1
|
Pei H, Wang Y, He W, Zhang Y, Yang L, Li J, Ma Y, Hu X, Li S, Li J, Hu K, Liu A, Ao X, Teng H, Li R, Li Q, Zou L, Liu S, Yang Y. Characterization of ornithine decarboxylase with histidine decarboxylase activity in natural histidine decarboxylase gene deletion Enterobacter hormaechei RH3. Food Microbiol 2025; 125:104644. [PMID: 39448154 DOI: 10.1016/j.fm.2024.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Histamine is predominantly produced in sausages via the decarboxylation of histidine by bacteria. Furthermore, histamine-producing bacteria usually possess the enzyme histidine decarboxylase (hdc). Enterobacter hormaechei RH3 isolated from sausages exhibited significant levels of histamine production despite the absence of hdc. In this study, we elucidated the previously unidentified mechanism underlying histamine production by RH3. We identified an enzyme, NehdX-772, exhibiting the hdc activity from the cell lysate supernatant of RH3, which was annotated as ornithine decarboxylase. The optimal activity of NehdX-772 was recorded at 35 °C and pH 6.0, and it could tolerate a salt concentration of 2.5% (w/v) NaCl. Moreover, artificial inoculation revealed that NehdX-772 was synthesized at significant levels in sausages, leading to an increase in histamine levels. The discovery of NehdX-772 explains the underlying mechanism of histamine production by RH3 and can be applied to decrease histamine production in sausages.
Collapse
Affiliation(s)
- Huijie Pei
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yilun Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Wei He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yue Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Lamei Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jinhai Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yixuan Ma
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Shuhong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Hui Teng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China.
| |
Collapse
|
2
|
Luo Y, Zhang C, Liao H, Luo Y, Huang X, Wang Z, Xiaole X. Integrative metagenomics, volatilomics and chemometrics for deciphering the microbial structure and core metabolic network during Chinese rice wine (Huangjiu) fermentation in different regions. Food Microbiol 2024; 122:104569. [PMID: 38839228 DOI: 10.1016/j.fm.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yunchuan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Xia Xiaole
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300000, PR China.
| |
Collapse
|
3
|
Li H, Li G, Bi Y, Liu S. Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality. Foods 2024; 13:2565. [PMID: 39200493 PMCID: PMC11353695 DOI: 10.3390/foods13162565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
The flavor profile of fermented fish products is influenced by the complex interplay of microbial and enzymatic actions on the raw materials. This review summarizes the various factors contributing to the unique taste and aroma of these traditional foods. Key ingredients include locally sourced fish species and a variety of spices and seasonings that enhance flavor while serving as cultural markers. Starter cultures also play a critical role in standardizing quality and accelerating fermentation. Flavor compounds in fermented fish are primarily derived from the metabolism of carbohydrates, lipids, and proteins, producing a diverse array of free amino acids, peptides, and volatile compounds such as aldehydes, ketones, alcohols, and esters. The fermentation process can be shortened by certain methods to reduce production time and costs, allowing for faster product turnover and increased profitability in the fermented fish market. Fermented fish products also show potent beneficial effects. This review highlights the importance of integrating traditional practices with modern scientific approaches. Future research directions to enhance the quality of fermented fish products are suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yunchen Bi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Wu J, Wu Z, Zhang W. Effects of pickle brine and glycine addition on biogenic amine production in pickle fermentation. Food Res Int 2024; 188:114501. [PMID: 38823874 DOI: 10.1016/j.foodres.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.
