1
|
Qin X, Chen L, Zhao J, Zhang W, Tian H, Bi S, Jin G, Zhou Y, Zhu Q, Cheng Y, Liu Y. Crosslinked protein-polysaccharide nanocomposite coating for pork preservation: Impact on physicochemical properties and microbial structure. Food Chem 2025; 470:142721. [PMID: 39871437 DOI: 10.1016/j.foodchem.2024.142721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/29/2025]
Abstract
Edible films are significant in prolonging the shelf life of meat products. Herein, we prepared some edible coatings (EW/TNPCSs) based on egg white/chitosan/pectin as polymer matrix, containing tannic acid-nisin composite nano-crosslinker with antibacterial-antioxidant activities. The results of preservation indicated that the prepared EW/TNPCSs reduced the water loss of chilled pork and delayed the changes of taste, texture and surface color. At the end of the 12-day storage period, the content of TVB-N and carbonyl as well as the pH of EW/TNPCS5 chilled pork decreased by 33.75 %, 96.61 % and 7.09 %, respectively, and colony count decreased by 17.71 % compared to the control. Additionally, EW/TNPCSs inhibited the richness and diversity of spoilage dominant bacteria (Myroides, Acinetobacter, etc.), which were positively regulated by physicochemical indicators such as saltiness and abundance of bacteriostatic materials-coated chilled pork. It will provide a practical basis for the application of EW/TNPCSs coatings in the preservation of chilled pork.
Collapse
Affiliation(s)
- Xianmin Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linqin Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Jingjing Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Wenxin Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Haimiao Tian
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yuxin Cheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
2
|
Choo JE, Park TH, Kim SK, Hwang SW. Incorporation of pyromellitic dianhydride for enhanced performance in PBAT/thermoplastic starch blend. Int J Biol Macromol 2025; 305:141260. [PMID: 39986521 DOI: 10.1016/j.ijbiomac.2025.141260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT)/thermoplastic starch (TPS) blends were prepared via a melt processing with combined systems of two different plasticizers: TPS with a glycerol and water plasticizer system and sTPS with a glycerol, water, and an epoxidized soybean oil (ESO), plasticizer system. The plasticizing effect on the optimized PBAT/sTPS compositions was evaluated. However, it was difficult to achieve the superior physical properties of hydrophobic PBAT with hydrophilic TPS. The PBAT/sTPS blend exhibited low interfacial energy, maintaining the Young's modulus and elongation at break, but the tensile strength decreased due to the high sTPS content. The addition of PMDA from 0.5 to 2.0 phr confirmed interaction between the anhydride group, the hydroxyl/carboxyl group of PBAT and the hydroxyl group of sTPS through ring-opening reactions. With the addition of 1.0 phr of PMDA, the dispersion of sTPS in the PBAT matrix was improved, leading to effective stress transfer resulting in a 33.77 % increase in tensile strength. Overall, PBAT/sTPS blends with PMDA compatibilizers have proved to have a profound impact on excellent mechanical properties and improved compatibility, suggesting its potential as an attractive alternative to petroleum-based plastics to resolve environmental issues.
Collapse
Affiliation(s)
- Ji Eun Choo
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| | - Tae Hyeong Park
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea
| | - Sung Kyu Kim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon, South Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sung Wook Hwang
- Department of Chemical Engineering, Keimyung University, Daegu, South Korea.
| |
Collapse
|
3
|
Carneiro B, Marques P, Lopes T, Figueira E. Biodegradable Microplastics from Agricultural Mulch Films: Implications for Plant Growth-Promoting Bacteria and Plant's Oxidative Stress. Antioxidants (Basel) 2025; 14:230. [PMID: 40002414 PMCID: PMC11851392 DOI: 10.3390/antiox14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
This study explores the interactions between biodegradable (BIO) microplastics and plant growth-promoting bacteria (PGPB), assessing their effects on soil health and crop productivity. Five bacterial strains, Bacillus, Enterobacter, Kosakonia, Rhizobium, and Pseudomonas, were exposed to BIO microplastics to examine strain-specific responses. This study revealed that while most bacteria experienced growth inhibition, Kosakonia sp. O21 was poorly affected by BIO microplastics, indicating a potential for microplastic degradation. This study further investigated the effect of these microplastics on plant growth and biochemistry. Results showed that exposure to BIO microplastics significatively reduced plant growth and caused oxidative stress, affecting membranes and proteins and inducing the activity of glutathione S-transferases (GSTs), catalase (CAT), and superoxide dismutase (SOD) as antioxidant responses. Bacterial inoculation alleviated plant oxidative stress, especially at lower concentrations of microplastics. These findings emphasize the critical role of oxidative stress in mediating the negative effects of BIO microplastics on plants and the relevance of bacterial strains that can tolerate BIO microplastics to protect plants from BIO microplastics' effects. Results also highlight the importance of extending research to assess the long-term implications of biodegradable microplastics for soil PGPBs and plant health and crop productivity. This study contributes to sustainable agricultural practices by offering insights into mitigating the risks of microplastic pollution through microbial-based interventions.
Collapse
Affiliation(s)
- Bruno Carneiro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paula Marques
- TEMA—Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Tiago Lopes
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Etelvina Figueira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
4
|
Fang Z, Yang Y, Lin S, Xu L, Chen S, Lv W, Wang N, Dong S, Lin C, Xie Y, Liu J, Meng M, Wen W, Yang Y. Development and antimicrobial activity of composite edible films of chitosan and nisin incorporated with perilla essential oil-glycerol monolaurate emulsions. Food Chem 2025; 462:141006. [PMID: 39213974 DOI: 10.1016/j.foodchem.2024.141006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 μL/mL PEO, 18.4 μg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 μg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.
Collapse
Affiliation(s)
- Zhantong Fang
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yating Yang
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Shuimu Lin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lirong Xu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Shuyi Chen
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Wanxia Lv
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Nannan Wang
- Public Technical Service Center, Guangzhou National Laboratory, Guangzhou 510005, China
| | - Shiyi Dong
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Chunhong Lin
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yutao Xie
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jingru Liu
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Meihan Meng
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Weijie Wen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yichao Yang
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
5
|
Thbayh DK, Mentes D, Boros ZR, Palusiak M, Farkas L, Viskolcz B, Fiser B. α-Tocopherol and Trolox as Effective Natural Additives for Polyurethane Foams: A DFT and Experimental Study. Molecules 2024; 29:6037. [PMID: 39770125 PMCID: PMC11678614 DOI: 10.3390/molecules29246037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, α-tocopherol and trolox were studied as compounds that have high biological activity. α-Tocopherol is considered a food additive because the refining process of vegetable oils causes the depletion of this vitamin, and thus, its inclusion is required to keep them from oxidizing. Computational tools have determined the antioxidant activity of these additives. The geometries of the studied molecules were optimized using two density functional methods, including M05-2X and M06-2X, in combination with the 6-311++G(2d,2p) basis set. The results indicated that when comparing the antioxidant activity of α-tocopherol and trolox, they were very similar to each other, but α-tocopherol had an antioxidant activity slightly higher, around 1.2 kJ/mol, than trolox. Thus, these additives can be used as polymer additives to protect materials from free-radical-induced stress. To test their applicability in polymeric formulations, flexible polyurethane foams were prepared with varying α-tocopherol ratios and NCO indices (1.0 and 1.1). Increasing the α-tocopherol content reduced the compressive force and altered the mechanical properties, likely due to its presence in the foam structure. This additive not only fine-tuned the mechanical properties but also provided antioxidant effects, enabling multiple enhancements in polymeric products with a single additive.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Polymer Research Center, University of Basrah, Basrah 61004, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Dóra Mentes
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Zsanett R. Boros
- Wanhua-BorsodChem Zrt, Bolyai tér 1., 3700 Kazincbarcika, Hungary; (Z.R.B.); (L.F.)
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland;
| | - László Farkas
- Wanhua-BorsodChem Zrt, Bolyai tér 1., 3700 Kazincbarcika, Hungary; (Z.R.B.); (L.F.)
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary;
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (D.K.T.); (B.V.)
