, aptamers tend to bind free KAN rather than MBs-KAN. In this case, aptamers are isolated by magnetic separation, resulting in the failure of signal amplification and catalytic signals. This competitive colorimetric sensor showed excellent selectivity toward KAN with the limit of detection (LOD) as low as 9 pM. And recovery values were between 93.8 and 107.8% when spiked KAN in milk and honey samples.
Collapse
Affiliation(s)
- Tingting Zhao
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Chen
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Wen
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Xiaojun Bian
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qing Tao
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gang Liu
- Laboratory of Biometrology, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
| | - Juan Yan
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
30
|
Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals (Basel) 2022; 15:ph15010090. [PMID: 35056148 PMCID: PMC8781427 DOI: 10.3390/ph15010090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The lateral flow assay (LFA) is an extensively used paper-based platform for the rapid and on-site detection of different analytes. The method is user-friendly with no need for sophisticated operation and only includes adding sample. Generally, antibodies are employed as the biorecognition elements in the LFA. However, antibodies possess several disadvantages including poor stability, high batch-to-batch variation, long development time, high price and need for ethical approval and cold chain. Because of these limitations, aptamers screened by an in vitro process can be a good alternative to antibodies as biorecognition molecules in the LFA. In recent years, aptamer-based LFAs have been investigated for the detection of different analytes in point-of-care diagnostics. In this review, we summarize the applications of aptamer technology in LFAs in clinical diagnostic rapid tests for the detection of biomarkers, microbial analytes, hormones and antibiotics. Performance, advantages and drawbacks of the developed assays are also discussed.
Collapse
|
31
|
Advances in Colorimetric Assay Based on AuNPs Modified by Proteins and Nucleic Acid Aptamers. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review is focused on the biosensing assay based on AuNPs (AuNPs) modified by proteins, peptides and nucleic acid aptamers. The unique physical properties of AuNPs allow their modification by proteins, peptides or nucleic acid aptamers by chemisorption as well as other methods including physical adsorption and covalent immobilization using carbodiimide chemistry or based on strong binding of biotinylated receptors on neutravidin, streptavidin or avidin. The methods of AuNPs preparation, their chemical modification and application in several biosensing assays are presented with focus on application of nucleic acid aptamers for colorimetry assay for determination of antibiotics and bacteria in food samples.
Collapse
|
32
|
Kaul S, Sai Keerthana L, Kumar P, Birader K, Tammineni Y, Rawat D, Suman P. Cytotoxin antibody-based colourimetric sensor for field-level differential detection of elapid among big four snake venom. PLoS Negl Trop Dis 2021; 15:e0009841. [PMID: 34634067 PMCID: PMC8530336 DOI: 10.1371/journal.pntd.0009841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/21/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
Development of a rapid, on-site detection tool for snakebite is highly sought after, owing to its clinically and forensically relevant medicolegal significance. Polyvalent antivenom therapy in the management of such envenomation cases is finite due to its poor venom neutralization capabilities as well as diagnostic ramifications manifested as untoward immunological reactions. For precise molecular diagnosis of elapid venoms of the big four snakes, we have developed a lateral flow kit using a monoclonal antibody (AB1; IgG1 - κ chain; Kd: 31 nM) generated against recombinant cytotoxin-7 (rCTX-7; 7.7 kDa) protein of the elapid venom. The monoclonal antibody specifically detected the venoms of Naja naja (p < 0.0001) and Bungarus caeruleus (p<0.0001), without showing any immunoreactivity against the viperidae snakes in big four venomous snakes. The kit developed attained the limit of quantitation of 170 pg/μL and 2.1 ng/μL in spiked buffer samples and 28.7 ng/μL and 110 ng/μL in spiked serum samples for detection of N. naja and B. caeruleus venoms, respectively. This kit holds enormous potential in identification of elapid venom of the big four snakes for effective prognosis of an envenomation; as per the existing medical guidelines.
Collapse
Affiliation(s)
- Sherin Kaul
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
| | - L. Sai Keerthana
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pankaj Kumar
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
| | - Komal Birader
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
| | - Yathirajarao Tammineni
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
| | - Deepali Rawat
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pankaj Suman
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
33
|
Zhang X, Qiao J, Liu W, Qi L. Boosting the peroxidase-like activity of gold nanoclusters for the colorimetric detection of oxytetracycline in rat serum. Analyst 2021; 146:5061-5066. [PMID: 34296710 DOI: 10.1039/d1an01003d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gold nanoclusters (AuNCs)-based nanozymes have been studied widely as they provide unrivaled advantages in terms of preferable enzyme-like activities, high stability, and good biocompatibility. Although the enzyme-like catalytic activity of AuNCs has been the object of extensive investigation, understanding how charges or reactive oxygen species on the surfaces of AuNCs can enhance their catalytic performance in the colorimetric sensing of drugs by regulating the catalytic activity of AuNCs is still a big challenge. Herein, l-tryptophanonitrile (LTN)-protected AuNCs (LTN@AuNCs) were prepared, and their nanozyme activity was investigated in the catalytic oxidation process of the peroxidase substrate, namely 3,3',5,5'-tetramethylbenzidine, in the prescence of hydrogen peroxide. Oxytetracycline induced the aggregation of LTN@AuNCs due to the electrostatic interaction between the positively charged LTN@AuNCs and the negatively charged drug. Importantly, the aggregated LTN@AuNCs produced more reactive oxygen species and significantly boosted their peroxidase-like activity. Subsequently, a colorimetric method for highly specific and sensitive detection of oxytetracycline was establised. The ultraviolet-visible absorbance at a wavelength of 650 nm of the aggregated-LTN@AuNCs exhibited a good linear relationship with oxytetracycline in a range of 0.5-15.0 μM (R2 = 0.994). The limit of detection was 0.3 μM. After oxytetracycline was abdominally injected in rats, the metabolic process of the drug in serums was further investigated by using the proposed sensing protocol. The improvable catalytic activity capability of the AuNCs-based nanozymes discloses its great potential in real bio-applications.
Collapse
Affiliation(s)
- Xinya Zhang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. and School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
34
|
Yang Y, Shi Z, Chang Y, Wang X, Yu L, Guo C, Zhang J, Bai B, Sun D, Fan S. Surface molecularly imprinted magnetic MOFs: A novel platform coupled with magneto electrode for high throughput electrochemical sensing analysis of oxytetracycline in foods. Food Chem 2021; 363:130337. [PMID: 34147891 DOI: 10.1016/j.foodchem.2021.130337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
In order to solve inherent problems of traditional molecularly imprinted electrochemical sensors (MIECS), a novel platform of surface molecularly imprinted magnetic metal-organic frameworks (mMOFs@MIPs) was coupled with magneto electrode to establish magnetic MIECS for the recognition of oxytetracycline (OTC). mMOFs@MIPs were synthesized using layer-by-layer modification method for the recognition of OTC. With the help of magneto electrodes, mMOFs@MIPs can be magnetically modified on the electrode surface, forming the electrochemical sensing interface. The imprinted cavities of mMOFs@MIPs can act as the electron channel of the probe to realize label-free detection of OTC. A linear response was obtained within the OTC concentration range of 1.0 × 10-9 g mL-1-1.0 × 10-4 g mL-1. The applicability of the sensor was estimated using the spiking and recovery method in milk samples with the recoveries ranging from 89.0% to 103.1%. It has potential applications in food safety analysis with high throughput detection capability, high specificity and good stability.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Zhuo Shi
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yuanyuan Chang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci 030619, China.
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Sanhong Fan
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|