1
|
Bavaro AR, Tarantini A, Bruno A, Logrieco AF, Gallo A, Mita G, Valerio F, Bleve G, Cardinali A. Functional foods in Mediterranean diet: exploring the functional features of vegetable case-studies obtained also by biotechnological approaches. Aging Clin Exp Res 2024; 36:208. [PMID: 39412623 PMCID: PMC11485090 DOI: 10.1007/s40520-024-02860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
The Mediterranean Diet (MedDiet) is a widely recognized dietary pattern, with its effects largely attributed to "functional foods" which are able to positively influence one or more target functions, improving health and maintaining a state of well-being.In this review, three "case-study" typical of the MedDiet, such as artichokes, capers and table olives are considered as traditional functional vegetables rich in bioactive compounds, mainly polyphenols. The review extensively discusses the antioxidant effects of these molecules, as well as their role in aging prevention and reduction, maintaining human health, and influencing the abundance and composition of intestinal microbiota. Additionally, this review focuses on the fate of the dietary polyphenols along the digestive tract.Among biotechnological strategies, the review explores the role of fermentation process in modifying the biochemical profile, recovery, bioaccessibility and bioavailability of bioactive compounds present in some vegetable foods of MedDiet. Finally, the main challenges in the selection, addition, and maintenance of probiotic strains in traditional food products are also summarized, with a view to develop new probiotic carriers for "functional diets".
Collapse
Affiliation(s)
- Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Annamaria Tarantini
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Angelica Bruno
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| | - Antonio F Logrieco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
- Xianghu Lab, Biomanufactoring Institute, Hangzhou, Zhejiang, China
| | - Antonia Gallo
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Giovanni Mita
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy
| | - Francesca Valerio
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy.
| | - Gianluca Bleve
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Lecce, 73100, Italy.
| | - Angela Cardinali
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, 70126, Italy
| |
Collapse
|
2
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of phenolic acids and their phase-2 conjugates derived from dietary (poly)phenols, phenylalanine, tyrosine and catecholamines. Crit Rev Food Sci Nutr 2024:1-60. [PMID: 39383187 DOI: 10.1080/10408398.2024.2410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Free or conjugated aromatic/phenolic acids arise from the diet, endogenous metabolism of catecholamines (adrenaline, noradrenaline, dopamine), protein (phenylalanine, tyrosine), pharmaceuticals (aspirin, metaprolol) plus gut microbiota metabolism of dietary (poly)phenols and undigested protein. Quantitative data obtained with authentic calibrants for 112 aromatic/phenolic acids including phase-2 conjugates in human plasma, urine, ileal fluid, feces and tissues have been collated and mean/median values compared with in vitro bioactivity data in cultured cells. Ca 30% of publications report bioactivity at ≤1 μmol/L. With support from clinical studies, it appears that the greatest benefit might be produced in vascular tissues by C6-C3 metabolites, including some of gut microbiota origin and some phase-2 conjugates, 15 of which are 3',4'-disubstituted with multiple sources including caffeic acid and hesperetin, plus one unsubstituted and two mono-substituted examples which can originate from protein. There is an unexamined potential for synergy. Free-living and washout plasma data are scarce. Some metabolites have been overlooked, notably phenyl-lactic, phenyl-hydracrylic and phenyl-propanoic acids, especially those from amino acids plus glycine, hydroxy-glycine and glutamine conjugates. Phenolic acids and conjugates from multiple sources exhibit biological activities, some of which are likely relevant in vivo and link to biomarkers of health. Further targeted studies are justified.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Victoria Heart Hospital, Clayton, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Faculty of Medicine Nursing and Health Sciences, Monash University, Victoria Heart Hospital, Clayton, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
3
|