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland;
- Department of Biology and Chemistry, Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
| |
Collapse
|
6
|
Wongphan P, Nerín C, Harnkarnsujarit N. Tailoring the morphology and antibacterial activity of PBAT and thermoplastic cassava starch blown films with phosphate derivatives. Int J Biol Macromol 2024; 283:137906. [PMID: 39571868 DOI: 10.1016/j.ijbiomac.2024.137906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Phosphate derivatives contain a high number of reactive groups that interact functionally with various polymers. Tetrasodium pyrophosphate (Na₄P₂O₇), sodium tripolyphosphate (Na₅P₃O₁₀), and sodium hexametaphosphate (Na₆(PO₃)₆) were incorporated into bioplastic polybutylene-adipate-terephthalate (PBAT) blended with thermoplastic cassava starch (TPS) in blown films. Their physicochemical, morphological, thermal, and antimicrobial properties were investigated. PBAT/TPS blended films were compounded via blown film extrusion to produce functional packaging. Infrared spectra indicated starch modification through the disruption of anhydroglucose monomer units, analyzed by ATR-FTIR, providing a more amorphous fraction and altering the properties of the films. PBAT/TPS films containing phosphate compounds exhibited non-homogeneous structures, with dispersed clumps within the film matrices that decreased tensile strength. The incorporation of phosphate compounds modified the storage modulus and relaxation temperature of PBAT/TPS films, influencing molecular mobility, decreasing heat transfer efficiency in seal strength, and enhancing stiffness due to starch disruption and interaction between the phosphate compound and the PBAT/TPS matrix. Wettability and permeability of PBAT/TPS films were modified by changes in polymer structure.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, EINA-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain.
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
7
|
Arumsari RA, Wongphan P, Harnkarnsujarit N. Biodegradable TPS/PBAT Blown Films with Ascorbyl Palmitate and Sodium Ascorbyl Phosphate as Antioxidant Packaging. Polymers (Basel) 2024; 16:3237. [PMID: 39683982 DOI: 10.3390/polym16233237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The development of biodegradable active packaging is a relevant topic demanding the development of film properties, biodegradability, and the potential to preserve food quality. This study aimed to develop thermoplastic starch (TPS) blended with polybutylene adipate-co-terephthalate (PBAT) films via blown-film extrusion containing ascorbyl palmitate (AP) and sodium ascorbyl phosphate (SAP) as antioxidants. The morphology, mechanism, and barrier and antioxidant properties of the films were analyzed to determine the presence of AP, SAP, and their interaction effect on the film properties. SEM showed that increasing AP and SAP content increased fibrous-like morphology, improving the TPS dispersion. AP slightly decreased mechanical properties, while SAP increased the tensile properties and seal strength of the films. All of the YM values were increased by adding AP and SAP content. The addition of AP and SAP content enhanced the interaction with TPS/PBAT networks due to increasing C-O stretching of ester bonds, compatibility, and hydrophobicity of the polymer. Both water vapor and the oxygen barrier were insignificantly affected by AP and SAP up to 1%, while the permeabilities greatly increased at higher AP and SAP contents due to non-homogeneous and void spaces between the film matrix. TPS/PBAT containing AP and SAP (≥0.5%) effectively enhanced antioxidant capacity in 95% ethanol as a food simulant and reduced the UV light transmission of the films. Finding, the interaction between AP, SAP, and TPS/PBAT matrices effectively changed the microstructures and properties as functionalized antioxidant biodegradable packaging.
Collapse
Affiliation(s)
- Rosi Andini Arumsari
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Liu B, Sun F, Zhu P, Wang K, Peng L, Zhuang Y, Li H. Preparation of multi-barrier and multi-functional paper-based materials by chitosan, ethyl cellulose and green walnut husk biorefinery products for sustainable food packaging. Int J Biol Macromol 2024; 278:134557. [PMID: 39147349 DOI: 10.1016/j.ijbiomac.2024.134557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The growing interest in paper-based materials for packaging is driven by their renewable and eco-friendly characteristics. However, their poor barrier performance against water, oil, and gas limits their application in the food packaging industry. In this study, we developed a simple dual-layer coating method to create water- and oil-repellent, gas barrier, antioxidant, and antibacterial paper-based materials using naturally-derived materials, including chitosan (CS), ethyl cellulose (EC), and cascade biorefinery products from green walnut husk (GWHE and CNC). The bottom CS/CNC oil-resistant coating and the top EC/GWHE water-resistant coating were applied to the paper surface. The synergistic effect of these coatings enhances the gas barrier and imparts functional properties to the paper. Compared to uncoated paper, the dual-layer-coated paper demonstrated a 239.1 % increase in tensile index, a higher kit rating value of 12/12, a lower Cobb 60 value of 3.21 mg/m2, a 44.0 % decrease in water vapor permeability (WVP), and a 90.7 % reduction in air permeability (AP). Additionally, this coated paper exhibited good antioxidant and antibacterial properties and favorable biodegradability. This study provides novel insights into the valorization of GWH waste and presents a sustainable strategy for producing high-performance paper-based materials for food packaging applications.
Collapse
Affiliation(s)
- Bingzhen Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fangfei Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Peiyuan Zhu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Technology Innovation Center of Woody Oil, Kunming 650201, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Wongphan P, Nerin C, Harnkarnsujarit N. Modifying Cassava Starch via Extrusion with Phosphate, Erythorbate and Nitrite: Phosphorylation, Hydrolysis and Plasticization. Polymers (Basel) 2024; 16:2787. [PMID: 39408497 PMCID: PMC11478379 DOI: 10.3390/polym16192787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extrusion processing of plasticized cassava starch, a prominent industrial crop, with chemical additives offers a thermo-mechanical approach to modify starch structures through physical and chemical interactions. This research investigates the interaction and morphology of thermoplastic cassava starch (TPS) blended with tetrasodium pyrophosphate (Na4P2O7), sodium tripolyphosphate (Na5P3O10), sodium hexametaphosphate (Na6(PO3)6), sodium erythorbate (C6H7O6Na), and sodium nitrite (NaNO2) via twin-screw extrusion. The effects of these additives on the chemical structure, thermal profile, water absorption, and solubility of the TPS were examined. The high temperature and shearing forces within the extruder disrupted hydrogen bonding at α-(1-4) and α-(1-6) glycosidic linkages within anhydroglucose units. Na4P2O7, Na5P3O10 and Na6(PO3)6 induced starch phosphorylation, while 1H NMR and ATR-FTIR analyses revealed that C6H7O6Na and NaNO2 caused starch hydrolysis. These additives hindered starch recrystallization, resulting in higher amorphous fractions that subsequently influenced the thermal properties and stability of the extruded TPS. Furthermore, the type and content of the added modifier influenced the water absorption and solubility of the TPS due to varying levels of interaction. These modified starch materials exhibited enhanced antimicrobial properties against Escherichia coli and Staphylococcus aureus in polyester blends fabricated via extrusion, with nitrite demonstrating the most potent antimicrobial efficacy. These findings suggest that starch modification via either phosphorylation or acid hydrolysis impacts the thermal properties, morphology, and hydrophilicity of extruded cassava TPS.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand;
| | - Cristina Nerin
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain;
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand;
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
10
|
Gao S, Sun S, Zhao J, Wang W, Hou H. A biodegradable pH-response packaging film with blueberry extract: Blown-extrusion fabrication, multifunctional activity, and kinetic investigation. Food Chem 2024; 449:139217. [PMID: 38581792 DOI: 10.1016/j.foodchem.2024.139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
This work proposed a novel strategy for manufacturing biodegradable pH-response packaging. Briefly, to minimize the amount and thermal processing times of blueberry extract (BE), ethanol-dissolved BE (≤ 3‰ w/w) was sprayed onto the starch/poly(butylene adipate-co-terephthalate) (PBAT) pellets before extrusion blowing. BE was well-integrated into the matrix, forming uniformly colored films. The films with BE exhibited superior mechanical (7.85 MPa of strength, 606.53% of elongation) and enhanced barrier capabilities against ultraviolet light, moisture, and gas. Additionally, they exhibited good antioxidant capacity (68.69%), antibacterial activity (72.40%), and maintained color stability. The film with 3‰ w/w BE presented excellent color responsiveness (ΔE⁎ ≥ 15) in the alkaline range, and successfully monitored the spoilage of shrimp. The pigments in the film had the maximum migration degree (≥ 70%) and rate in 50% ethanol simulation, following a first-order kinetic behavior dominated by Fickian diffusion. Findings supported the application of this strategy in the fabrication of starch/PBAT/BE films for pH-response intelligent packaging.
