1
|
Yuan X, Liao JH, Du GJ, Hou Y, Hu SQ. Immobilization β-glucosidase from Dictyoglomus thermophilum on UiO-66-NH 2: An efficient catalyst for enzymatic synthesis of kinsenoside via reverse hydrolysis reaction. Int J Biol Macromol 2024; 282:137330. [PMID: 39515718 DOI: 10.1016/j.ijbiomac.2024.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Kinsenoside is a rare and valuable glycoside with extensive bioactivities. However, the enzymatic synthesis of kinsenoside has been a challenging task due to the limited enzyme toolbox and unsatisfactory yield. Herein, the β-glucosidase from Dictyoglomus thermophilum (DtBGL) was heterologously expressed, purified and enzymatically characterized. The purified DtBGL was successfully immobilized on the metal-organic frameworks of UiO-66-NH2. The DtBGL@UiO-66-NH2 was fully characterized using SEM, XRD, TGA and FTIR. The studies on enzymatic properties demonstrated that DtBGL@UiO-66-NH2 exhibited increased catalytic activity and stability compared to the free DtBGL. Particularly, DtBGL@UiO-66-NH2 could catalyze the synthesis of kinsenoside via the reverse hydrolysis reaction and the kinsenoside yield was 34.12 % under the optimized catalytic system, which was 1.9-fold higher compared with the free DtBGL. Moreover, DtBGL@UiO-66-NH2 displayed good reusability with a kinsenoside yield of 27.02 % after reuse for 3 times. The present work not only identifies and characterizes a highly active β-glucosidase with reverse hydrolysis activity, but also proposes the immobilized enzyme as an effective catalyst for the industrial production of glycosides.
Collapse
Affiliation(s)
- Xin Yuan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jia-Hui Liao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Gui-Jia Du
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Song-Qing Hu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China.
| |
Collapse
|
2
|
Dong Z, Jin J, Wei W, Wang X, Wu G, Wang X, Jin Q. Fabrication of immobilized lipases from Candida rugosa on hierarchical mesoporous silica for enzymatic enrichment of ω-3 polyunsaturated fatty acids by selective hydrolysis. Food Chem X 2024; 22:101434. [PMID: 38779499 PMCID: PMC11108833 DOI: 10.1016/j.fochx.2024.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, lipase from Candida rugosa was immobilized on hydrophobic hierarchical porous hollow silica microsphere (HPHSM-C3) via adsorption. The prepared biocatalyst HPHSM-C3@CRL exhibited higher activity, thermal and pH stability. HPHSM-C3@CRL remained 70.2% of initial activity after 30 days of storage at 24 °C and 50.4% of initial activity after 10 cycles. Moreover, HPHSM-C3@CRL was utilized in enzymatic enrichment of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in glycerides, achieving ω-3 PUFAs content of 53.42% with the hydrolysis rate of 48.78% under optimal condition. The Km and Vmax value of HPHSM-C3@CRL was 42.2% lower and 63.5% higher than those of CRL, respectively. The 3D structure analysis of CRL, substrates and pore structure of HPHSM-C3 suggested that the hierarchical pore improved activity and selectivity of immobilized lipase. This result demonstrated that HPHSM-C3@CRL may be an effective biocatalyst for the enzymatic enrichment of ω-3 PUFAs in food industries.