Wu Y, Liu Y, Jia Y, Feng CH, Zhang H, Ren F, Zhao G. Effects of thermal processing on natural antioxidants in fruits and vegetables. Food Res Int 2024; 192:114797. [PMID: 39147492 DOI: 10.1016/j.foodres.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guoping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Clifford MN, Ludwig IA, Pereira-Caro G, Zeraik L, Borges G, Almutairi TM, Dobani S, Bresciani L, Mena P, Gill CIR, Crozier A. Exploring and disentangling the production of potentially bioactive phenolic catabolites from dietary (poly)phenols, phenylalanine, tyrosine and catecholamines. Redox Biol 2024; 71:103068. [PMID: 38377790 PMCID: PMC10891336 DOI: 10.1016/j.redox.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Following ingestion of fruits, vegetables and derived products, (poly)phenols that are not absorbed in the upper gastrointestinal tract pass to the colon, where they undergo microbiota-mediated ring fission resulting in the production of a diversity of low molecular weight phenolic catabolites, which appear in the circulatory system and are excreted in urine along with their phase II metabolites. There is increasing interest in these catabolites because of their potential bioactivity and their use as biomarkers of (poly)phenol intake. Investigating the fate of dietary (poly)phenolics in the colon has become confounded as a result of the recent realisation that many of the phenolics appearing in biofluids can also be derived from the aromatic amino acids, l-phenylalanine and l-tyrosine, and to a lesser extent catecholamines, in reactions that can be catalysed by both colonic microbiota and endogenous mammalian enzymes. The available evidence, albeit currently rather limited, indicates that substantial amounts of phenolic catabolites originate from phenylalanine and tyrosine, while somewhat smaller quantities are produced from dietary (poly)phenols. This review outlines information on this topic and assesses procedures that can be used to help distinguish between phenolics originating from dietary (poly)phenols, the two aromatic amino acids and catecholamines.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Iziar A Ludwig
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Laila Zeraik
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Sara Dobani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy; Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
5
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
6
|
Hu F, Wang L, Bainto-Ancheta L, Ogawa Y. Effects of Matrix Structure on Protein Digestibility and Antioxidant Property of Different Soybean Curds During In Vitro Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7364-7373. [PMID: 38527851 DOI: 10.1021/acs.jafc.3c06980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study compared the three most common types of tofu (soybean curd), which were prepared by using magnesium chloride (MgCl2 tofu), calcium sulfate (CaSO4 tofu), and glucono-δ-lactone (GDL tofu) coagulants. The results showed that GDL tofu had a higher water holding capacity than MgCl2 tofu and CaSO4 tofu, which was attributed to its high surface hydrophobicity and disulfide bond content. GDL tofu possessed the lowest firmness, gumminess, and chewiness, along with a uniform network structure and a thin protein matrix. In contrast, MgCl2 tofu exhibited an inhomogeneous network structure with a thick protein matrix. Combining the results of protein hydrolysis degree, SDS-PAGE, and free amino acids during in vitro digestion, it was indicated that the degree of protein digestion in GDL tofu was the highest. After intestinal digestion, GDL tofu had the highest total phenolic content, ferric reducing antioxidant power, and DPPH value. These results demonstrated the superior protein digestibility and antioxidant property of GDL tofu during in vitro digestion due to its structural characteristics that facilitate enzyme diffusion in the matrix. The findings offer insight into the protein digestibility and antioxidant properties of different types of tofu during digestion from structural characteristic perspective and valuable reference information for consumer dietary nutrition.
Collapse
Affiliation(s)
- Feifei Hu
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
| | - Lin Wang
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
| | - Loraine Bainto-Ancheta
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
- Institute of Food Science and Technology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños, Laguna 4031, Philippines
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-0092, Japan
| |
Collapse
|
7
|
Makiso MU, Tola YB, Ogah O, Endale FL. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci Nutr 2024; 12:734-764. [PMID: 38370073 PMCID: PMC10867520 DOI: 10.1002/fsn3.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.