Collapse
Affiliation(s)
- Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Shenglin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Jiajun Zhao
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
11
|
Zhang H, Li M, Liu Z, Li R, Cao Y. Heat-sealable, transparent, and degradable arabinogalactan/polyvinyl alcohol films with UV-shielding, antibacterial, and antioxidant properties. Int J Biol Macromol 2024; 275:133535. [PMID: 38945318 DOI: 10.1016/j.ijbiomac.2024.133535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Petroleum-based packaging materials are nondegradable and unsustainable and thus are harmful to the environment. Renewable packaging films prepared from bio-based raw materials are promising alternatives to petroleum-based packaging materials. In this study, colorless and transparent bio-based films were successfully cast using a solution containing a mixture of arabinogalactan (AG) and poly (vinyl alcohol) (PVA). Vanillin was incorporated into the mixture to endow the films with UV-shielding, antioxidant, and antibacterial properties. The morphological, physical, antioxidant, and antibacterial properties of the blend films were then characterized. At an AG:PVA weight ratio of 1:3, and the vanillin content was 0.15 %, the tensile strength of the AG/PVA/Vanillin (APV) films reached ~28 MPa, while their elongation at break reached ~475 %. The addition of vanillin significantly affected the antioxidant and antibacterial properties of the blend films, which exhibited superb UV barrier capacity. The APV films exhibited extremely low oxygen transmittance, delaying the onset of mold/rot in strawberries and reducing their weight loss. Because of the heat sealability of the blend films, they can be used for encapsulating various substances, such as concentrated laundry liquid. Moreover, the blend films were recyclable and biodegradable. Thus, these films have great potential for applications that require sustainable packaging.
Collapse
Affiliation(s)
- Hongzhuang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Mengqing Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Zhulan Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China; Huatai Group Corp Ltd., Dongying 257335, PR China.
| | - Ren'ai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Yunfeng Cao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
12
|
Smaoui S, Echegaray N, Kumar M, Chaari M, D'Amore T, Shariati MA, Rebezov M, Lorenzo JM. Beyond Conventional Meat Preservation: Saddling the Control of Bacteriocin and Lactic Acid Bacteria for Clean Label and Functional Meat Products. Appl Biochem Biotechnol 2024; 196:3604-3635. [PMID: 37615854 DOI: 10.1007/s12010-023-04680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Advancements in food science and technology have paved the way for the development of natural antimicrobial compounds to ensure the safety and quality of meat and meat products. Among these compounds, bacteriocin produced by lactic acid bacteria has gained considerable scientific attention for its ability to preserve the healthy properties of meat while preventing spoilage. This natural preservative is seen as a pioneering tool and a potent alternative to chemical preservatives and heat treatment, which can have harmful effects on the nutritional and sensory qualities of meat. Bacteriocin produced by lactic acid bacteria can be used in various forms, including as starter/protective cultures for fermented meats, purified or partially purified forms, loaded in active films/coatings, or established in encapsulate systems. This review delves into the downstream purification schemes of LAB bacteriocin, the elucidation of their characteristics, and their modes of action. Additionally, the application of LAB bacteriocins in meat and meat products is examined in detail. Overall, the use of LAB bacteriocins holds immense potential to inspire innovation in the meat industry, reducing the dependence on harmful chemical additives and minimizing the adverse effects of heat treatment on nutritional and sensory qualities. This review provides a comprehensive understanding of the potential of bacteriocin produced by lactic acid bacteria as a natural and effective meat preservative.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia.
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Moufida Chaari
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Teresa D'Amore
- Deparment of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121, Foggia, Italy
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave, Almaty, 050060, Republic of Kazakhstan.
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, 109316, Russian Federation
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, 32004, Spain
| |
Collapse
|
13
|
Wang L, Li D, Ye L, Zhi C, Zhang T, Miao M. Starch-based biodegradable composites: Effects of in-situ re-extrusion on structure and performance. Int J Biol Macromol 2024; 266:130869. [PMID: 38493822 DOI: 10.1016/j.ijbiomac.2024.130869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
In this study, starch-based biodegradable composites (SDC) were prepared by extruding using thermoplastic starch (TPS, 65%wt), polylactic acid (PLA, 30%wt) and poly (butylene adipate co-terephthalate) (PBAT, 5%wt). Structure and properties of the SDC were compared by performing 1-, 2-, 3-times extrusion. The results show that in-situ re-extrusion refines the TPS in composites and reduces the size of the phase. As the number of extrusions increases, the ester bond of composites at 868 cm-1 disappears, the crystallinity increases, and the thermal stability decreases. Among the three types of composites, the mechanical properties and hydrophobic properties of the material obtained by the 2-times are the most outstanding. Compared with SDC, the elongation at break and Young's modulus of SDC-2 are significantly increased, with an increase of 8.01 % and 1.28 % in the machine direction and an increase of 11.02 % and 1.79 % in the transverse direction respectively. Additionally, water contact angle range of SDC-2 from 98.7° to 101.7°. Therefore, SDC prepared by 2-times in-situ re-extrusion has the best film properties and is an ideal packaging material. This study presents a novel method for fabricating starch-degradable composite films by in-situ re-extrusion, providing new insights into the development of starch packaging materials.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dexiang Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lei Ye
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Chaohui Zhi
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
14
|
Wongphan P, Promhuad K, Srisa A, Laorenza Y, Oushapjalaunchai C, Harnkarnsujarit N. Unveiling the Future of Meat Packaging: Functional Biodegradable Packaging Preserving Meat Quality and Safety. Polymers (Basel) 2024; 16:1232. [PMID: 38732702 PMCID: PMC11085279 DOI: 10.3390/polym16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Meat quality and shelf life are important parameters affecting consumer perception and safety. Several factors contribute to the deterioration and spoilage of meat products, including microbial growth, chemical reactions in the food's constituents, protein denaturation, lipid oxidation, and discoloration. This study reviewed the development of functional packaging biomaterials that interact with food and the environment to improve food's sensory properties and consumer safety. Bioactive packaging incorporates additive compounds such as essential oils, natural extracts, and chemical substances to produce composite polymers and polymer blends. The findings showed that the incorporation of additive compounds enhanced the packaging's functionality and improved the compatibility of the polymer-polymer matrices and that between the polymers and active compounds. Food preservatives are alternative substances for food packaging that prevent food spoilage and preserve quality. The safety of food contact materials, especially the flavor/odor contamination from the packaging to the food and the mass transfer from the food to the packaging, was also assessed. Flavor is a key factor in consumer purchasing decisions and also determines the quality and safety of meat products. Novel functional packaging can be used to preserve the quality and safety of packaged meat products.
Collapse
Affiliation(s)
- Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Chayut Oushapjalaunchai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand; (P.W.); (K.P.); (A.S.); (Y.L.); (C.O.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
15
|
Tian Y, Lei Q, Yang F, Xie J, Chen C. Development of cinnamon essential oil-loaded PBAT/thermoplastic starch active packaging films with different release behavior and antimicrobial activity. Int J Biol Macromol 2024; 263:130048. [PMID: 38336322 DOI: 10.1016/j.ijbiomac.2024.130048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The poly (butylene adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) active packaging films containing cinnamon essential oil (CEO) were fabricated by melting blending and extrusion casting method. The effects of TPS content (0 %, 10 %, 20 %, 30 %, 40 % and 50 %) on the properties of the films and their application in largemouth bass preservation were studied. As TPS content increased from 0 % to 50 %, the water vapor permeability increased from 7.923 × 10-13 (g•cm/(cm2•s•Pa)) to 23.967 × 10-13 (g•cm/(cm2•s•Pa)), the oxygen permeability decreased from 8.642 × 10-11 (cm3•m/(m2•s•Pa)) to 3.644 × 10-11 (cm3•m/(m2•s•Pa)), the retention of CEO in the films increased. The release rate of CEO from the films into food simulant (10 % ethanol) accelerated with increasing TPS. The films exhibited different antibacterial activity against E. coli, S. aureus, and S. putrefaciens. It was closely related with the release behavior of the CEO. The films containing CEO could efficiently inhibit the decomposition of protein and the growth of microorganisms in largemouth bass. It showed that the higher TPS in the films, the better inhibitory effect. This study provided a new idea for developing PBAT/TPS active films with different release behavior of active agents and different antibacterial activity for food packaging.
