1
|
Yang C, Shuaibu A, Lan H, Zhao Y, Xu Y, Gao Y, Deng S. Substitution of NaCl by organic sodium salts in cured large yellow croaker (Larimichthys crocea): Improvement of the quality and flavor characteristic. Food Chem 2025; 464:141704. [PMID: 39447266 DOI: 10.1016/j.foodchem.2024.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
For lowering the daily intake of salt, the study evaluated the impact of various organic sodium salts (OSS), including sodium acetate (SA), sodium citrate (SC), and sodium lactate (SL), on the quality and volatile flavor profiles of large yellow croaker. The results showed that the 5 % SC and 5 % SL treatments significantly improved water holding capacity (WHC), texture, and color (p < 0.05). These groups also demonstrated compact microstructures and maintained strong sensory acceptability. However, as the curing concentration increased, protein unfolding and oxidation intensified, and the transition from bound and immobile water to free water was observed. This shift negatively affected WHC, texture, and cell structure. Additionally, gas chromatography-ion mobility spectrometry (GC-IMS) identified 27 volatile compounds, with OSS treatments notably enhancing flavor intensity. These findings offer valuable insights for developing low-sodium practices in the seafood industry.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Abubakar Shuaibu
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Hao Lan
- Faculty of Food Science, Zhejiang Pharmaceutical University, China
| | - Yuying Zhao
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yi Xu
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yuanpei Gao
- College of Food Science and Pharmacy, Zhejiang Ocean University, China.
| | - Shanggui Deng
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| |
Collapse
|
2
|
Shi H, Li Y, Zheng J, Yao X, Wang W, Tomasevic I, Sun W. Effect of NaCl replacement by other salt mixtures on myofibrillar proteins: Underlining protein structure, gel formation, and chewing properties. J Food Sci 2024; 89:9060-9072. [PMID: 39468895 DOI: 10.1111/1750-3841.17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
The protein structure, gel changes, and chewing properties of low-sodium myofibrillar protein (MP) prepared by compound chloride salts (KCl/MgCl2, KCl/CaCl2, and KCl/MgCl2/CaCl2) and different substitution degrees (10%, 25%, and 40%) at same ionic strength (0.6 M) were investigated. The results revealed that the low-sodium MP gels containing CaCl2 manifested more liquid loss and less moisture content accompanied by obvious morphological shrinkage, while KCl/MgCl2 contributed to the gel juiciness. At high substitution degree of 40%, KCl/CaCl2 substitution rendered the gel with dense structure and highest strength, but worse water retention capacity. Using other compound chloride salts influenced the chewing efficiency, and CaCl2 substitution made the gel relatively hard to chew. The inhomogeneous structure accompanied by cluster blocks in KCl/CaCl2-substituted MP gel accelerated the overall fracture rate. During heating process, more proteins in CaCl2-substituted MP did not participate in gel formation, intervening the final gel properties. The chloride salt mixtures containing MgCl2, rather than CaCl2, avoided or alleviated the liquid loss and shrinkage of low-sodium MP gel within the substitution degree of 10%-40%, and substitution degree not exceeding 25% was more reasonable for the controlled qualities.
Collapse
Affiliation(s)
- Haibo Shi
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yongjie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Qian X, Lin S, Chen T, Li S, Wang S, Li C, Wang R, Sun N. Evaluation of the texture characteristics and taste of shrimp surimi with partial replacement of NaCl by non‑sodium metal salts. Food Chem 2024; 459:140403. [PMID: 39024873 DOI: 10.1016/j.foodchem.2024.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Ionic strength plays a significant role in the aggregation behavior of myofibrillar proteins. The study investigated the effects of KCl or CaCl2 as substitutes for NaCl on the gel properties and taste of shrimp surimi at a constant ionic strength (IS = 0.51). Increased KCl substitution ratio resulted in a reduction in α-helix content and an increase in β-sheet content of myofibrillar proteins, thereby enhancing water holding capacity. Optimal KCl substitutions (1.5% NaCl +1.94% KCl) contributed to maintaining the desired taste and improving gel properties. CaCl2 facilitates the extraction and dissolution of myofibrillar proteins, resulting in an organized and dense gel network with significant water-holding capacity. However, excessive additions (>1.27%) resulted in a notable decrease in taste and gel strength due to excessive aggregation and precipitation of myofibrillar proteins. These findings provide a solid theoretical foundation for production of high-quality, low-salt shrimp surimi.