Collapse
Affiliation(s)
- Zhe Dong
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaosan Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Feng T, Shi J, Xia J, Ren X, Adesanya OI, Suo H, Zou B. Lipase in-situ immobilized in covalent organic framework: Enzymatic properties and application in the preparation of 1, 3-dioleoyl-2-palmitoylglycerol. Colloids Surf B Biointerfaces 2024; 238:113873. [PMID: 38552410 DOI: 10.1016/j.colsurfb.2024.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/12/2024]
Abstract
In this study, the critical importance of designing an appropriate immobilized carrier and method for free lipase to ensure exceptional biological catalytic activity and stability was emphasized. Covalent organic frameworks (COF-1) were synthesized as a novel porous carrier with an azine structure (-CN-NC-) through the condensation of hydrazine hydrate and benzene-1,3,5-tricarbaldehyde at room temperature. Simultaneously, Rhizomucor miehei lipase (RML) was immobilized within the COF-1 carrier using an in-situ aqueous phase method. Characterization of the carrier and RML@COF-1 and evaluation of the lipase properties of RML and RML@COF-1 through p-Nitrophenyl palmitate hydrolysis were conducted. Additionally, application in the synthesis of 1, 3-dioleoyl-2-palmitoylglycerol (OPO) was explored. The results showed that RML@COF-1 exhibited a high enzymatic loading of 285.4 mg/g. Under 60℃ conditions, the activity of RML@COF-1 was 2.31 times higher than that of free RML, and RML@COF-1 retained 77.25% of its original activity after 10 cycles of repeated use, indicating its excellent thermal stability and repeatability. Under the optimal conditions (10%, 1:8 PPP/OA, 45℃, 5 h), the yield of OPO reached 47.35%, showcasing the promising application prospects of the novel immobilized enzyme synthesized via in-situ aqueous phase synthesis for OPO preparation.
Collapse
Affiliation(s)
- Ting Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaojiao Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuemei Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Hongbo Suo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Abedi E, Kaveh S, Mohammad Bagher Hashemi S. Structure-based modification of a-amylase by conventional and emerging technologies: Comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chem 2024; 437:137903. [PMID: 37931423 DOI: 10.1016/j.foodchem.2023.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
α-Amylase is an endo-enzyme that catalyzes the hydrolysis of starch into shorter oligosaccharides. α-Amylase plays a crucial role in various industries. Manipulated α-amylases are of particular interest due to their remarkable amylolysis efficiency and thermostability for large-scale biotechnological processes. The retained catalytic activity of enzymes is decreased according to extreme pH, temperature, pressure, and chemical reagents. Broad industrial applications of α-amylases need special properties such as stability against temperature, pH, and chelators, and also attain reusability, desirable enzymatic activity, efficiency, and selectivity. Considering the biotechnological importance of α-amylase, its high stability is the most critical challenge for its economic viability. Therefore, improving its functionality and stability recently gained much interest. To achieve this purpose, various emerging technologies in combination with conventional methods on α-Amylases with different sources have been conducted. The present review is an attempt to summarize the effect of various conventional methods and emerging technologies employed to date on α-amylase secondary structure, thermal stability, and performance.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Shima Kaveh
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
5
|
Srivastava N, Shiburaj S, Khare SK. Improved production of alkaline and solvent-stable proteases from a halotolerant Exiguobacterium isolate through heterologous expression. Int J Biol Macromol 2024; 260:129507. [PMID: 38244731 DOI: 10.1016/j.ijbiomac.2024.129507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Halophiles are excellent sources of detergent proteases that are attributed to stability in alkaline pH, salts, surfactants, and hydrophobic solvents. The lower enzymatic yields and tedious downstream processes necessitate the search for newer halophilic sources. We have previously reported a halotolerant Exiguobacterium sp. TBG-PICH-001, which secretes solvent-tolerant alkaline protease/s. The present study describes the heterologous expression of two protease genes, namely, rsep metalloprotease (WP_195864791, 1.23 Kb) and tpa serine protease (WP_195864453, 0.879 Kb) genes. These were cloned into the pET 22b + plasmid vector and expressed in Escherichia coli BL21(DE3). The recombinant proteases rsep and tpa showed respective yields of 6.3 and 6.7 IU/mg, 11 and 12-fold higher than the crude native protease/s from TBG-PICH-001. These showed soluble expression at 46 and 32 KDa, respectively. These were purified to homogeneity through Ni-NTA-affinity chromatography. The purified proteases were characterized for properties like pH & temperature optima and stability, substrate specificity, kinetic parameters, and detergent attributes. They showed affinity towards various substrates with a respective Km of 392 and 301 μM towards casein. The recombinant proteases exhibited stability in the alkaline pH (7-10), surfactants, metal ions, detergents, and hydrophobic solvents, rendering their suitability as detergent additives.