Collapse
Affiliation(s)
- Yifan Tian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao Lei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Fuxin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai MOE Information Technology Co., Ltd., Shanghai 201600, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
16
|
Roy S, Ghosh T, Zhang W, Rhim JW. Recent progress in PBAT-based films and food packaging applications: A mini-review. Food Chem 2024; 437:137822. [PMID: 37897823 DOI: 10.1016/j.foodchem.2023.137822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Bioplastics are a promising alternative to non-biodegradable plastics. One of these bioplastics, PBAT (polybutylene adipate co-terephthalate), is a polyester-based bioplastic commonly used to manufacture flexible packaging films. PBAT-based films have high flexibility but relatively low strength compared to other bioplastics. The strength of PBAT films can be improved by blending them with other fillers/polymers. Additionally, the functionality of PBAT films can be enhanced by incorporating bioactive functional fillers. The physical and functional properties of PBAT films produced by adding active ingredients provide functionality and are a good alternative to non-degradable petrochemical-based plastics. The PBAT-based functional films protect food and improve packaged foods' quality and life span. Thus, this review provides recent advances in PBAT-based films and their use in active food packaging applications. After briefly describing the different fabrication methods of PBAT films, various important physical and functional properties and biodegradability are comprehensively discussed. PBAT-based active packaging film in real-time food packaging is also briefly covered. Through this review, more attention is expected to be focused on research on PBAT-based biodegradable active food packaging.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Tabli Ghosh
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028, India
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Gao S, Song H, Wang Q, Zhang X, Zhang H, Wang W, Hou H. Starch/poly (butylene adipate-co-terephthalate) blown films contained the quaternary ammonium salts with different N-alkyl chain lengths as antimicrobials. Food Chem 2024; 436:137650. [PMID: 37837685 DOI: 10.1016/j.foodchem.2023.137650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
Antimicrobial biodegradable packaging is in high demand as a one-two punch against microbiological and plastic hazards. Two quaternary ammonium salts (QAS) with different N-alkyl chain lengths were used for starch/poly (butylene adipate-co-terephthalate) (PBAT) blown antimicrobial films. Dioctadecyl dimethyl ammonium chloride (D1821) contributed to a homogeneous film morphology at 5% w/w level, while micro-pores occurred with didodecyl dimethyl ammonium chloride (D1221). Increasing QAS content weakened hydrogen bonding interactions. D1821 promoted the formation of intercalated structure of nano-clays, and improved the strength, thermal stability, barrier, and surface hydrophobicity of the films. Conversely, adding D1221 decreased the mechanical properties, and significantly enhanced the surface hydrophilicity. The films with 3% and 5% w/w D1221 obviously inhibited the growth of both Staphylococcus aureus and Escherichia coli, while those with D1821 cannot show clear zone against the Gram-negative. 5% w/w D1221-loaded film delayed the growth of microorganisms in beef, of which the total viable count was 5.75 lg CFU/g after 21-day chilling storage. Findings supported that QAS had the potential for manufacturing starch/PBAT antimicrobial packaging, but the release kinetics and cytotoxicity still need to be systematically explored before application.
Collapse
Affiliation(s)
- Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Haiming Song
- College of Management, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Qiantong Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Xiaochi Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
| |
Collapse
|
18
|
Milech A, Braga CQ, Dos Santos Bermann C, de Souza JF, Fajardo AR, Vianna ÉS, Oliveira CB. New artificial hematophagy system with attractive polymeric biofilm for maintenance of Culex quinquefasciatus (Diptera: Culicidae) in the laboratory. Parasit Vectors 2024; 17:136. [PMID: 38491527 PMCID: PMC10943923 DOI: 10.1186/s13071-024-06162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Maintaining mosquito colonies in the laboratory requires a blood supply so that females' oocytes can mature and oviposition can take place. In this study, a new artificial hematophagy system for colonization and maintenance of Culex quinquefasciatus in the laboratory was developed and tested. METHODS We developed an attractive polymeric biofilm including 25% L-lactic acid for use as a membrane in an artificial hematophagy system and compared the feeding rate of females with Parafilm-M®. We also evaluated the oviposition rate, larval survival and adult emergence of females fed through the attractive biofilm. RESULTS The average percentage of female Cx. quinquefasciatus fed through the attractive biofilm was 87%, while only 20% became engorged with Parafilm-M® (p < 0.0001). Feeding through the attractive biofilm developed in this study produced high levels of evaluated biological parameters; the percentage of egg laying by females that underwent artificial hematophagy through the biofilm was 90%, with an average of 158 eggs per raft. From these eggs, 97% of the larvae hatched, of which 95% reached the pupal stage. The adult emergence rate corresponded to 93% of pupae. CONCLUSIONS Insects fed with attractant through the biofilm system had a higher engorgement rate compared to those fed through Parafilm-M®. Our study is preliminary and suggests that polymeric biofilm has great potential for artificially feeding mosquitoes in the laboratory. Based on this research, new studies will be carried out with biofilm and different systems.
Collapse
Affiliation(s)
- Angelita Milech
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Caroline Quintana Braga
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Carolina Dos Santos Bermann
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jaqueline Ferreira de Souza
- Center for Sciences Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - André Ricardo Fajardo
- Center for Sciences Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Élvia Silveira Vianna
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Camila Belmonte Oliveira
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Jia W, Jiang S, Wang F, Li J, Wang Z, Yao Z. Natural antibacterial membranes prepared using Schisandra chinensis extracts and polyvinyl alcohol in an environment-friendly manner. CHEMOSPHERE 2024; 346:140524. [PMID: 37923017 DOI: 10.1016/j.chemosphere.2023.140524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Foodborne pathogens can cause food spoilage and lead to food safety issues. In recent years, food packaging has received a lot of attention. Traditional packaging membranes are non-biodegradable and remain in the environment for a long time. In this study, natural antimicrobial substances were extracted from Schisandra chinensis by a green extraction process using distilled water as the solvent, and the effects of different treatment on the antimicrobial activity of the extract were compared. At the same time, four types of Schisandra chinensis antimicrobial membranes were prepared using polyvinyl alcohol (PVA) as the substrate. The whole extraction and membrane preparation process did not involve organic solvents, making the process green and environment friendly. Material characterization included inverted biological microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), tensile strength test, pore size measurement, water uptake test, etc. Among them, no extract particles were observed with the naked eye on the surfaces of MⅡ and MⅣ. MⅡ has a uniformly transparent, nearly colorless morphology and is the most tensile. MⅣ surface is flat and smooth, the microstructure is dense and uniform. At the same time, the four types of membranes were tested against common pathogenic bacteria for 12 h, and the OD600 trend revealed the excellent antimicrobial activity of the membranes against S. aureus, MRSA, E. coli, and L. monocytogenes. The membranes could also be reused at least once. This study provides a new idea for preparing natural plant-based antimicrobial membranes.
Collapse
Affiliation(s)
- Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
20
|
Gao S, Zhang X, Jiang J, Wang W, Hou H. Starch/poly(butylene adipate-co-terephthalate) blown antimicrobial films based on ε-polylysine hydrochloride and different nanomontmorillonites. Int J Biol Macromol 2023; 253:126609. [PMID: 37652334 DOI: 10.1016/j.ijbiomac.2023.126609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
With increasing awareness on environmental protection and food safety, the development of biodegradable antimicrobial packaging materials has been paid growing emphasis. In this work, starch/poly(butylene adipate-co-terephthalate)/ε-polylysine hydrochloride films were prepared by extrusion blowing, and five commercial organically modified nanomontmorillonites (OMMT, including DK1, DK2, DK3, DK4, and DK5) were used as reinforcing agents. Intercalated structures were formed in the nanocomposite films, especially for those with DK3 and DK4 owing to their higher hydrophobicity and larger interlayer spacing. Adding OMMT weakened hydrogen bonds and the gelatinization/plasticization degree of starch. Morphology analysis revealed that the agglomeration of OMMT occurred in the films, but the film containing DK3 still showed a relatively homogeneous microstructure. Loading OMMT enhanced the strength, deformation resistance, thermal stability, surface hydrophobicity, but decreased barrier properties and water sensitivity of the films. Antimicrobial activity showed that the OMMT and ε-polylysine hydrochloride possessed a synergistic effect against Staphylococcus aureus and Escherichia coli. The maximum inhibition rate was observed in that with DK4, approaching 100 %. Findings supported the application of commercial OMMT in manufacturing biodegradable antimicrobial blown films.