Collapse
Affiliation(s)
- Xixin Qian
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, PR China
| | - Tingjia Chen
- Dalian Salt Chemical Group Co., Ltd., Dalian 116034, China
| | - Shuang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuo Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chenqi Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruming Wang
- Dalian Salt Chemical Group Co., Ltd., Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
4
|
Cao S, Pan Y, Zheng W, Chen S, Yin T, Liu R, You J. Effect of ozone oxidation on gastrointestinal digestion and absorption characteristics of silver carp (Hypophthalmichthys molitrix) surimi gels in vitro. Food Res Int 2024; 192:114759. [PMID: 39147534 DOI: 10.1016/j.foodres.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
To investigate the quality of different ozone-oxidized surimi gels and their in vitro digestion and absorption characteristics, surimi rinsed with different concentrations of ozonated water (0, 8, 26 mg/L) were prepared. Then, the degree of oxidation and gel structure of surimi were determined, the in vitro digestion and absorption of the gels were simulated, and the digestion and absorption products were analyzed by LC-MS/MS. The results showed that the quality of surimi gels was improved after proper ozone oxidation. After ozone water rinsing, the dry matter digestibility, peptide, and amino acid content increased, and the changes of all three were in line with the Logistic kinetic model (R2 = 0.95-0.99). Caco-2 cell absorption experiments showed that the absorption rate of peptides and amino acids decreased after ozone water rinsing. In summary, ozone oxidation can promote the digestion of surimi gels, but it also reduces the absorption of peptides and amino acids by Caco-2 cells. This study provides a reference for the application of ozone in the food field.
Collapse
Affiliation(s)
- Shuning Cao
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Yuping Pan
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Wendong Zheng
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei Province 430070, China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Xia Y, Zhang W, Shi G, Wang C, Wang L, Shi L, Chen S, Chen L, Guo X, Wu W, Ding A, Zhang Y, Xiong G. Effects of brining, ultrasound, and ultrasound-assisted brining on quality characteristics of snakehead ( Channa argus) fillets. Food Sci Biotechnol 2024; 33:2509-2519. [PMID: 39144200 PMCID: PMC11319685 DOI: 10.1007/s10068-023-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 08/16/2024] Open
Abstract
The change of quality characteristics in snakehead fillets were investigated during brining, ultrasound, and ultrasound-assisted brining processing. Results showed that ultrasound and brine had significantly impact on the tissue microstructure and the color parameter of fillets. Compared to 60-min marination in deionized water, the shear force was reduced by 17.67 g by ultrasound, compared to 80-min marination in deionized water, the shear force was reduced by 28.68 g by brine. Brine significantly increased the water-holding capacity of fish fillets. Ultrasound resulted in increased random coils, β-turn and hydrophobic interaction, while brine significantly promoted the formation of the α-helix structure. The increase of the thermal stability of the myosin head was due to the synergistic effect of ultrasound and brine, but the decrease of the thermal stability of actin only associated with brine. The study provides the reference for the application of ultrasound-assisted brining technology to aquatic industry. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01506-8.