Collapse
Affiliation(s)
- Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sugathan Shiburaj
- Department of Botany, University of Kerala, Palayam, Thiruvananthapuram, Kerala 695034, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Zhang H, Ye YH, Wang Y, Liu JZ, Jiao QC. A Bibliometric Analysis: Current Perspectives and Potential Trends of Enzyme Thermostability from 1991-2022. Appl Biochem Biotechnol 2024; 196:1211-1240. [PMID: 37382790 DOI: 10.1007/s12010-023-04615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Thermostability is considered a crucial parameter to evaluate the viability of enzymes in industrial applications. Over the past 31 years, many studies have been reported on the thermostability of enzymes. However, there is no systematic bibliometric analysis of publications on the thermostability of enzymes. In this study, 16,035 publications related to the thermostability of enzymes were searched and collected, showing an increasing annual trend. China contributed the most publications, while the United States had the highest citation count. International Journal of Biological Macromolecules is the most productive journal in the research field. Moreover, Chinese acad sci and Khosro Khajeh are the most active institutions and prolific authors in the field, respectively. Analysis of references with the strongest citation bursts and keyword co-occurrences, magnetic nanoparticles, metal-organic frameworks, molecular dynamics, and rational design are current hot spots and significant future research directions. This study is the first comprehensive bibliometric analysis summarizing trends and developments in enzyme thermostability research. Our findings could provide scholars with an understanding of the fundamental knowledge framework of the field and identify recent potential hotspots and research trends that could facilitate the discovery of collaboration opportunities.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yun-Hui Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jun-Zhong Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, CHINA CO-OP, Nanjing, 211111, China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Song WS, Kim JH, Namgung B, Cho HY, Shin H, Oh HB, Ha NC, Yoon SI. Complementary hydrophobic interaction of the redox enzyme maturation protein NarJ with the signal peptide of the respiratory nitrate reductase NarG. Int J Biol Macromol 2024; 262:129620. [PMID: 38262549 DOI: 10.1016/j.ijbiomac.2024.129620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
In bacteria, NarJ plays an essential role as a redox enzyme maturation protein in the assembly of the nitrate reductase NarGHI by interacting with the N-terminal signal peptide of NarG to facilitate cofactor incorporation into NarG. The purpose of our research was to elucidate the exact mechanism of NarG signal peptide recognition by NarJ. We determined the structures of NarJ alone and in complex with the signal peptide of NarG via X-ray crystallography and verified the NarJ-NarG interaction through mutational, binding, and molecular dynamics simulation studies. NarJ adopts a curved α-helix bundle structure with a U-shaped hydrophobic groove on its concave side. This groove accommodates the signal peptide of NarG via a dual binding mode in which the left and right parts of the NarJ groove each interact with two consecutive hydrophobic residues from the N- and C-terminal regions of the NarG signal peptide, respectively, through shape and chemical complementarity. This binding is accompanied by unwinding of the helical structure of the NarG signal peptide and by stabilization of the NarG-binding loop of NarJ. We conclude that NarJ recognizes the NarG signal peptide through a complementary hydrophobic interaction mechanism that mediates a structural rearrangement.
Collapse
Affiliation(s)
- Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jee-Hyeon Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byeol Namgung
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hye Yeon Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyunwoo Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Il Yoon
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea; Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
Boteva E, Doychev K, Kirilov K, Handzhiyski Y, Tsekovska R, Gatev E, Mironova R. Deglycation activity of the Escherichia coli glycolytic enzyme phosphoglucose isomerase. Int J Biol Macromol 2024; 257:128541. [PMID: 38056730 DOI: 10.1016/j.ijbiomac.2023.128541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Glycation is a spontaneous chemical reaction, which affects the structure and function of proteins under normal physiological conditions. Therefore, organisms have evolved diverse mechanisms to combat glycation. In this study, we show that the Escherichia coli glycolytic enzyme phosphoglucose isomerase (Pgi) exhibits deglycation activity. We found that E. coli Pgi catalyzes the breakdown of glucose 6-phosphate (G6P)-derived Amadori products (APs) in chicken lysozyme. The affinity of Pgi to the glycated lysozyme (Km, 1.1 mM) was ten times lower than the affinity to its native substrate, fructose 6-phosphate (Km, 0.1 mM). However, the high kinetic constants of the enzyme with the glycated lysozyme (kcat, 396 s-1 and kcat/Km, 3.6 × 105 M-1 s-1) indicated that the Pgi amadoriase activity may have physiological implications. Indeed, when using total E. coli protein (20 mg/mL) as a substrate in the deglycation reaction, we observed a release of G6P from the bacterial protein at a Pgi specific activity of 33 μmol/min/mg. Further, we detected 11.4 % lower APs concentration in protein extracts from Pgi-proficient vs. deficient cells (p = 0.0006) under conditions where the G6P concentration in Pgi-proficient cells was four times higher than in Pgi-deficient cells (p = 0.0001). Altogether, these data point to physiological relevance of the Pgi deglycation activity.