Collapse
Affiliation(s)
- Markos Urugo Makiso
- Department of Food Science and Postharvest TechnologyCollege of Agricultural SciencesWachemo UniversityHossanaEthiopia
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Bekele Tola
- Department of Postharvest ManagementCollege of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Onwuchekwa Ogah
- Department of Applied BiologyEbonyi State UniversityIsiekeNigeria
| | - Fitsum Liben Endale
- Department of Public HealthCollege of Medicine and Health SciencesWachemo UniversityHossanaEthiopia
| |
Collapse
|
8
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38189312 DOI: 10.1080/10408398.2023.2299329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3-O-glucuronide (Q3G) and 3'-methylquercetin-3-O-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'-O-sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
9
|
Yang X, Shi J, Li H, Zhang K, Li J, Song Q. Characterization of the metabolic fate of sinapic acid in rats. Anal Bioanal Chem 2023; 415:6511-6523. [PMID: 37695392 DOI: 10.1007/s00216-023-04929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Sinapic acid (SA) is ubiquitously distributed in the plant kingdom as a free organic acid and more frequently as a biosynthetic pioneer for SA derivatives, e.g., SA esters. Broad biological and pharmacological activities have been disclosed for SA. Because of the metabolism lability property, metabolites instead of the parent compound should be the primary forms after oral treatment of SA, and those metabolites should also be rapidly observed from SA following administration of SA derivative. Hence, the metabolites might provide a primary contribution to the pharmacological properties of SA; however, the metabolite profile remains unclear. Here, our efforts were devoted to addressing this issue through deploying online energy-resolved mass spectrometry (ER-MS) to accomplish isomer identification which is the key issue hindering metabolite identification, notably those conjugated metabolites. After recording breakdown graphs of concerned fragment ions with online ER-MS, the positive correlations between optimal collision energy (OCE) and bond dissociation energy (BDE) were applied to assign candidate structures to isomeric signals. Moreover, in vitro metabolism with liver cellular subfractions, UV-triggered cis-/trans-configuration transformation, and wet-chemistry hydrogenation were carried out to justify the structures. As a result, sixteen metabolites (M1-M16) were found and confirmatively identified in rat plasma and urine following SA administration, and sulfation, glucuronidation, demethylation, reduction, and dihydroxylation served as the primary metabolic channels. Noteworthily, greater distribution occurred for sulfation and glucuronidation products while inferior distributions were observed for phase I metabolites, and the half-life (T1/2) of most metabolites was greater than that of SA. This study provides a comprehensive insight into the metabolic fate of SA. More importantly, the fortification of online ER-MS and quantum structure calculation to the conventional LC-MS program is eligible to achieve unambiguous identification of isomeric metabolites.
Collapse
Affiliation(s)
- Xiangfen Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingjing Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Han Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ke Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingqing Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
10
|
Cattivelli A, Conte A, Tagliazucchi D. Quercetins, Chlorogenic Acids and Their Colon Metabolites Inhibit Colon Cancer Cell Proliferation at Physiologically Relevant Concentrations. Int J Mol Sci 2023; 24:12265. [PMID: 37569640 PMCID: PMC10418599 DOI: 10.3390/ijms241512265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Several studies have suggested that a phenolic-rich diet may be protective against colon cancer. Most phenolic compounds are not absorbed in the small intestine and reach the colon where they are metabolized by gut microbiota in simple phenolic acids. In this study, the anti-proliferative activity of quercetins, chlorogenic acids, their colon metabolites and mixtures of parent compounds/metabolites was assessed by using two colon cancer cell lines (Caco-2 and SW480) at physiologically relevant concentrations. Chlorogenic acids, quercetin and the metabolite 3-(3',4'-dihydroxyphenyl)acetic acid exerted remarkable anti-proliferative activity against Caco-2, whereas quercetin derivatives and metabolites were the most active against SW480. Tested compounds arrested the cell cycle at the S phase in both the cell lines. The mixtures of parent compounds/metabolites, which mimic the colon human metabotypes that slowly or rapidly metabolize the parent compounds, similarly inhibited cell growth. SW480 cells metabolized parent phenolic compounds more rapidly and extensively than Caco-2, whereas colon metabolites were more stable. These results suggest that dietary phenolic compounds exert an anti-proliferative effect against human colon cancer cells that can be further sustained by the colon metabolites. Therefore, gut microbiota metabolism of phenolic compounds may be of paramount importance in explaining the protective effect of phenolic-rich foods against colon cancer.