Collapse
Affiliation(s)
- Yuting Xia
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Wei Zhang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Gangpeng Shi
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Chao Wang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068 China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Anzi Ding
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| | - Yun Zhang
- College of Tourism and Hotel Management, Hubei University of Economics, Wuhan, 430205 China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences/Farm Products Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, 430064 China
| |
Collapse
|
6
|
Liu X, Tian G, Zhao J, Zhang Q, Huai X, Sun J, Sang Y. Integrated ultra-high pressure and salt addition to improve the in vitro digestibility of myofibrillar proteins from scallop mantle (Patinopecten yessoensis). Food Chem 2024; 447:138985. [PMID: 38507952 DOI: 10.1016/j.foodchem.2024.138985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Myofibrillar protein (MP) is susceptible to the effect of ionic strength and ultra-high pressure (UHP) treatment, respectively. However, the impact of UHP combined with ionic strength on the structure and in vitro digestibility of MP from scallop mantle (Patinopecten yessoensis) is not yet clear. Therefore, it is particularly important to analyze the structural properties and enhance the in vitro digestibility of MP by NaCl and UHP treatment. The findings demonstrated that as ionic strength increased, the α-helix and β-sheet gradually transformed into β-turn and random coil. The decrease of endogenous fluorescence intensity indicated the formation of a more stable tertiary structure. Additionally, the exposure of internal sulfhydryl groups increased the amount of total sulfhydryl content, and reactive sulfhydryl groups gradually transformed into disulfide bonds. Moreover, it reduces aggregation through increased solubility, decreased turbidity, particle sizes, and a relatively dense and uniform microstructure. When MP from the scallop mantle was treated with 0.5 mol/L ionic strength and 200 MPa UHP treatment, it had the highest solubility (90.75 ± 0.13%) and the lowest turbidity (0.41 ± 0.03). The scallop mantle MP with NaCl of 0.3 mol/L and UHP treatment had optimal in vitro digestibility (95.14 ± 2.01%). The findings may offer a fresh perspectives for developing functional foods for patients with dyspepsia and a theoretical foundation for the comprehensive utilization of scallop mantle by-products with low concentrations of NaCl.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Jinrong Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qing Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiangqian Huai
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
7
|
He F, Yu Z, Luo S, Meng X, Wang L, Jin X, Huang Z, Zhang Y, Deng P, Peng WK, Ke L, Wang H, Zhou J, Wall P, Rao P. Why are clams steamed with wine in Mediterranean cuisine? NPJ Sci Food 2024; 8:44. [PMID: 38992032 PMCID: PMC11239664 DOI: 10.1038/s41538-024-00279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Wine is renowned for its rich content of polyphenols, including resveratrol (Res), known for their health promoting properties. Steamed clam with wine, a popular Mediterranean delicacy that highlights the role of wine as a key ingredient. However, despite these benefits, resveratrol's low bioavailability poses challenges. Could the process of steaming together with clam alter the digestive fate of resveratrol from wine? This study explores the potential of proteoglycan-based nanoparticles from freshwater clam (CFNPs) as a delivery vehicle for enhancing the stability and bioavailability of resveratrol, compared with wine and free Res' solution, aiming to elucidate mechanisms facilitating Res' absorption. The results demonstrated that CFNPs can effectively encapsulate Res with an efficiency over 70%, leading to a uniform particle size of 70.5±0.1 nm (PDI < 0.2). Resveratrol loaded in CFNPs (CFNPs-Res) exhibited an improved antioxidant stability under various conditions, retaining over 90% of antioxidant capacity after three-day storage at room temperature. The controlled-release profile of Res loaded in CFNPs fits both first and Higuchi order kinetics and was more desirable than that of wine and the free Res. Examined by the simulated gastrointestinal digestion, CFNPs-Res showed a significantly higher bioaccessibility and antioxidant retention compared to free Res and the wines. The discovery and use of food derived nanoparticles to carry micronutrients and antioxidants could lead to a shift in functional food design and nutritional advice, advocating much more attention on these entities over solely conventional molecules.
Collapse
Affiliation(s)
- Fangzhou He
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Zhaoshuo Yu
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sihao Luo
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiangyu Meng
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Leying Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xuanlu Jin
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zongke Huang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yue Zhang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Peishan Deng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Lijing Ke
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Huiqin Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China.
| | - Jianwu Zhou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China
| | - Patrick Wall
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Pingfan Rao
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
8
|
Jiao X, Li X, Zhang N, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Solubilization of fish myofibrillar proteins in NaCl and KCl solutions: A DIA-based proteomics analysis. Food Chem 2024; 445:138662. [PMID: 38354641 DOI: 10.1016/j.foodchem.2024.138662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Understanding the basic solubilization of fish myofibrillar proteins (MPs) in common monovalent chloride solutions is crucial for muscle food processing. In this study, the differential proteomic profiles of MPs during extraction and solubilization in NaCl and KCl solutions were investigated by using advanced four-dimensional data-independent acquisition (4D DIA) quantitative proteomics for the first time. Compared to routine biochemical analysis, this could provide insights into the solubilization of muscle proteins. We ensure the consistency of the effective ionic strength of NaCl and KCl buffers by adjusting the conductivity. The results showed that NaCl extractor mainly facilitated the solubilization of cytoskeletal proteins, biochemical enzymes, and stromal proteins compared to KCl, such as tubulin, myosin-9, collagen, plectin, protein phosphatase, and cathepsin D. However, no significant difference was observed in the extraction of major sarcomeric proteins, including myosin, actin, troponin C, myosin-binding protein C, M-Protein, α-actinin-3, and tropomyosin.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Xingying Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China.