Collapse
Affiliation(s)
- Elitsa Boteva
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Konstantin Doychev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kiril Kirilov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Yordan Handzhiyski
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rositsa Tsekovska
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Evan Gatev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Roumyana Mironova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
9
|
Liu Y, Qu W, Liu Y, Feng Y, Ma H, Tuly JA. Assessment of cell wall degrading enzymes by molecular docking and dynamics simulations: Effects of novel infrared treatment. Int J Biol Macromol 2024; 258:128825. [PMID: 38114009 DOI: 10.1016/j.ijbiomac.2023.128825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Cell wall-degrading enzymes' activities under infrared treatment are vital for peeling; it is critical to elucidate the mechanisms of the novel infrared peeling in relation to its impact on cell wall-degrading enzymes. In this study, the activities, and gene expressions of eight degrading enzymes closely related to pectin, cellulose and hemicellulose were determined. The most influential enzyme was selected from them, and then the mechanism of its changes was revealed by molecular dynamics simulation and molecular docking. The results demonstrated that infrared had the most significant effect on β-glucosidase among the tested enzymes (increased activity and up-regulated gene expression of 195.65 % and 7.08, respectively). It is suggested infrared crucially promotes cell wall degradation by affecting β-glucosidase. After infrared treatment, β-glucosidase's structure moderately transformed to a more open one and became flexible, increasing the affinity between β-glucosidase and substrate (increasing 75 % H-bonds and shortening 15.89 % average length), thereby improving β-glucosidase's activity. It contributed to cell wall degradation. The conclusion is that the effect of infrared on the activity, gene expression and molecular structure of β-glucosidase causes damage to the peel, thus broadening the applicability of the new infrared dry-peeling technique, which has the potential to replace traditional wet-peeling methods.
Collapse
Affiliation(s)
- Ying Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yuhang Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Jamila A Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
10
|
Zhang CL, Wang C, Dong YS, Sun YQ, Xiu ZL. Dynamic immobilization of bacterial cells on biofilm in a polyester nonwoven chemostat. BIORESOUR BIOPROCESS 2024; 11:17. [PMID: 38647810 PMCID: PMC10992621 DOI: 10.1186/s40643-024-00732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 04/25/2024] Open
Abstract
Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.