Collapse
Affiliation(s)
| | | | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy; (A.C.); (A.C.)
| |
Collapse
|
11
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
12
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
13
|
Malarz J, Yudina YV, Stojakowska A. Hairy Root Cultures as a Source of Phenolic Antioxidants: Simple Phenolics, Phenolic Acids, Phenylethanoids, and Hydroxycinnamates. Int J Mol Sci 2023; 24:ijms24086920. [PMID: 37108084 PMCID: PMC10138958 DOI: 10.3390/ijms24086920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived antioxidants are intrinsic components of human diet and factors implicated in tolerance mechanisms against environmental stresses in both plants and humans. They are being used as food preservatives and additives or ingredients of cosmetics. For nearly forty years, Rhizobium rhizogenes-transformed roots (hairy roots) have been studied in respect to their usability as producers of plant specialized metabolites of different, primarily medical applications. Moreover, the hairy root cultures have proven their value as a tool in crop plant improvement and in plant secondary metabolism investigations. Though cultivated plants remain a major source of plant polyphenolics of economic importance, the decline in biodiversity caused by climate changes and overexploitation of natural resources may increase the interest in hairy roots as a productive and renewable source of biologically active compounds. The present review examines hairy roots as efficient producers of simple phenolics, phenylethanoids, and hydroxycinnamates of plant origin and summarizes efforts to maximize the product yield. Attempts to use Rhizobium rhizogenes-mediated genetic transformation for inducing enhanced production of the plant phenolics/polyphenolics in crop plants are also mentioned.
Collapse
Affiliation(s)
- Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| | - Yulia V Yudina
- Educational and Scientific Medical Institute, National Technical University "Kharkiv Polytechnic Institute", Kyrpychova Street 2, 61002 Kharkiv, Ukraine
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
| |
Collapse
|
14
|
Clifford MN, King LJ, Kerimi A, Pereira-Caro MG, Williamson G. Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid β-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 2022; 64:3326-3383. [PMID: 36226718 DOI: 10.1080/10408398.2022.2131730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ω-Phenyl-alkenoic acids are abundant in coffee, fruits, and vegetables. Along with ω-phenyl-alkanoic acids, they are produced from numerous dietary (poly)phenols and aromatic amino acids in vivo. This review addresses how phenyl-ring substitution and flux modulates their gut microbiota and endogenous β-oxidation. 3',5'-Dihydroxy-derivatives (from alkyl-resorcinols, flavanols, proanthocyanidins), and 4'-hydroxy-phenolic acids (from tyrosine, p-coumaric acid, naringenin) are β-oxidation substrates yielding benzoic acids. In contrast, 3',4',5'-tri-substituted-derivatives, 3',4'-dihydroxy-derivatives and 3'-methoxy-4'-hydroxy-derivatives (from coffee, tea, cereals, many fruits and vegetables) are poor β-oxidation substrates with metabolism diverted via gut microbiota dehydroxylation, phenylvalerolactone formation and phase-2 conjugation, possibly a strategy to conserve limited pools of coenzyme A. 4'-Methoxy-derivatives (citrus fruits) or 3',4'-dimethoxy-derivatives (coffee) are susceptible to hepatic "reverse" hydrogenation suggesting incompatibility with enoyl-CoA-hydratase. Gut microbiota-produced 3'-hydroxy-4'-methoxy-derivatives (citrus fruits) and 3'-hydroxy-derivatives (numerous (poly)phenols) are excreted as the phenyl-hydracrylic acid β-oxidation intermediate suggesting incompatibility with hydroxy-acyl-CoA dehydrogenase, albeit with considerable inter-individual variation. Further investigation is required to explain inter-individual variation, factors determining the amino acid to which C6-C3 and C6-C1 metabolites are conjugated, the precise role(s) of l-carnitine, whether glycine might be limiting, and whether phenolic acid-modulation of β-oxidation explains how phenolic acids affect key metabolic conditions, such as fatty liver, carbohydrate metabolism and insulin resistance.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Laurence J King
- School of Bioscience and Medicine, University of Surrey, Guildford, UK
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| | - Maria Gema Pereira-Caro
- Department of Food Science and Health, Instituto Andaluz de Investigacion y Formacion Agraria Pesquera Alimentaria y de la Produccion Ecologica, Sevilla, Spain
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Clayton, Australia
| |
Collapse
|
15
|
Nissen L, Cattivelli A, Casciano F, Gianotti A, Tagliazucchi D. Roasting and frying modulate the phenolic profile of dark purple eggplant and differently change the colon microbiota and phenolic metabolites after in vitro digestion and fermentation in a gut model. Food Res Int 2022; 160:111702. [DOI: 10.1016/j.foodres.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
16
|
Hu Y, Lin Q, Zhao H, Li X, Sang S, McClements DJ, Long J, Jin Z, Wang J, Qiu C. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2077-2091. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary intake of plant polyphenols is significant, and many of them enter a human body as a highly diverse pool of ring-fission phenolic metabolites arising from digestion and microbial catabolism of the parental structures. Difficulty in designing the uniform intervention studies and limited tools calibrated to detect and quantify the inherent complexity of phenolic metabolites hindered efforts to establish and validate protective health effects of these molecules. Here, we highlight the recent findings that describe novel complex downstream metabolite profiles with a particular focus on dihydrophenolic (phenylpropanoic) acids of microbial origin, ingested and phase II-transformed methylated phenolic metabolites (methylated sinks), and small phenolic metabolites derived from the breakdown of different classes of flavonoids, stilbenoids, and tannins. There is a critical need for precise identification of the individual phenolic metabolite signatures originating from different polyphenol groups to enable future translation of these findings into break-through nutritional interventions and dietary guidelines.