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Jianlian Huang
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Engineering Technology Research Center of Refrigeration and Conditioning Aquatic Food (Liaoning Anjoy Food Co., LTD), China National Light Industry Council, Anshan 114100, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Engineering Technology Research Center of Refrigeration and Conditioning Aquatic Food (Liaoning Anjoy Food Co., LTD), China National Light Industry Council, Anshan 114100, China.
| |
Collapse
|
9
|
Liang Q, Jiang X, Zhang X, Sun T, Lv Y, Bai Z, Shi W. Ultrasonic treatment enhanced the binding capacity of volatile aldehydes and pearl mussel (Hyriopsis cumingii) muscle: Investigation of underlying mechanisms. Food Chem 2024; 444:138630. [PMID: 38335681 DOI: 10.1016/j.foodchem.2024.138630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
This study was aim to investigate the influencing mechanism of ultrasonic treatment on the interaction between volatile aldehydes and myosin. The results showed that when the mass concentration ratio of myosin to heptanal/hexanal was 1:0.3, ultrasonic treatment could enhance the binding capacity of myosin to heptanal/hexanal, especially the binding of myosin to hexanal. The entropy and enthalpy values of their interaction were negative, indicating that the interaction was mainly driven by hydrogen bond and van der Waals force. After ultrasonic treatment, the fluorescence wavelength of myosin-heptanal/hexanal complex was redshifted, the α-helix content was increased, while its roughness values, particle size and the polydispersity index were decreased. These demonstrated that ultrasonic treatment was conducive to myosin binding to heptanal/hexanal, thereby restraining the release of volatile flavor compounds from myosin, which could provide new insights for the regulation of volatile flavor compounds.
Collapse
Affiliation(s)
- Qianqian Liang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xuehua Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tongtong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanfang Lv
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Zhiyi Bai
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Ding Y, Feng R, Zhu Z, Xu J, Xu Y. Effects of different protein cross-linking degrees on physicochemical and subsequent thermal gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Food Chem X 2024; 22:101448. [PMID: 38764785 PMCID: PMC11101881 DOI: 10.1016/j.fochx.2024.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Knowledge regarding the denaturation process and control methods for depolymerized sol-state myofibrillar proteins (MPs) during freezing remains scant. This study investigated the effects of protein cross-linking treatment before freezing on physicochemical and subsequent gelation properties of MPs sol subjected to freeze-thaw (F-T) cycles. Results indicated that after five F-T cycles, cross-linked MPs sols showed increased high molecular weight polymers and bound water (T21a and T21b) mobility, suggesting enhanced protein-protein interactions at the expense of protein-water interactions. Upon heating after F-T cycles, gels formed from cross-linked sols exhibited significantly higher hardness, springiness, and cooking loss (P < 0.05), alongside more contracted gel networks. Correlation analysis revealed that the formation and properties of thermal gel after freezing closely relate to changes in molecular conformation and chemical bonds of cross-linked MPs sol during freezing. This study provides new insights into regulating the freezing stability and post-thawed thermal processing properties of sol-based surimi products.
Collapse
Affiliation(s)
- Yuxin Ding
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Ruonan Feng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhifei Zhu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Junmin Xu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Yanshun Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Li Y, Zhao S, Xia X, Liu Q, Chen Q, Wang H, Kong B. Insights into the emulsifying effect and oxidation stability of myofibrillar protein-diacylglycerol emulsions containing catechin at different ionic strengths. Food Res Int 2024; 181:114144. [PMID: 38448104 DOI: 10.1016/j.foodres.2024.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
The purpose of this study was to investigate the effects of different ionic strengths on the emulsifying and oxidation stabilities of myofibrillar protein-diacylglycerol emulsions containing catechin (MP-DAG-C), in which lard, unpurified glycerolytic lard (UGL), and purified glycerolytic lard (PGL) were used as oil phases in this study, respectively. Results revealed that emulsifying ability was significantly improved by UGL and PGL (P < 0.05). Meanwhile, the emulsifying activity and stability, absolute ξ-potential value, shear viscosity, and dynamic rheological characteristic of emulsions increased with the increase of ionic strength (P < 0.05) remarkablely, which reached the maximum value at 0.6-M sodium chloride (NaCl). The droplets of emulsions at 0.6-M ionic strength were smallest and distributed most uniformly compared to other NaCl conditions. The formation of thiobarbituric acid substances and carbonyls increased, and the total sulfydryl contents decreased as the extension of storage days (P < 0.05). However, the oxidation stability of MP-DAG-C emulsions was insignificantly decreased by ionic strengths (P > 0.05). The above results showed that MP-DAG-C emulsions could keep excellent emulsifying effects and oxidation stability under high ionic strengths. This study provides data support for the application of MP-DAG-C emulsions in emulsified meat products, which is benefit for promoting the development of high-quality emulsified meat products.