Collapse
Affiliation(s)
- Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Xiaochi Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Junzhi Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
21
|
Li H, Chen Z, Zhang S, Hu CY, Xu X. Extrusion-blown oxidized starch/poly(butylene adipate-co-terephthalate) biodegradable active films with adequate material properties and antimicrobial activities for chilled pork preservation. Int J Biol Macromol 2023; 253:127408. [PMID: 37832616 DOI: 10.1016/j.ijbiomac.2023.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Food safety concerns from spoilage and non-degradable packaging risk human health. Progress made in biodegradable plastic films, but limited study on biomass composite films with favorable morphological, mechanical, and inherent antibacterial properties for fresh meat preservation. Herein, we present a versatile packaging film created through the extrusion blowing process, combining oxidized starch (OST) with poly(butylene adipate-co-terephthalate) (PBAT). SEM analysis revealed even distribution of spherical OST particles on film's surface. FTIR spectra revealed new intermolecular hydrogen bonds between OST and PBAT. While combining OST slightly reduced tensile properties, all composite films met the required strength of 16.5 ± 1.39 MPa. Notably, films with 40 % OST showed over 98 % antibacterial rate against Staphylococcus aureus within 2 h. pH wasn't the main cause of bacterial growth inhibition; OST hindered growth by interfering with nutrient absorption and metabolism due to its carboxyl groups. Additionally, OST disrupted bacterial membrane integrity and cytoplasmic membrane potential. Remarkably, the OST/PBAT film excellently preserved chilled fresh pork, maintaining TVB-N level at 12.6 mg/100 g on day 6, microbial count at 105 CFU/g within 6-10 days, and sensory properties for 8 days. It extended pork's shelf life by two days compared to polyethylene film, suggesting an alternative to a synthetic material.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Zhuo Chen
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Chang-Ying Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China; Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
22
|
Wang W, Niu B, Liu R, Chen H, Fang X, Wu W, Wang G, Gao H, Mu H. Development of bio-based PLA/cellulose antibacterial packaging and its application for the storage of shiitake mushroom. Food Chem 2023; 429:136905. [PMID: 37487388 DOI: 10.1016/j.foodchem.2023.136905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
This study presents the extraction of cellulose from water bamboo byproducts to prepare polylactic acid (PLA)/cellulose antibacterial packaging material. The cellulose was modified using a silane coupling agent, which improved the interfacial compatibility between cellulose and PLA. Upon coating the PLA onto the modified cellulose sheet, the water contact angle of the composite material increased from 11.42° to 132.12° and the water absorption rate decreased from 182.52% to 55.71%, which improved the water resistance performance of the material. The addition of cinnamaldehyde in the PLA layer imparted antibacterial activity to the PLA/cellulose packaging material. This packaging material effectively inhibited the mycelial growth and spore germination of Aspergillus niger and Trichoderma harzianum isolated from shiitake mushroom. Additionally, the study investigated the effects of the composite on the postharvest quality of shiitake mushroom. Overall, the packaging material contributed to shiitake mushroom storage and can be applied to other perishable food products.
Collapse
Affiliation(s)
- Weitao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guannan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Honglei Mu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
23
|
Shao X, Sun H, Wang X, Zhou R. Synergistic effects of EDTA and lysozyme on the properties of hydroxypropyl starch nano antibacterial films. Curr Res Food Sci 2023; 8:100657. [PMID: 38204880 PMCID: PMC10777376 DOI: 10.1016/j.crfs.2023.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Hydroxypropyl starch (HPS) nano antibacterial films incorporating Ethylene Diamine Tetraacetic Acid (EDTA) and lysozyme (LY) were fabricated via solvent casting method. The synergistic effects of EDTA and LY on the microstructure, component interactions, color, optical, mechanical, barrier and antibacterial properties of HPS nano antibacterial films were evaluated. The results indicated that EDTA and LY were well dispersed in the matrix of the HPS nano antibacterial films, the film-forming substrates have good compatibility, resulting in a dense multi-layer structure of the HPS nano antibacterial films. The addition of EDTA and LY increased the color parameters (L*, a*, b* and △E*) of the HPS nano antibacterial films. The synergistic effects of EDTA and LY significantly decreased the light transmission of the HPS nano antibacterial films. The presence of EDTA and LY increased the tensile strength (TS) and the elongation at break (EAB) of the HPS nano antibacterial films. The TS and EAB of E2.5L1 reached the highest values of 6.329 MPa and 50.24 %, respectively. The incorporation of EDTA and LY had positive effects on the improvement of water vapor permeability (WVP) and oxygen permeability (OP). The WVP and OP of E2.5L1 reached the highest values of 0.9350 × 10-12 g cm/cm2•s•Pa and 0.297 × 10 -2 g m/m2 •d, respectively. In addition, EDTA and LY had significant synergistic effects on the antibacterial activity against S. aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria). E2.5L1 exhibited the highest antibacterial activity and the inhibition zone diameters of S. aureus and E. coli were 3.69 mm and 4.28 mm, respectively. The HPS nano antibacterial films incorporating EDTA and LY are potential functional packaging materials.
Collapse
Affiliation(s)
- Xinru Shao
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Haitao Sun
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Ximing Wang
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
| | - Ran Zhou
- School of Public Health, Jilin Medical University, No. 5 Jilin Street, Jilin, 132013, Jilin, PR China
- College of Food Science and Engineering, Changchun University, No. 6543 Weixing Road, Changchun, 130022, Jilin, PR China
| |
Collapse
|
24
|
Qian YF, Lin T, Xie J, Yang SP. Effect of modified atmosphere packaging with different gas mixtures on the texture and muscle proteins of Pacific white shrimp ( Litopenaeus vannamei) during cold storage. FOOD SCI TECHNOL INT 2023; 29:809-817. [PMID: 35996328 DOI: 10.1177/10820132221121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the effect of modified atmosphere packaging with different gas mixtures on texture and muscle properties of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage was studied via texture profile, water holding capacity (WHC), protein properties (Ca2+-ATPase, TCA-soluble peptides, myofibrillar/sarcoplasmic protein content), and microbial counts. The results showed that the antibacterial effect of Modified atmosphere packaging (MAP) was correlated with the increase of CO2 with the presence of low level of O2. Though MAP without O2 had a higher whiteness value but also had higher bacterial counts and total volatile basic nitrogen (TVB-N) values compared with other MAP-groups. In general, a gas composition of 80% CO2 + 5%O2 + 15% N2 treatment had lowest microbial counts and reduced TVB-N values by 22.85% in comparison with the control on day 10. However, MAP was found to have a complicated impact on muscle protein and texture of shrimp. 60% CO2 + 5% O2 + 35% N2 and 40% CO2 + 5% O2 + 55% N2 had an advantage in maintaining springiness and the content of myofibrillar/sarcoplasmic proteins. The correlation analysis showed that WHC had stronger relationship with springiness, resilience, myofibrillar protein content. Therefore, regarding the texture and protein properties, the concentration of CO2 in MAP for Pacific white shrimp should not be higher than 60%.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ting Lin
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Sheng-Ping Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
25
|
Peng Z, Xiong T, Huang T, Xu X, Fan P, Qiao B, Xie M. Factors affecting production and effectiveness, performance improvement and mechanisms of action of bacteriocins as food preservative. Crit Rev Food Sci Nutr 2023; 63:12294-12307. [PMID: 35866501 DOI: 10.1080/10408398.2022.2100874] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Modern society is increasingly attracted with safe, natural, and additive-free food products, that gives preference to bacteriocins produced by General Recognized as Safe bacteria as a food preservative. Bacteriocins have been reported to be effective in extending shelf life of diverse foods such as meats, dairy products, wine, juice, and fruits and vegetables, whereas commercialized bacteriocins remain only nisin, pediocin, and Micocin. It is important that commercialized preservatives undergo an easy-to-handle manufacturing while maintaining high efficacy. Limited application of bacteriocins is most often caused by the absence of legislatives for use, low production, high cost and complicated purification process, reduced efficiency in the complex food matrix and insufficiently defined mechanism of action. Accordingly, this review provides an overview of bacteriocins, in relation to production stimulation, general purification scheme, impact of food matrix on bacteriocin effectiveness, and collaborative technology to improve bacteriocin performances. It is worth to note that purification and performance improvement technology remain the two challenging tasks in promoting bacteriocins as a widely used bio-preservative. Furthermore, this review for the first time divides bacteriocin receptors into specific classes (class I, II, III) and nonspecific class, to provide a basis for an in-depth understanding of the mechanism of action.