Collapse
Affiliation(s)
- Jiale Wu
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhengyun Wu
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Wenxue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
5
|
Pei H, He W, Wang Y, Zhang Y, Yang L, Li J, Ma Y, Li R, Li S, Li Q, Li J, Hu K, Teng H, Hu X, Zou L, Liu S, Yang Y. Insight into a natural novel histidine decarboxylase gene deletion in Enterobacter hormaechei RH3 from traditional Sichuan-style sausage. J Food Sci 2024; 89:566-580. [PMID: 38126118 DOI: 10.1111/1750-3841.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Histamine (HIS) is primarily formed from decarboxylated histidine by certain bacteria with histidine decarboxylase (hdc) activity and is the most toxic biogenic amine. Hdc, which is encoded by the hdc gene, serves as a key enzyme that controls HIS production in bacteria. In this paper, we characterized the changes in microbial and biogenic amines content of traditional Sichuan-style sausage before and after storage and demonstrated that Enterobacteriaceae play an important role in the formation of HIS. To screen for Enterobacteriaceae with high levels of HIS production, we isolated strain RH3 which has a HIS production of 2.27 mg/mL from sausages stored at 37°C for 180 days, using selective media and high-performance liquid chromatography. The strain RH3 can produce a high level of HIS after 28 h of fermentation with a significant hysteresis. Analysis of the physicochemical factors revealed that RH3 still retained its ability to partially produce HIS in extreme environments with pH 3.5 and 10.0. In addition, RH3 exhibited excellent salt tolerance (6.0% NaCl and 1.0% NaNO2 ). Subsequently, RH3 was confirmed as Enterobacter hormaechei with hdc gene deletion by PCR, western blot, and whole-genome sequencing analysis. Furthermore, RH3 exhibited pathogenicity rate of 75.60% toward the organism, indicating that it was not a food-grade safe strain, and demonstrated a high level of conservation in intraspecific evolution. The results of this experiment provide a new reference for studying the mechanism of HIS formation in microorganisms. PRACTICAL APPLICATION: This study provides a new direction for investigating the mechanism of histamine (HIS) formation by microorganisms and provides new insights for further controlling HIS levels in meat products. Further research can control the key enzymes that form HIS to control HIS levels in food.
Collapse
Affiliation(s)
- Huijie Pei
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei He
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Yilun Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, P. R. China
| | - Yue Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Lamei Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Jinhai Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Yixuan Ma
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuhong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Hui Teng
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, P. R. China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, P. R. China
| |
Collapse
|
6
|
Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res Int 2023; 172:113112. [PMID: 37689879 DOI: 10.1016/j.foodres.2023.113112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Fermented fish and fermented fish-based products are part of the diet of many countries all over the world. Their popularity is not only due to the unique flavor, the distinct texture, and the good nutritional quality, but also to the easiness of the production process, that is commonly based on empirical traditional methods. Fish fermentation techniques ususally rely on the combination of some key steps, including salting, addition of spices or additives, and maintenance of anaerobic conditions, thus selecting for the multiplication of some pro-technological microorganisms. The objective of the present review was to provide an overview of the current knowledge of the microbial communities occurring in fermented fish and fish-based products. Specific information was collected from scientific publications published from 2000 to 2022 with the aim of generating a comprehensive database. The production of fermented fish and fish-based foods was mostly localized in West African countries, Northern European countries, and Southeast Asian countries. Based on the available literature, the microbial composition of fermented fish and fish-based products was delineated by using viable counting combined with identification of isolates, and culture-independent techniques. The data obtained from viable counting highlighted the occurrence of microbial groups usually associated with food fermentation, namely lactic acid bacteria, staphylococci, Bacillus spp., and yeasts. The identification of isolates combined with culture-independent methods showed that the fermentative process of fish-based products was generally guided by lactobacilli (Lactiplantibacillus plantarum, Latilactobacillus sakei, and Latilactobacillus curvatus) or Tetragenococcus spp. depending on the salt concentration. Among lactic acid bacteria populations, Lactococcus spp., Pediococcus spp., Leuconostoc spp., Weissella spp., Enterococcus spp., Streptococcus spp., and Vagococcus spp. were frequently identified. Staphylococcus spp. and Bacillus spp. confirmed a great adaptation to fermented fish-based products. Other noteworthy bacterial taxa included Micrococcus spp., Pseudomonas spp., Psychrobacter spp., Halanaerobium spp., and Halomonas spp. Among human pathogenic bacteria, the occurrence of Clostridium spp. and Vibrio spp. was documented. As for yeast populations, the predominance of Candida spp., Debaryomyces spp., and Saccharomyces spp. was evidenced. The present literature review could serve as comprehensive database for the scientific community, and as a reference for the food industry in order to formulate tailored starter or adjunctive cultures for product improvement.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
7
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023:1-26. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