Collapse
Affiliation(s)
- Chao-Lei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
- Public Security Management Department, Liaoning Police College, Yingping Road 260, Dalian, 116024, People's Republic of China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yue-Sheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ya-Qin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| |
Collapse
|
11
|
Yang Y, Li M, Sun J, Qin S, Diao T, Bai J, Li Y. Microwave-assisted aqueous two-phase extraction of polysaccharides from Hippophae rhamnoide L.: Modeling, characterization and hypoglycemic activity. Int J Biol Macromol 2024; 254:127626. [PMID: 37884251 DOI: 10.1016/j.ijbiomac.2023.127626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Natural polysaccharides are concerned for their high biological activity and low toxicity. Two kinds of polysaccharides were extracted from Hippophae rhamnoide L. by microwave-assisted aqueous two-phase system. Under the optimal conditions predicted by RSM model (K2HPO4/ethanol (18.93 %/28.29 %), liquid to material ratio 77 mL/g, power 625 W and temperature 61 °C), the yield of total polysaccharides reached 35.91 ± 0.76 %. Moreover, the polysaccharides extraction was well fitted to the Weibull model. After purification by Sepharose-6B, the polysaccharides from top phase (PHTP, purity of 81.44 ± 1.25 %) and bottom phase (PHBP, purity of 88.85 ± 1.40 %) were obtained. GC, FT-IR, methylation and NMR analyses confirmed the backbone of PHTP was composed of a repeated unit →4)-β-D-Glcp-(1 → 2)-α-L-Rhap-(1 → 4)-β-D-Galp-(1 → 4)-α-D-GalAp-(1 → 3)-α-L-Araf-(1 → 3)-α-D-Manp-(1→, while the repeated unit in PHBP was →3)-α-L-Araf-(1 → 2)-α-L-Rhap-(1 → 4)-β-D-Glcp-(1 → 3)-α-D-Manp-(1 → 4)-β-D-Galp-(1 → 4)-α-D-GalAp-(1→. Compared with PHTP (6.46 × 106 g/mol), PHBP with relatively low molecular weight (8.2 × 105 g/mol) exhibited the smaller particle size, better water-solubility, thermal and rheological property, stronger anti-glycosylation and α-amylase inhibitory effects. Moreover, PHTP and PHBP displayed a reversible inhibition on α-amylase in a competitive manner. This study provides a high-efficient and eco-friendly method for polysaccharides extraction, and lays a foundation for sea buckthorn polysaccharides as potential therapeutic agents in preventing and ameliorating diabetes.
Collapse
Affiliation(s)
- Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Miao Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingwen Sun
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuhui Qin
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tengteng Diao
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
12
|
Salimi M, Channab BE, El Idrissi A, Zahouily M, Motamedi E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr Polym 2023; 322:121326. [PMID: 37839830 DOI: 10.1016/j.carbpol.2023.121326] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability. The review then focuses on the applications of starch in the development of SRFs. It emphasizes the role of starch-based hydrogels as effective nutrient carriers, enabling their sustained release to plants over extended periods. Additionally, incorporating starch-based hydrogel nano-composites are explored, highlighting their potential in optimizing nutrient release profiles and promoting plant growth. Furthermore, the review highlights the benefits of starch-based fertilizers in enhancing plant growth and crop yield while minimizing nutrient losses. It presents case studies and field trials demonstrating starch-based formulations' efficacy in promoting sustainable agricultural practices. Overall, this review consolidates current knowledge on starch, its modifications, and its applications in SRFs, providing valuable insights into the potential of starch-based formulations to improve nutrient management, boost crop productivity, and support sustainable agriculture.
Collapse
Affiliation(s)
- Mehri Salimi
- Soil Science Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
13
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Acrylic fabric and nanomaterials to enhance α-amylase-based biocatalytic immobilized systems for industrial food applications. Int J Biol Macromol 2023; 233:123539. [PMID: 36740122 DOI: 10.1016/j.ijbiomac.2023.123539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
An innovative approach for immobilizing α-amylase was used in this investigation. The acrylic fabric was first treated with hexamethylene diamine (HMDA) and then coated with copper ions that were later reduced to copper nanoparticles (CuNPs). The corresponding materials obtained, Cu(II)@HMDA-TA and CuNPs@HMDA-TA, were employed as carriers for α-amylase, respectively. The structural and morphological characteristics of the produced support matrices before and after immobilization were assessed using various techniques, including FTIR, SEM, EDX, TG/DTG, DSC, and zeta potential. The immobilized α-amylase exhibited the highest level of activity at pH 7.0, with immobilization yields observed for CuNPs@HMDA-TA (81.7 %) (60 unit/g support) followed by Cu(II)@HMDA-TA (71.7 %) (49 unit/g support) and 75 % and 61 % of activity yields, and 91.7 % and 85 % of immobilization efficiency, respectively. Meanwhile, biochemical characterizations of the activity of the soluble and immobilized enzymes were carried out and compared. Optimal temperature, pH, kinetics, storage stability, and reusability parameters were optimized for immobilized enzyme activity. The optimal pH and temperature were recorded as 6.0 and 50 °C for soluble α-amylase while the two forms of immobilized α-amylase exhibit a broad pH of 6.0-7.0 and optimal temperature at 60 °C. After recycling 15 times, the immobilized α-amylase on CuNPs@HMDA-TA and Cu(II)@HMDA-TA preserved 63 % and 52 % of their activities, respectively. The two forms of immobilized α-amylase displayed high stability when stored for 6 weeks and preserved 85 % and 76 % of their activities, respectively. Km values were calculated as 1.22, 1.39, and 1.84 mg/mL for soluble, immobilized enzymes on CuNPs@HMDA-TA, and Cu(II)@HMDA-TA, and Vmax values were calculated as 36.25, 29.68, and 21.57 μmol/mL/min, respectively. The total phenolic contents of maize kernels improved 1.4 ± 0.01 fold after treatment by two immobilized α-amylases.