Collapse
Affiliation(s)
- Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
12
|
Fei L, Ma Z, Yue A, Cui P, Qiu Y, Lyu F, Zhang J. Effect of low-voltage electrostatic field-assisted partial freezing on large yellow croaker protein properties and metabolomic analysis during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2359-2371. [PMID: 37985177 DOI: 10.1002/jsfa.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ze Ma
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
13
|
Wan XY, Pan YP, Shu M, Geng JT, Wu GP, Zhong C. Paramyosin from field snail (Bellamya quadrata): Structural characteristics and its contribution to enhanced the gel properties of myofibrillar protein. Int J Biol Macromol 2024; 262:130097. [PMID: 38342265 DOI: 10.1016/j.ijbiomac.2024.130097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
To assess the blending effect of field snails with grass carp muscle, the effects of paramyosin (PM) and actomyosin (AM) with different mixture ratios on the gel properties of the binary blend system were investigated in our work. The purified PM from field snail muscle was about 95 kDa on SDS-PAGE. Its main secondary structure was α-helix, which reached to 97.97 %. When the amount of PM increased in the binary blend system, their rheological indices and gel strength were improved. The water holding capacity (WHC) increased to 86.30 % at a mixture ratio of 2:8. However, the WHC and the area of immobile water (P22) dramatically decreased, and the area of free water (P23) increased when the mixture ratio exceeded 4:6. The low level of PM in binary blend system promoted the formation of a homogenous and dense gel network through non-covalent interactions as observed results of SEM and FTIR. When there were redundant PM molecules, the development of heterostructure via hydrophobic interaction of tail-tail contributed to the reduced gel properties of the binary blend system. These findings provided new insight into the binary blend system of PM and AM with different ratios to change the gel properties of myofibrillar protein.
Collapse
Affiliation(s)
- Xuan-Ying Wan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Yu-Ping Pan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Jie-Ting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Guo-Ping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China.
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China.
| |
Collapse
|
14
|
Li J, Shi Z, Fan X, Du L, Xia Q, Zhou C, Sun Y, Xu B, Pan D. Characterization of the Effects of Low-Sodium Salt Substitution on Sensory Quality, Protein Oxidation, and Hydrolysis of Air-Dried Chicken Meat and Its Molecular Mechanisms Based on Tandem Mass Tagging-Labeled Quantitative Proteomics. Foods 2024; 13:737. [PMID: 38472852 DOI: 10.3390/foods13050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The effects of low-sodium salt mixture substitution on the sensory quality, protein oxidation, and hydrolysis of air-dried chicken and its molecular mechanisms were investigated based on tandem mass tagging (TMT) quantitative proteomics. The composite salt formulated with 1.6% KCl, 0.8% MgCl2, and 5.6% NaCl was found to improve the freshness and texture quality scores. Low-sodium salt mixture substitution significantly decreased the carbonyl content (1.52 nmol/mg), surface hydrophobicity (102.58 μg), and dimeric tyrosine content (2.69 A.U.), and significantly increased the sulfhydryl content (74.46 nmol/mg) and tryptophan fluorescence intensity, suggesting that protein oxidation was inhibited. Furthermore, low-sodium salt mixture substitution significantly increased the protein hydrolysis index (0.067), and cathepsin B and L activities (102.13 U/g and 349.25 U/g), suggesting that protein hydrolysis was facilitated. The correlation results showed that changes in the degree of protein hydrolysis and protein oxidation were closely related to sensory quality. TMT quantitative proteomics indicated that the degradation of myosin and titin as well as changes in the activities of the enzymes, CNDP2, DPP7, ABHD12B, FADH2A, and AASS, were responsible for the changes in the taste quality. In addition, CNDP2, ALDH1A1, and NMNAT1 are key enzymes that reduce protein oxidation. Overall, KCl and MgCl2 composite salt substitution is an effective method for producing low-sodium air-dried chicken.