Collapse
Affiliation(s)
- Zhen Peng
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Pengrong Fan
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Baoling Qiao
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Tan L, Ni Y, Xie Y, Zhang W, Zhao J, Xiao Q, Lu J, Pan Q, Li C, Xu B. Next-generation meat preservation: integrating nano-natural substances to tackle hurdles and opportunities. Crit Rev Food Sci Nutr 2023; 64:12720-12743. [PMID: 37702757 DOI: 10.1080/10408398.2023.2256013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The increasing global meat demand raises concerns regarding the spoilage of meat caused by microbial invasion and oxidative decomposition. Natural substances, as a gift from nature to humanity, possess broad-spectrum bioactivity and have been utilized for meat preservation. However, their limited stability, solubility, and availability hinder their further development. To address this predicament, advanced organic nanocarriers provide an effective shelter for the formation of nano-natural substances (NNS). This review comprehensively presents various natural substances derived from plants, animals, and microorganisms, along with the challenges they face. Subsequently, the potential of organic nanocarriers is explored, highlighting their distinct features and applicability, in addressing these challenges. The review methodically examines the application of NNS in meat preservation, with a focus on their pathways of action and preservation mechanisms. Furthermore, the outlook and future trends for NNS applications in meat preservation are concluded. The theory and practice summary of NNS is expected to serve as a catalyst for advancements that enhance meat security, promote human health, and contribute to sustainable development.
Collapse
Affiliation(s)
- Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qing Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jingnan Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qiong Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
27
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
28
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
29
|
Yu W, Guo J, Liu Y, Xue X, Wang X, Wei L, Ma J. Potential Impact of Combined Inhibition by Bacteriocins and Chemical Substances of Foodborne Pathogenic and Spoilage Bacteria: A Review. Foods 2023; 12:3128. [PMID: 37628127 PMCID: PMC10453098 DOI: 10.3390/foods12163128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, food safety caused by foodborne pathogens and spoilage bacteria has become a major public health problem worldwide. Bacteriocins are a kind of antibacterial peptide synthesized by microbial ribosomes, and are widely used as food preservatives. However, when used individually bacteriocins may have limitations such as high cost of isolation and purification, narrow inhibitory spectrum, easy degradation by enzymes, and vulnerability to complex food environments. Numerous studies have demonstrated that co-treatment with bacteriocins and a variety of chemical substances can have synergistic antibacterial effects on spoilage microorganisms and foodborne pathogens, effectively prolonging the shelf life of food and ensuring food safety. Therefore, this paper systematically summarizes the synergistic bacteriostatic strategies of bacteriocins in combination with chemical substances such as essential oils, plant extracts, and organic acids. The impacts of bacteriocins when used individually and in combination with other chemical substances on different food substrates are clarified, and bacteriocin-chemical substance compositions that enhance antibacterial effectiveness and reduce the potential negative effects of chemical preservatives are highlighted and discussed. Combined treatments involving bacteriocins and different kinds of chemical substances are expected to be a promising new antibacterial method and to become widely used in both the food industry and biological medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (W.Y.); (J.G.); (Y.L.); (X.X.); (X.W.); (L.W.)
| |
Collapse
|
30
|
Thbayh DK, Palusiak M, Viskolcz B, Fiser B. Comparative study of the antioxidant capability of EDTA and Irganox. Heliyon 2023; 9:e16064. [PMID: 37234670 PMCID: PMC10205517 DOI: 10.1016/j.heliyon.2023.e16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress makes it difficult to preserve food and negatively affect the applicability of polymeric packaging. It is typically caused by an excess of free radicals, and it is dangerous to human health, resulting in the onset and development of diseases. The antioxidant ability and activity of ethylenediaminetetraacetic acid (EDTA) and Irganox (Irg) as synthetic antioxidant additives were studied. Three different antioxidant mechanisms were considered and compared by calculating bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) values. Two density functional theory (DFT) methods were used, M05-2X and M06-2X with the 6-311++G(2d,2p) basis set in gas phase. Both additives can be used to protect pre-processed food products and polymeric packaging from oxidative stress related material deterioration. By comparing the two studied compounds, it was found that EDTA has a higher antioxidant potential than Irganox. To the best of our knowledge several studies have been carried out to understand the antioxidant potential of various natural and synthetic species, but EDTA and Irganox were not compared and investigated before. These additives can be used to protect pre-processed food products and polymeric packaging and prevent material deterioration caused by oxidative stress.
Collapse
Affiliation(s)
- Dalal K. Thbayh
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Polymer Research Center, University of Basrah, Basrah, Iraq
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Marcin Palusiak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
- Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine
| |
Collapse
|
31
|
Li Z, Li H, Wang M, Zhang Z, Yang L, Ma L, Liu H. Preparation and Properties of Poly(butylene adipate-co-terephthalate)/thermoplastic Hydroxypropyl Starch Composite Films Reinforced with Nano-Silica. Polymers (Basel) 2023; 15:polym15092026. [PMID: 37177174 PMCID: PMC10181392 DOI: 10.3390/polym15092026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The use of biodegradable plastics is gradually increasing, but its expensive cost limits promotion. In this study, poly(butylene adipate-co-terephthalate)/thermoplastic hydroxypropyl starch reinforced with nano-silica (PBAT/TPHSg-SiO2) composite films with high hydroxypropyl starch content were prepared in a two-step process. The effect of reinforced thermoplastic hydroxypropyl starch on the mechanical, thermal, processing properties, and micromorphology of the composite films was investigated. The results showed that the tensile strength of the composite films was significantly improved by the addition of nano-silica, with 35% increase in horizontal tensile strength and 21% increase in vertical tensile strength after the addition of 4 phr of nano-silica. When the content of thermoplastic hydroxypropyl starch reinforced with nano-silica (TPHSg-4SiO2) is 40%, the horizontal and vertical tensile strengths of the films are 9.82 and 12.09 MPa, respectively, and the elongation at break of the films is over 500%. Electron micrographs show that TPHSg-4SiO2 is better homogeneously dispersed in the PBAT and exhibits a bi-continuous phase structure at a TPHSg-4SiO2 content of 40%. In this study, the blowing PBAT/TPHSg-4SiO2 composite films effectively reduce the cost and still show better mechanical properties, which are suitable for packaging applications.
Collapse
Affiliation(s)
- Zehao Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Hui Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metal, School of Material Science and Engineer, Lanzhou University of Technology, Lanzhou 730050, China
| | - Muxi Wang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhongyan Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liting Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lijun Ma
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Hong Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510631, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
32
|
Duan M, Sun J, Yu S, Zhi Z, Pang J, Wu C. Insights into electrospun pullulan-carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food antibacterial packaging. Int J Biol Macromol 2023; 233:123433. [PMID: 36709819 DOI: 10.1016/j.ijbiomac.2023.123433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Nisin, a natural substance from Lactococcus lactis, displays a promising antibacterial ability against the gram-positive bacteria. However, it is susceptible to the external environment, i.e. temperature, pH, and food composition. In this study, a dual stabilization method, coaxial electrospinning, was applied to protect nisin in food packaging materials and the effect of nisin concentration on the properties of the nanofibers was investigated. The core-shell nanofibers with pullulan as a core layer and carboxymethyl chitosan (CMCS)/polyethylene oxide (PEO) as shell layer were prepared, and then the prepared CMCS-nisin nanogels (CNNGs) using a self-assembly method were loaded into the core layer of the nanofibers as antibacterial agents. The result revealed that the smooth surface can be observed on the nanofibers by microstructure characterization. The CNNGs-loaded nanofibers exhibited enhanced thermal stability and mechanical strength, as well as excellent antibacterial activity. Importantly, the as-formed nanofibers were applied to preserve bass fish and found that the shelf life of bass fish packed by CNNGSs with nisin at a concentration of 8 mg/mL was effectively extended from 9 days to 15 days. Taken together, the CNNGs can be well stabilized with the core-shell nanofibers, thus exerting significantly improved antimicrobial stability and bioactivity. This special structure exerts a great potential for application as food packaging materials to preserve aquatic products.