Collapse
|
15
|
Zhu X, Tian Y, He B. Developing an ecofriendly UCST-type enzymatic cascade system for efficient and cost-effective starch solid wastes treatment. ENVIRONMENTAL RESEARCH 2023; 222:115414. [PMID: 36736754 DOI: 10.1016/j.envres.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Enzymatic utilization of starch solid wastes is promising but hindered by its high cost. Enzymes immobilization is one solution; however, the key challenge remains the low mass transfer rate between the solid immobilization system and the solid wastes. Herein, an enzymatic modification strategy was applied instead of the traditional immobilization method. A novel system composed of poly(methacrylic acid), polyacrylic acid, and gelatin was firstly prepared and then used to modify α-amylase and glucoamylase to endow them with upper critical solution temperature (UCST) characteristic. As a result, we found that the wastes can be hydrolyzed efficiently with the modified co-enzymes above UCST and can be easily recovered and separated below UCST, thus the cost of starch wastes treatment can be largely reduced. Besides, the proposed method exhibited excellent environmental-friendly and bio-safety properties. Therefore, this method laid a solid foundation for efficient and cost-effective enzymatic conversion of starch solid wastes.
Collapse
Affiliation(s)
- Xing Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, PR China; The Youth Innovation Team of Shaanxi Universities, Xi'an, 710021, Shaanxi, PR China
| | - Yi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, PR China
| | - Bin He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, PR China.
| |
Collapse
|
16
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol 2023; 232:123440. [PMID: 36708895 DOI: 10.1016/j.ijbiomac.2023.123440] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Engineered thermostable microbial enzymes are widely employed to catalyze chemical reactions in numerous industrial sectors. Although high thermostability is a prerequisite of industrial applications, enzyme activity is usually sacrificed during thermostability improvement. Therefore, it is vital to select the common and compatible strategies between thermostability and activity improvement to reduce mutants̕ libraries and screening time. Three functional protein engineering approaches, including directed evolution, rational design, and semi-rational design, are employed to manipulate protein structure on a genetic basis. From a structural standpoint, integrative strategies such as increasing substrate affinity; introducing electrostatic interaction; removing steric hindrance; increasing flexibility of the active site; N- and C-terminal engineering; and increasing intramolecular and intermolecular hydrophobic interactions are well-known to improve simultaneous activity and thermostability. The current review aims to analyze relevant strategies to improve thermostability and activity simultaneously to circumvent the thermostability and activity trade-off of industrial enzymes.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, Singh SP. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int J Biol Macromol 2023; 238:124051. [PMID: 36933597 DOI: 10.1016/j.ijbiomac.2023.124051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.