Collapse
Affiliation(s)
- Jianhao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Cao C, Liang X, Xu Y, Kong B, Sun F, Liu H, Zhang H, Liu Q, Wang H. Effects and mechanisms of different κ-carrageenan incorporation forms and ionic strength on the physicochemical and gelling properties of myofibrillar protein. Int J Biol Macromol 2024; 257:128659. [PMID: 38101671 DOI: 10.1016/j.ijbiomac.2023.128659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The present work was aimed to investigate the effects of incorporating κ-carrageenan into myofibrillar protein (MP) as a dry powder (CP) or water suspension (CW) and the ionic strength (0.3 or 0.6 M sodium chloride (NaCl)) on MP physicochemical and gelling properties. The results indicated that incorporation of either CP or CW significantly increased turbidity, surface hydrophobicity, particle size and rheological behaviour of MP. In contrast, the protein solubility and fluorescence intensity of MP decreased when added with each form of κ-carrageenan (P < 0.05). These observed effects improved MP's gelling properties and produced a more compact and homogenous gel network after heating treatment. Moreover, the addition of CW rendered higher gel strength, water holding capacity and intermolecular interactions, such as ionic, hydrogen and disulphide bonds and hydrophobic interactions in MP gel compared with those added with CP, especially for 0.3 M NaCl (P < 0.05). Furthermore, addition of CW significantly decreased the α-helix content of MP gels (P < 0.05), which mainly contributing to the transformation from a random structure to an organised configuration. In addition, a higher NaCl concentration (0.6 M) enhanced the gelling properties of MP gels compared with 0.3 M NaCl concentration in the presence of each form of κ-carrageenan. Therefore, our present study indicated that incorporation form of κ-carrageenan and ionic strength have distinctive effects on regulating physicochemical characteristics and improves gelling properties of MP.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yining Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
16
|
Wu W, Jiang Q, Gao P, Yu D, Yu P, Xia W. L-histidine-assisted ultrasound improved physicochemical properties of myofibrillar proteins under reduced-salt condition - Investigation of underlying mechanisms. Int J Biol Macromol 2023; 253:126820. [PMID: 37690645 DOI: 10.1016/j.ijbiomac.2023.126820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The effects of the L-hisdine (L-His)-assisted ultrasound on physicochemical characteristics and conformation of myofibrillar protein (MP) under reduced-salt condition were investigated using spectroscopic analysis, and the binding mechanism between L-His and MP was further elucidated through molecular docking and molecular dynamics (MD) simulations. UV second derivative spectra and intrinsic Try fluorescence spectra revealed that L-His formed a complex with MP and altered the microenvironment of MP. After L-His-assisted ultrasound treatment, MP showed smaller particle size, higher solubility, and more uniform atomic force microscopy image due to the decrease of α-helix content and the subsequent increase in zeta potential, active sulfhydryl content, and surface hydrophobicity. Molecular docking and MD simulations demonstrated the optimal docking pose (minimum binding affinity of -6.78 kcal/mol) and revealed hydrophobic interactions and hydrogen bonds as the main interaction forces between L-His and MP, with several residues (ILE-464, ILE-480, THR-483, ASN-484, GLY-466, ASP-463, PHE-246) identified as binding sites.
Collapse
Affiliation(s)
- Wenmin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
17
|
Huang X, Cui Y, Shi L, Yang S, Qiu X, Hao G, Zhao Y, Liu S, Liu Z, Weng W, Ren Z. Structural properties and emulsification of myofibrillar proteins from hairtail (Trichiurus haumela) at different salt ions. Int J Biol Macromol 2023; 253:127598. [PMID: 37879582 DOI: 10.1016/j.ijbiomac.2023.127598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
The structural properties and emulsification of myofibrillar proteins (MPs) are susceptibly affected by salt ions. The effect of different salt ions on the structural properties and emulsification of MPs from hairtail (Trichiurus haumela) remains unclear. Hairtail MPs were analyzed under different ion treatments of Na+, K+, Ca2+ and Mg2+. MPs at K+ and Na+ treatment showed a similar trend on salt effect due to the unfolding of proteins under salt ions. However, the excessive electrostatic effect of divalent ions could enhance protein aggregation, especially at Ca2+ and Mg2+. The β-sheet of MPs at different salt ions interconverted with α-helix and random coil at ionic strengths from 0.1 mol/L to 1.0 mol/L. The surface hydrophobicity and active sulfhydryl content of MPs increased with the improvement of ionic strengths at 0-0.8 mol/L. Under Ca2+ and Mg2+ treatments, the turbidity of MPs was low compared to that under the treatment of Na+ and K+. Additionally, the emulsification of hairtail MPs treated with different ions was improved at an ionic strength of 0.6 mol/L. This study can contribute to using salts in constructing fish protein-based emulsions for manufacturing emulsified surimi products and promoting the development and utilization of hairtail proteins.