Collapse
Affiliation(s)
- Mengxia Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jishuai Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Yu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, East Flanders 9000, Belgium.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| |
Collapse
|
33
|
Kowalczyk D, Karaś M, Kordowska-Wiater M, Skrzypek T, Kazimierczak W. Inherently acidic films based on chitosan lactate-doped starches and pullulan as carries of nisin: A comparative study of controlled-release and antimicrobial properties. Food Chem 2023; 404:134760. [DOI: 10.1016/j.foodchem.2022.134760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
34
|
Matheus JRV, de Farias PM, Satoriva JM, de Andrade CJ, Fai AEC. Cassava starch films for food packaging: Trends over the last decade and future research. Int J Biol Macromol 2023; 225:658-672. [PMID: 36395939 DOI: 10.1016/j.ijbiomac.2022.11.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Cassava starch is one of the most available and cost-effective biopolymers. This work aimed to apply a bibliometric methodology to identify the most impactful scientific data on cassava starch and its residues for food packaging in the last ten years. As a result, an increasing interest in this subject has been observed, mainly in the past five years. Among the 85 selected scientific publications, Brazil and China have been leading the research on starch-based films, accounting for 39 % of the total. The International Journal of Biological Macromolecules was the main scientific source of information. Besides cassava starch, 41.18 % of these studies added other biopolymers, 5.88 % added synthetic polymers, and 4.71 % added a combination of both. Studies analyzed suggested that different modifications in starch can improve films' mechanical and barrier properties. In addition, 52.94 % of articles evaluated the film's bioactivity. Still, only 37.65 % assessed the performance of those films as food packaging, suggesting that more studies should be conducted on assessing the potential of these alternative packages. Future research should consider scale-up methods for film production, including cost analysis, assessment life cycle, and the impact on the safety and quality of a broader range of foods.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Patrícia Marques de Farias
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Juliana Martins Satoriva
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cristiano José de Andrade
- Chemical and Food Engineering Department, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Yang F, Chen G, Li J, Zhang C, Ma Z, Zhao M, Yang Y, Han Y, Huang Z, Weng Y. Effects of Quercetin and Organically Modified Montmorillonite on the Properties of Poly(butylene adipate-co-terephthalate)/Thermoplastic Starch Active Packaging Films. ACS OMEGA 2023; 8:663-672. [PMID: 36643425 PMCID: PMC9835550 DOI: 10.1021/acsomega.2c05836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The poly(butylene adipate-co-terephthalate) (PBAT)/thermoplastic starch (TPS) film stands out owing to its acceptable price, low impact on the environment, and excellent mechanical properties. The main objective of this study was to improve the antioxidant properties of the PBAT/TPS film by incorporation of quercetin (Q) through the extrusion blow process. Another specific objective was to incorporate the organically modified montmorillonite (OMMT) to prolong the release of Q and improve the poor barrier properties of the PBAT/TPS/Q film. The films were analyzed in terms of their morphology, mechanical properties, gas and water barrier properties, and antioxidant and anti-UV properties. Optimization of the OMMT content resulted in a fiber-like, co-continuous morphology of the PBAT/TPS/Q film. The incorporation of quercetin enhanced the antioxidant and anti-UV properties of the PBAT/TPS film, while OMMT improved the mechanical properties, ultraviolet barriers, and gas and water barrier properties. The results show that the films incorporating Q and OMMT provided the oxygen and water barrier by up to 94 and 54%, respectively. Also, the amount of polymer required for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition is as low as 0.03 g, and the UV transmission rate was reduced by about 50%. Moreover, PBAT/TPS/Q/OMMT films successfully delayed the decay of the banana and blueberry due to their excellent antioxidant properties and suitable water vapor permeability.
Collapse
|
36
|
Influence of starch content on the physicochemical and antimicrobial properties of starch/PBAT/ε-polylysine hydrochloride blown films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Oxygen absorbing food packaging made by extrusion compounding of thermoplastic cassava starch with gallic acid. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Zhang J, Chen J, Zhang C, Yi H, Liu D, Liu D. Characterization and antibacterial properties of chitosan–polyvinyl alcohol-3-phenyllactic acid as a biodegradable active food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Preparation, characterization, and application of edible antibacterial three-layer films based on gelatin–chitosan–corn starch–incorporated nisin. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Velasco V, Sepúlveda E, Williams P, Rodríguez-Llamazares S, Gutiérrez C, Valderrama N. Starch-based composite foam for chicken meat packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4594-4602. [PMID: 36276525 PMCID: PMC9579259 DOI: 10.1007/s13197-022-05538-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 06/16/2023]
Abstract
The development of compostable packages that maintain fresh meat quality, is an important achievement for the poultry industry. The objective of this study was to evaluate the feasibility of using a starch-based composite foam (SCF) in the packaging of fresh chicken meat during refrigerated storage. SCF was prepared using extrusion process. Nisin (2%) was added as antimicrobial agent (SCFN). Commercial expanded polystyrene (EPS) was used as control. Physical characterization, antimicrobial analysis and storage of fresh chicken meat were carried out. No differences were observed in SEM images between SFC and SCFN samples. Water uptake of SCF were higher than SCFN (p < 0.05). SCFN exhibited higher Young´s modulus and flexural strength (p < 0.05), and antimicrobial effect against foodborne pathogens. During the storage of chicken meat, the starch-based composite foam showed a higher capacity to retain liquid than EPS. The color of chicken meat had slight variations at day 4 compared with the raw meat. Nisin did not retard lipid oxidation of chicken meat, however, the aerobic plate count was lower. Therefore, the starch-based composite foam is suitable for fresh meat storage, being improved with the incorporation of nisin as antimicrobial agent. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05538-6.
Collapse
Affiliation(s)
- Valeria Velasco
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, 3812120 Chillán, Chile
| | - Erwin Sepúlveda
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, 4051381 Concepción, Chile
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Facultad de Ingeniería, Universidad de Concepción, 4070409 Concepción, Chile
| | - Pamela Williams
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Av. Vicente Méndez 595, 3812120 Chillán, Chile
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, 4051381 Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Parque Industrial Coronel, 3349001 Concepción, Chile
| | - Cristian Gutiérrez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070386 Concepción, Chile
| | - Natalia Valderrama
- Departamento de Mecanización Y Energía, Facultad de Ingeniería Agrícola, Universidad de Concepción, 3812120 Chillán, Chile
| |
Collapse
|
41
|
Abdullah JAA, Jiménez-Rosado M, Guerrero A, Romero A. Biopolymer-Based Films Reinforced with Green Synthesized Zinc Oxide Nanoparticles. Polymers (Basel) 2022; 14:polym14235202. [PMID: 36501597 PMCID: PMC9738154 DOI: 10.3390/polym14235202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, biopolymer-based films are being developed as an alternative to conventional plastic-based films, mainly because they are non-toxic, flexible, inexpensive, and widely available. However, they are restricted in their applications due to several deficiencies in their properties. Accordingly, the reinforcement of these materials with nanoparticles/nanofillers could overcome some of their shortcomings, especially those processed by green methods. Green synthesized zinc oxide nanoparticles (ZnO-NPs) are highly suggested to overcome these deficiencies. Therefore, the main aim of this work was to develop different biopolymer-based films from cellulose acetate (CA), chitosan (CH), and gelatin (GE) reinforced with ZnO-NPs prepared by casting, and to assess their different properties. The results show the improvements produced by the incorporation of ZnO-NPs (1% w/w) into the CA, CH, and GE systems. Thus, the water contact angles (WCAs) increased by about 12, 13, and 14%, while the water vapor permeability (WVP) decreased by about 14, 6, and 29%, the water solubility (WS) decreased by about 23, 6, and 5%, and the transparency (T) increased by about 19, 31, and 20% in the CA, CH, and GE systems, respectively. Furthermore, the mechanical properties were enhanced by increasing the ultimate tensile strength (UTS) (by about 39, 13, and 26%, respectively) and Young's modulus (E) (by about 70, 34, and 63%, respectively), thereby decreasing the elongation at the break (εmax) (by about 56, 23, and 49%, respectively) and the toughness (by about 50, 4, and 30%, respectively). Lastly, the antioxidant properties were enhanced by 34, 49, and 39%, respectively.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954-557-179 (J.A.A.A. & A.R.)