8
|
Wang Y, Chen Q, Li L, Chen S, Zhao Y, Li C, Xiang H, Wu Y, Sun-Waterhouse D. Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Compr Rev Food Sci Food Saf 2023; 22:3560-3601. [PMID: 37458317 DOI: 10.1111/1541-4337.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/13/2023]
Abstract
Regular consumption of fish promotes sustainable health while reducing negative environmental impacts. Fermentation has long been used for preserving perishable foods, including fish. Fermented fish products are popular consumer foods of historical and cultural significance owing to their abundant essential nutrients and distinct flavor. This review discusses the recent scientific progress on fermented fish, especially the involved flavor formation processes, microbial metabolic activities, and interconnected biochemical pathways (e.g., enzymatic/non-enzymatic reactions associated with lipids, proteins, and their interactions). The multiple roles of fermentation in preservation of fish, development of desirable flavors, and production of health-promoting nutrients and bioactive substances are also discussed. Finally, prospects for further studies on fermented fish are proposed, including the need of monitoring microorganisms, along with the precise control of a fermentation process to transform the traditional fermented fish to novel, flavorful, healthy, and affordable products for modern consumers. Microbial-enabled innovative fermented fish products that consider both flavor and health benefits are expected to become a significant segment in global food markets. The integration of multi-omics technologies, biotechnology-based approaches (including synthetic biology and metabolic engineering) and sensory and consumer sciences, is crucial for technological innovations related to fermented fish. The findings of this review will provide guidance on future development of new or improved fermented fish products through regulating microbial metabolic processes and enzymatic activities.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Xu Z, Chang J, Zhou J, Shi Y, Chen H, Han L, Tu M, Li T. Characterization and Mechanism of Tea Polyphenols Inhibiting Biogenic Amine Accumulation in Marinated Spanish Mackerel. Foods 2023; 12:2347. [PMID: 37372558 DOI: 10.3390/foods12122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Putrescine is a low-molecular-weight organic compound that is widely found in pickled foods. Although the intake of biogenic amines is beneficial to humans, an excessive intake can cause discomfort. In this study, the ornithine decarboxylase gene (ODC) was involved in putrescine biosynthesis. After cloning, expression and functional verification, it was induced and expressed in E. coli BL21 (DE3). The relative molecular mass of the recombinant soluble ODC protein was 14.87 kDa. The function of ornithine decarboxylase was analyzed by determining the amino acid and putrescine content. The results show that the ODC protein could catalyze the decarboxylation of ornithine to putrescine. Then, the three-dimensional structure of the enzyme was used as a receptor for the virtual screening of inhibitors. The binding energy of tea polyphenol ligands to the receptor was the highest at -7.2 kcal mol-1. Therefore, tea polyphenols were added to marinated fish to monitor the changes in putrescine content and were found to significantly inhibit putrescine production (p < 0.05). This study lays the foundation for further research on the enzymatic properties of ODC and provides insight into an effective inhibitor for controlling the putrescine content in pickled fish.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Dalian 116029, China
| | - Jiale Chang
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Dalian 116029, China
| | - Jiamin Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Dalian 116029, China
| | - Yixin Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Chen
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Dalian 116029, China
| | - Maolin Tu
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Dalian 116029, China
| |
Collapse
|
10
|
Koo PL, Lim GK. A review on analytical techniques for quantitative detection of histamine in fish products. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Iacumin L, Pellegrini M, Sist A, Tabanelli G, Montanari C, Bernardi C, Comi G. Improving the Shelf-Life of Fish Burgers Made with a Mix of Sea Bass and Sea Bream Meat by Bioprotective Cultures. Microorganisms 2022; 10:microorganisms10091786. [PMID: 36144388 PMCID: PMC9500812 DOI: 10.3390/microorganisms10091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Seafood products are one of the most perishable foods, and their shelf life is limited by enzymatic and microbial spoilage. Developing methods to extend the shelf life of fresh fish could reduce food waste in the fishery industry, retail stores, and private households. In recent decades, the application of lactic acid bacteria (LAB) as bioprotective cultures has become a promising tool. In this study, we evaluated the use of four starter cultures, previously selected for their properties as bioprotective agents, for sea bass and sea bream burgers biopreservation. Starter cultures impacted the microbial populations, biochemical parameters (pH, TVB-N), and sensory properties of fish burgers, during 10 days of storage at 4 °C and then 20 days at 8 °C in modified atmosphere packaging (MAP). Also, storage time influenced the microbial and physicochemical characteristics of all the tested samples, except for TVB-N values, which were significantly higher in the uninoculated burgers. The volatilome changed in the different treatments, and in particular, the samples supplemented with starter presented a profile that described their rapid growth and colonization, with the production of typical molecules derived from their metabolism. The addition of bioprotective cultures avoided bloating spoilage and improved the sensory parameters of the burgers. The shelf life of the fish burgers supplemented with starter cultures could be extended up to 12 days.