Collapse
Affiliation(s)
- Xianglan Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yaqing Cui
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xujian Qiu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Gengxin Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen 361013, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China.
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China.
| |
Collapse
|
18
|
Cao C, Zhu Z, Liang X, Kong B, Xu Z, Shi P, Li Y, Ji Y, Ren Z, Liu Q. Elucidation of interactions between myofibrillar proteins and κ-carrageenan as mediated by NaCl level: Perspectives on multiple spectroscopy and molecular docking. Int J Biol Macromol 2023; 248:125903. [PMID: 37479206 DOI: 10.1016/j.ijbiomac.2023.125903] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The present study was aimed to investigate the intermolecular interaction between myofibrillar proteins (MP) and κ-carrageenan (KC) as mediated by KC concentration (0.1, 0.2, 0.3, and 0.4 %, w/w) and NaCl levels (0.3 and 0.6 M) based on the multiple spectroscopy and molecular docking. The results showed that the incorporation of KC increased the turbidity, zeta-potential, and surface hydrophobicity of MP-KC mixed sols with a dose-dependent manner, as well as significantly decreasing the protein solubility (P < 0.05), which indicated that the interaction between KC and MP promoted the expansion of protein structure and exposed more hydrophobic groups. Fluorescence spectra result revealed that the interaction between MP and KC was a static quenching in the fluorescence quenching process, which affected the aromatic amino acids residue microenvironment of MP. Moreover, the existence of KC decreased the α-helix contents of MP (P < 0.05), contributing to the transformation from random structure to organized configuration of MP. In addition, molecular forces, the molecular docking and thermodynamic parameters indicated that hydrophobic interactions, van der Waals force, and hydrogen bonding were considered as the main interaction forces between MP and KC. Furthermore, 0.6 M NaCl level rendered higher solubility and particle size, as well as lower turbidity and the surface hydrophobicity of MP-KC mixed sols than those with 0.3 M NaCl level (P < 0.05), which promoted the unfolding of MP molecule and subsequently increased the numbers of binding sites between MP and KC, facilitating the intermolecular interactions between MP and KC in mixed sols.
Collapse
Affiliation(s)
- Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zicheng Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pingru Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuangang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunlong Ji
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zixuan Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
19
|
Effects of actomyosin dissociation on the physicochemical and gelling properties of silver carp myofibrillar protein sol during freeze–thaw cycles. Food Res Int 2022; 162:112075. [DOI: 10.1016/j.foodres.2022.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
20
|
Influence of sodium chloride and sodium pyrophosphate on the physicochemical and gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Wang H, Wang P, Shen Q, Yang H, Xie H, Huang M, Zhang J, Zhao Q, Luo P, Jin D, Wu J, Jian S, Chen X. Insight into the effect of ultrasound treatment on the rheological properties of myofibrillar proteins based on the changes in their tertiary structure. Food Res Int 2022; 157:111136. [DOI: 10.1016/j.foodres.2022.111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
|
22
|
Liu X, Mao K, Sang Y, Tian G, Ding Q, Deng W. Physicochemical Properties and in vitro Digestibility of Myofibrillar Proteins From the Scallop Mantle ( Patinopecten yessoensis) Based on Ultrahigh Pressure Treatment. Front Nutr 2022; 9:873578. [PMID: 35479738 PMCID: PMC9037751 DOI: 10.3389/fnut.2022.873578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The utilization of myofibrillar proteins (MPs) from the scallop mantle was limited due to its poor digestibility in vitro. In this study, structural properties and in vitro digestibility of MP were evaluated after modified by ultra-high pressure (UHP) at different pressures (0.1, 100, 200, 300, 400, and 500 MPa). The results showed that high pressure could significantly increase the ordered structure content like α-helix, inhibit the formation of disulfide bonds, and decrease surface hydrophobicity. Moreover, MP possessed the optimal solubility and in vitro digestibility properties at 200 MPa due to the minimum particle size and turbidity, relatively dense and uniform microstructure. The results indicated that the UHP treatment was an effective method to improve the digestibility of MP from scallop mantle and lay a theoretical basis for the functional foods development of poor digestion people and comprehensive utilization of scallop mantles.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qiuyue Ding