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954-557-179 (J.A.A.A. & A.R.)
| |
Collapse
|
42
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
43
|
Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Packaging can mitigate the physical, chemical, and microbiological phenomena that affects food products’ quality and acceptability. However, the use of conventional packaging from non-renewable fossil sources generates environmental damage caused by the accumulation of non-biodegradable waste. Biodegradable films emerge as alternative biomaterials which are ecologically sustainable and offer protection and increase food product shelf life. This review describes the role of biodegradable films as packaging material and their importance regarding food quality. The study emphasizes polysaccharide-based biodegradable films and their use in foods with different requirements and the advances and future challenges for developing intelligent biodegradable films. In addition, the study explores the importance of the selection of the type of polysaccharide and its combination with other polymers for the generation of biodegradable films with functional characteristics. It also discusses additives that cause interactions between components and improve the mechanical and barrier properties of biodegradable films. Finally, this compilation of scientific works shows that biodegradable films are an alternative to protecting perishable foods, and studying and understanding them helps bring them closer to replacing commercial synthetic packaging.
Collapse
|
44
|
Abdullah JAA, Jiménez-Rosado M, Benítez JJ, Guerrero A, Romero A. Biopolymer-Based Films Reinforced with Fe xO y-Nanoparticles. Polymers (Basel) 2022; 14:polym14214487. [PMID: 36365481 PMCID: PMC9654949 DOI: 10.3390/polym14214487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, natural polymer-based films are considered potentially environmentally friendly alternatives to conventional plastic films, due to many advantageous properties, including their easy processability, high flexibility, non-toxicity, low cost, high availability, and environmental safety. However, they are limited in their application by a number of shortcomings, including their high water solubility and vapor permeability as well as their poor opacity and low mechanical resistance. Thus, nanoparticles, such as green FexOy-NPs, can be used to overcome the drawbacks associated with these materials. Therefore, the aim of this study was to develop three different polymer-based films (gelatin-based, cellulose acetate-based and chitosan-based films) containing green synthesized FexOy-NPs (1.0% w/w of the initial polymer weight) as an additive to improve film properties. This was accomplished by preparing the different films using the casting method and examining their physicochemical, mechanical, microstructural, and functional characteristics. The results show that the incorporation of FexOy-NPs into the different films significantly enhanced their physicochemical, mechanical, and morphological properties as well as their antioxidant characteristics. Consequently, it was possible to produce suitable natural polymer-based films with potential applications across a wide range of industries, including functional packaging for food, antioxidants, and antimicrobial additives for pharmaceutical and biomedical materials as well as pesticides for agriculture.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954557179
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - José J. Benítez
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Calle Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954557179
| |
Collapse
|
45
|
Phothisarattana D, Harnkarnsujarit N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Preparation and Performance Characterization of a Composite Film Based on Corn Starch, κ-Carrageenan, and Ethanol Extract of Onion Skin. Polymers (Basel) 2022; 14:polym14152986. [PMID: 35893950 PMCID: PMC9330010 DOI: 10.3390/polym14152986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022] Open
Abstract
Using corn starch (CS) and κ-carrageenan(κC) as the raw material and active composite, respectively, films containing different concentrations of ethanol extract of onion skin were prepared. The effects of different concentrations of ethanol extract of onion skin (EEOS) on the physicochemical properties, as well as the antioxidant and antibacterial properties, of CS/κC films were also discussed. The addition of ethanol extract of onion skin inhibited the recrystallization of starch molecules in the composite films. It affected the microstructure of the composite films. The color of the composite films was deepened, the brightness was reduced, and the opacity was increased. Water vapor permeability increased, tensile strength decreased, and elongation at the break increased. The glass-transition temperature decreased. The clearance of DPPH radicals and ABTS cation radicals increased. Moreover, when the concentration of EEOS was 3%, the antioxidant effect of the films on oil was greatly improved and could effectively inhibit Staphylococcus aureus and Escherichia coli. The above results showed that adding ethanol extract of onion skin improved the physicochemical properties and biological activities of the CS/κC composite films, so CS/κC/EEOS composite films can be used as an active packaging material to extend food shelf-life. These results can provide a theoretical basis for the production and application of corn starch/κ-carrageenan/ethanol extract of onion skin composite films.
Collapse
|
47
|
Félix de Andrade M, Silva MG, Silva IDDL, Caetano VF, Moraes Filho LETPD, Vinhas GM, Medeiros Bastos de Almeida Y. Pepper‐rosmarin essential oil (
Lippia sidoides Cham
.) as an antioxidant additive for PBAT ‐ poly (butylene adipate co‐terephthalate) films and its application for active packaging. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Michelle Félix de Andrade
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Marina Gomes Silva
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Ivo Diego de Lima Silva
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Viviane Fonseca Caetano
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | | | - Glória Maria Vinhas
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Yeda Medeiros Bastos de Almeida
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| |
Collapse
|
48
|
Mechanical and barrier properties of simultaneous biaxially stretched polylactic acid/thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Shen J, Zhang M, Mujumdar AS, Chen J. Effects of High Voltage Electrostatic Field and Gelatin-Gum Arabic Composite Film on Color Protection of Freeze-dried Grapefruit Slices. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02839-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Wang R. Performance and Structure Evaluation of Gln-Lys Isopeptide Bond Crosslinked USYK-SPI Bioplastic Film Derived from Discarded Yak Hair. Polymers (Basel) 2022; 14:polym14122471. [PMID: 35746046 PMCID: PMC9229832 DOI: 10.3390/polym14122471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/28/2023] Open
Abstract
To reduce the waste from yak hair and introduce resource recycling into the yak-related industry, an eco-friendly yak keratin-based bioplastic film was developed. We employed yak keratin (USYK) from yak hair, soy protein isolate (SPI) from soybean meal as a film-forming agent, transglutaminase (EC 2.3.2.13, TGase) as a catalytic crosslinker, and glycerol as a plasticizer for USYK-SPI bioplastic film production. The structures of the USYK-SPI bioplastic film were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-Ray diffraction (XRD). The mechanical properties, the thermal behavior, light transmittance performance, and water vapor permeability (WVP) were measured. The results revealed that the added SPI possibly acted as a reinforcement. The formation of Gln-Lys isopeptide bonds and hydrophobic interactions led to a stable crosslinking structure of USYK-SPI bioplastic film. The thermal and the mechanical behaviors of the USYK-SPI bioplastic film were improved. The enhanced dispersion and formation of co-continuous protein matrices possibly produced denser networks that limited the diffusion of water vapor and volatile compounds in the USYK-SPI bioplastic films. Moreover, the introduction of SPI prompted the relocation of hydrophobic groups on USYK molecules, which gave the USYK-SPI bioplastic film stronger surface hydrophobicity. The SPI and USYK molecules possess aromatic amino residuals (tyrosine, phenylalanine, tryptophan), which can absorb ultraviolet radiation. Thus, the USYK-SPI bioplastic films were shown to have an excellent UV barrier. The synergy effect between USYK and SPI is not only able to improve rigidity and the application performance of keratin-based composite film but can also reduce the cost of the keratin-based composite film through the low-cost of the SPI alternative which partially replaces the high-cost of keratin. The data obtained from this research can provide basic information for further research and practical applications of USYK-SPI bioplastic films. There is an increasing demand for the novel USYK-SPI bioplastic film in exploit packaging material, biomedical materials, eco-friendly wearable electronics, and humidity sensors.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Qinghai Normal University, 38 Wusi West Road, Xining 810008, China
| |
Collapse
|