Collapse
Affiliation(s)
- Chi In Vong
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
18
|
Yue Y, Li Q, Fu Y, Chang J. Stability of Chlorogenic Acid from Artemisiae Scopariae Herba Enhanced by Natural Deep Eutectic Solvents as Green and Biodegradable Extraction Media. ACS OMEGA 2021; 6:34857-34865. [PMID: 34963969 PMCID: PMC8697393 DOI: 10.1021/acsomega.1c05541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/26/2021] [Indexed: 05/25/2023]
Abstract
A green and inexpensive natural deep eutectic solvent (NADES) was screened and integrated with an ultrasonic technique for extracting chlorogenic acid (CGA) from artemisiae scopariae herba. Response surface methodology was employed to investigate significant factors and optimize their influence. Proline-malic acid exhibited an excellent extraction capacity with a yield of 28.23 mg/g under the optimal conditions of water content of 15% (wt), solid-liquid ratio of 1.0/10 (g/mL), ultrasonic power of 300 W, and extraction time of 25 min. Simultaneously, the stability and antioxidant activity analysis exhibited a better performance of CGA in NADES than that in water and ethanol. The hydrogen-bonding interaction between CGA and natural deep eutectic molecules enhanced the stability and meanwhile protected the antioxidant activity of CGA.
Collapse
Affiliation(s)
- Yingying Yue
- School
of Chemistry and Chemical Engineering, South
China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Qingyang Li
- School
of Chemistry and Chemical Engineering, South
China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Yan Fu
- School
of Chemistry and Chemical Engineering, South
China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Jie Chang
- Key
Laboratory of Heat Transfer Enhancement and Energy Conservation of
Education Ministry, South China University
of Technology, No. 381, Wushan Road, Guangzhou 510640, China
- School
of Chemistry and Chemical Engineering, South
China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| |
Collapse
|
19
|
Based on Multi-Activity Integrated Strategy to Screening, Characterization and Quantification of Bioactive Compounds from Red Wine. Molecules 2021; 26:molecules26216750. [PMID: 34771156 PMCID: PMC8587790 DOI: 10.3390/molecules26216750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
According to French Paradox, red wine was famous for the potential effects on coronary heart disease (CHD), but the specific compounds against CHD were unclear. Therefore, screening and characterization of bioactive compounds from red wine was extremely necessary. In this paper, the multi-activity integrated strategy was developed and validated to screen, identify and quantify active compounds from red wine by using ultra high performance liquid chromatography-fraction collector (UHPLC-FC), ultra fast liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UFLC-Q-TOF/MS) and bioactive analysis. UHPLC-FC was employed to separate and collect the components from red wine, which was further identified by UFLC-Q-TOF/MS to acquire their structural information. Furthermore, the active fractions were tested for antioxidant activity, inhibitory activity against thrombin and lipase activities in vitro by the activity screening kit. As the results, there were 37 fractions had antioxidant activity, 22 fractions had thrombin inhibitory activity and 28 fractions had lipase inhibitory activity. Finally, 77 active components from red wine were screened and 12 ingredients out of them were selected for quantification based on the integration of multi-activity. Collectively, the multi-activity integrated strategy was helpful for the rapid and effective discovery of bioactive components, which provided reference for exploring the health care function of food.
Collapse
|