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenyi Deng
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
23
|
Role of partial replacement of NaCl by KCl combined with other components on structure and gel properties of porcine myofibrillar protein. Meat Sci 2022; 190:108832. [DOI: 10.1016/j.meatsci.2022.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
24
|
Pi R, Li G, Zhuang S, Yu Q, Luo Y, Tan Y, Dai R, Hong H. Effect of the Partial Substitution of Sodium Chloride on the Gel Properties and Flavor Quality of Unwashed Fish Mince Gels from Grass Carp. Foods 2022; 11:foods11040576. [PMID: 35206053 PMCID: PMC8871401 DOI: 10.3390/foods11040576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive salt is usually required to maintain good gel properties and quality characteristics for unwashed fish mince gels (UFMG). This study aimed to investigate the effects of partial sodium chloride substitution (30%) with different substitutes (potassium chloride, disodium inosine-5′-monophosphate, basil) on the gel and flavor properties of UFMG from Ctenopharyngodon idellus. The results indicated that the texture and gel strength of NK (30% NaCl was replaced with 30% KCl) were fairly similar to that of N group (NaCl only), and the whiteness had improved significantly (p < 0.05), while the product eventually yielded a certain bitter taste. The addition of disodium inosine-5′-monophosphate (DIMP) significantly (p < 0.05) increased the hardness, chewiness, buriedness degree of tryptophan and gel strength, decreased the content of α-helix structure in the gels, while less change occurred in gel whiteness and network structure. Basil significantly (p < 0.05) reduced the buriedness degree of tryptophan, gel strength and whiteness, and deteriorated the gel structure. Nevertheless, the addition of DIMP or basil reduced the bitterness induced by KCl and improved the overall acceptability scores of gels of the N group. Moreover, there was no distinct difference in moisture content and water-holding capacity between all groups. Therefore, replacing sodium chloride in UFMG with 25% potassium chloride and 5% DIMP may be an ideal sodium salt substitution strategy.
Collapse
Affiliation(s)
- Ruobing Pi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Gaojing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Ruitong Dai
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence:
| |
Collapse
|
25
|
He X, Lv Y, Li X, Yi S, Zhao H, Li J, Xu Y. Improvement of gelation properties of silver carp surimi through ultrasound-assisted water bath heating. ULTRASONICS SONOCHEMISTRY 2022; 83:105942. [PMID: 35131561 PMCID: PMC8829131 DOI: 10.1016/j.ultsonch.2022.105942] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 05/09/2023]
Abstract
The present work investigated the effects of water bath heating coupled with different ultrasound treatments on the gel properties, protein conformation, microstructures and chemical interactions of silver carp surimi at low/high salt levels. Results showed that the gel strength, hardness, springiness and water holding capacity (WHC) of surimi gels at low salt concentration were inferior to those at high salt content, regardless of the treatments. Compared with the traditional water bath heating, ultrasonic-assisted treatments significantly improved the gelation properties of surimi at the same salt level. In fact, ultrasound treatment also facilitated the unfolding of α-helix structure of the protein, with the resulting exposure of internal groups further enhancing hydrophobic interactions and hydrogen bonds between protein molecules, thereby leading to the formation of denser microstructures with smaller holes. Furthermore, the most noteworthy ultrasonic treatment group was ultrasound-assisted preheating (U + W) group, whose gelation performance under low salt condition, was comparable with that of the traditional two-stage heating (W + W) group with high salt content. Overall, ultrasound-assisted water bath preheating proved to be a feasible approach to improve the gel properties and microstructures of low-salt surimi gels.
Collapse
Affiliation(s)
- Xueli He
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yanan Lv
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
26
|
Wang H, Yang Z, Yang H, Xue J, Li Y, Wang S, Ge L, Shen Q, Zhang M. Comparative study on the rheological properties of myofibrillar proteins from different kinds of meat. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|