Collapse
Affiliation(s)
- Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy
| | - Michela Pellegrini
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy
| | - Alice Sist
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Cristian Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 20122 Lodi, Italy
| | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy
- Correspondence:
| |
Collapse
|
12
|
Exploring the Fungal Community and Its Correlation with the Physicochemical Properties of Chinese Traditional Fermented Fish (Suanyu). Foods 2022; 11:foods11121721. [PMID: 35741919 PMCID: PMC9222310 DOI: 10.3390/foods11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Suanyu is a traditional natural fermented fish product from Southwest China that contains very complex microflora. The main purpose of this study was to explore the fungal community and its relationship with the physicochemical properties of Suanyu. The fungal community structure of Suanyu from the main provinces (Guizhou and Hunan) was studied via high-throughput sequencing. The correlation between dominant fungi and physicochemical characteristics was analyzed via Spearman's correlation coefficient. The results showed that the pH value, total volatile base nitrogen content, and thiobarbituric acid reactive substance content ranges of Suanyu samples were 4.30-5.50, 17.11-94.70 mg/100 g, and 0.61 to 3.62 mg/kg, respectively. The average contents of total volatile base nitrogen, thiobarbituric acid reactive substance, and total BAs in Suanyu from Guizhou were lower than those from Hunan. The main BAs were phenethylamine, putrescine, cadaverine, histamine, and tyramine. Ascomycota was the dominant fungal phylum, and Kodamaea, Debaryomyces, Wallemia, Zygosaccharomyces, and unclassified Dipodascaceae were the dominant fungal genera in different samples. Moreover, high abundance levels of Kodamaea and Zygosaccharomyces were found in Suanyu from Guizhou. According to the correlation analysis, Kodamaea and Zygosaccharomyces were negatively correlated with TBARS (R2 = -0.43, -0.51) and TVBN (R2 = -0.37, -0.29), and unclassified Dipodascaceae was significant negatively correlated with tyramine (R2 = -0.56). This study expands the understanding of the fungal community and the fermentation characteristics of the dominant fungi in Suanyu.
Collapse
|
13
|
Zhang F, Wu J, Yang Z, Zhang W, Fan J, Zeng X. Insights into the endogenous cathepsins on modori of fermented carp (
Cyprinus carpio
) sausage gels in acid environment. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Furong Zhang
- School of Liquor and Food engineering Guizhou university Guiyang Guizhou 550025 China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guiyang 550025 China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education Guiyang 550025 China
| | - Jiangli Wu
- School of Liquor and Food engineering Guizhou university Guiyang Guizhou 550025 China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guiyang 550025 China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education Guiyang 550025 China
| | - Zhengbin Yang
- School of Liquor and Food engineering Guizhou university Guiyang Guizhou 550025 China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guiyang 550025 China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education Guiyang 550025 China
| | - Wei Zhang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430000 China
| | - Jin Fan
- School of Liquor and Food engineering Guizhou university Guiyang Guizhou 550025 China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guiyang 550025 China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education Guiyang 550025 China
| | - Xuefeng Zeng
- School of Liquor and Food engineering Guizhou university Guiyang Guizhou 550025 China
- Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing Guiyang 550025 China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education Guiyang 550025 China
| |
Collapse
|
14
|
Profiling of autochthonous microbiota and characterization of the dominant lactic acid bacteria occurring in fermented fish sausages. Food Res Int 2022; 154:110990. [DOI: 10.1016/j.foodres.2022.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
|
15
|
Pei J, Mei J, Yu H, Qiu W, Xie J. Effect of Gum Tragacanth-Sodium Alginate Active Coatings Incorporated With Epigallocatechin Gallate and Lysozyme on the Quality of Large Yellow Croaker at Superchilling Condition. Front Nutr 2022; 8:812741. [PMID: 35118111 PMCID: PMC8804529 DOI: 10.3389/fnut.2021.812741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 01/05/2023] Open
Abstract
This research was done to investigate the synergistic interactions of the gum tragacanth (GT)–sodium alginate (SA) active coatings, incorporated with epigallocatechin gallate and lysozyme, on the quality of large yellow croaker (Larimichthys crocea) during superchilling storage at −3°C. Results showed that the GT-SA active coatings, containing epigallocatechin gallate [EGCG (E), 0.32% w/v], and lysozyme [LYS (L), 0.32% w/v] have reduced the total viable count, psychrophilic bacteria, and Pseudomonas spp. by about 1.55 log CFU/g, 0.49 log CFU/g, and 1.64 log CFU/g compared to the control at day 35. The GT-SA active coatings containing EGCG and LYS were effective in lowering the formations of off-odor compounds such as total volatile basic nitrogen (TVB-N), malondialdehyde (MDA), and off-favor amino acid (histidine). The solid phase microextraction gas chromatography-mass spectrometer (SPME-GC/MS) was applied to characterize and to quantify the volatile compounds of large yellow croaker samples during superchilling storage, while the relative content of the fishy flavor compounds (including 1-octen-3-ol and acetoin) was significantly reduced in the active coatings treated samples. Furthermore, the GT-SA active coatings containing EGCG and LYS treatments was found to be more effective in retarding the migration of water based on magnetic resonance imaging (MRI) results and in maintaining the organoleptic quality of large yellow croaker in superchilling storage at −3°C according to the sensory evaluation results. The results showed that the GT-SA active coating containing EGCG and LYS was effective to be used as a fish preservative to improve the quality and to prolong the shelf life of large yellow croaker in a superchilling storage for at least 7 days.
Collapse
Affiliation(s)
- Juxin Pei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- *Correspondence: Jun Mei
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- Jing Xie
| |
Collapse
|
16
|
Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance. JOURNAL OF ETHNIC FOODS 2021; 8:33. [DOI: https:/doi.org/10.1186/s42779-021-00109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 09/01/2023]
Abstract
AbstractThe cleaner production of biomass into value-added products via microbial processes adds uniqueness in terms of food quality. The microbe-mediated traditional process for transforming biomass into food is a sustainable practice in Asian food industries. The 18 fermented fish products derived through this process as well as the associated micro-flora and nutritional composition have been focused. This review aims to update the process of green conversion biomass into value-added food products for a more sustainable future. Fish products are classified based on the substrate and source of the enzymes used in fermentation, which includes the three types of technology processing discussed. According to the findings, these fermented fish contain a plethora of beneficial microbiota, making them a valuable source of probiotics that may confer nutritional and health benefits.Bacillus(12 products),Lactobacillus(12 products),Micrococcus(9 products), andStaphylococcus(9 products) were the most common bacterial genera found in 18 fermented fish products. Consuming fermented fish products is beneficial to human health due to their high levels of carbohydrate, protein, fat, and lactic acid. However, biogenic amines, which are produced by certain bacteria as a by-product of their catabolic activity, are a significant potential hazard in traditionally fermented fish.
Collapse
|
17
|
Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance. JOURNAL OF ETHNIC FOODS 2021; 8:33. [PMCID: PMC8579182 DOI: 10.1186/s42779-021-00109-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/30/2021] [Indexed: 06/02/2023]
Abstract
The cleaner production of biomass into value-added products via microbial processes adds uniqueness in terms of food quality. The microbe-mediated traditional process for transforming biomass into food is a sustainable practice in Asian food industries. The 18 fermented fish products derived through this process as well as the associated micro-flora and nutritional composition have been focused. This review aims to update the process of green conversion biomass into value-added food products for a more sustainable future. Fish products are classified based on the substrate and source of the enzymes used in fermentation, which includes the three types of technology processing discussed. According to the findings, these fermented fish contain a plethora of beneficial microbiota, making them a valuable source of probiotics that may confer nutritional and health benefits. Bacillus (12 products), Lactobacillus (12 products), Micrococcus (9 products), and Staphylococcus (9 products) were the most common bacterial genera found in 18 fermented fish products. Consuming fermented fish products is beneficial to human health due to their high levels of carbohydrate, protein, fat, and lactic acid. However, biogenic amines, which are produced by certain bacteria as a by-product of their catabolic activity, are a significant potential hazard in traditionally fermented fish.
Collapse
Affiliation(s)
- Yutika Narzary
- Department of Botany, Bodoland University, Kokrajhar, BTR, Assam 783370 India
| | - Sandeep Das
- Department of Biotechnology, Bodoland University, Kokrajhar, BTR, Assam 783370 India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar, BTR, Assam 783370 India
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Hemen Sarma
- Institutional Biotech Hub (IBT Hub), Department of Botany, Nanda Nath Saikia College, Titabar, Assam 785630 India
| | | |
Collapse
|