Collapse
Affiliation(s)
- Bhavtosh Kikani
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395 007, Gujarat, India
| | - Jignasha Thumar
- Government Science College, Gandhinagar 382 016, Gujarat, India
| | - Hitarth Bhatt
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Microbiology, Faculty of Science, Atmiya University, Rajkot 360005, Gujarat, India
| | - Dalip Singh Rathore
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Gujarat Biotechnology Research Centre, Gandhinagar 382 010, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
18
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Immobilization of Hyperthermostable Carboxylesterase EstD9 from Anoxybacillus geothermalis D9 onto Polymer Material and Its Physicochemical Properties. Polymers (Basel) 2023; 15:polym15061361. [PMID: 36987142 PMCID: PMC10056866 DOI: 10.3390/polym15061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Carboxylesterase has much to offer in the context of environmentally friendly and sustainable alternatives. However, due to the unstable properties of the enzyme in its free state, its application is severely limited. The present study aimed to immobilize hyperthermostable carboxylesterase from Anoxybacillus geothermalis D9 with improved stability and reusability. In this study, Seplite LX120 was chosen as the matrix for immobilizing EstD9 by adsorption. Fourier-transform infrared (FT-IR) spectroscopy verified the binding of EstD9 to the support. According to SEM imaging, the support surface was densely covered with the enzyme, indicating successful enzyme immobilization. BET analysis of the adsorption isotherm revealed reduction of the total surface area and pore volume of the Seplite LX120 after immobilization. The immobilized EstD9 showed broad thermal stability (10-100 °C) and pH tolerance (pH 6-9), with optimal temperature and pH of 80 °C and pH 7, respectively. Additionally, the immobilized EstD9 demonstrated improved stability towards a variety of 25% (v/v) organic solvents, with acetonitrile exhibiting the highest relative activity (281.04%). The bound enzyme exhibited better storage stability than the free enzyme, with more than 70% of residual activity being maintained over 11 weeks. Through immobilization, EstD9 can be reused for up to seven cycles. This study demonstrates the improvement of the operational stability and properties of the immobilized enzyme for better practical applications.
Collapse
Affiliation(s)
- Ummie Umaiera Mohd Johan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
19
|
Mehrabanpour N, Nezamzadeh-Ejhieh A, Ghattavi S. Cefotaxime degradation by the coupled binary CdS-PbS: characterization and the photocatalytic process kinetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33725-33736. [PMID: 36495433 DOI: 10.1007/s11356-022-24613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Increased water pollution due to discharging industrial/urban/hospital wastewater has been adopted to introduce/develop novel removal techniques/catalyst/adsorbent. The hexagonal (wurtzite) CdS and the cubic PbS nanoparticles (NPs) were synthesized, coupled, and supported onto clinoptilolite NPs (CNP). Then, the sample was characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR), and a scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM-EDX) techniques. The average crystallite size for CdS NPs, PbS NPs, CNP, and CdS-PbS/CNP samples was obtained at about 24, 36, 27, and 14 nm using the Scherrer formula value of nanometer, by the W-H formula, 31, 17, 39, and 51, respectively. Only a detectable slope can be observed from the DRS spectra for CdS NPs at 591 nm corresponding to an Eg value of 2.1 eV. PbS NPs have a broad abruption peak that begins from the visible region and extends to the IR region of the light. A boosted photocatalytic activity of the supported binary catalysts towards cefotaxime (CT) was reached. An apparent first kinetic model was reached with a k-value of 0.021 min-1 corresponding to the t1/2 value of 33 min. A decreased COD trend for the photodegraded CT solutions was reached, and the chemical oxygen demand (COD) results in the Hinshelwood model showed a k-value of 0.016 min-1, corresponding to a t1/2 value of 43 min.
Collapse
Affiliation(s)
- Najme Mehrabanpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Islamic Republic of Iran.
| | - Shirin Ghattavi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Islamic Republic of Iran
| |
Collapse
|
20
|
Kolahdoozan M, Rahimi T, Taghizadeh A, Aghaei H. Preparation of new hydrogels by visible light cross-linking of dextran methacrylate and poly(ethylene glycol)-maleic acid copolymer. Int J Biol Macromol 2023; 227:1221-1233. [PMID: 36464196 DOI: 10.1016/j.ijbiomac.2022.11.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In this work, a series of new biodegradable and biocompatible hydrogels were synthesized by photopolymerization of dextran-methacrylate (DXM) with poly(ethylene glycol)-maleic acid copolymer (poly(PEG-co-MA, PEGMA)) using (-)-riboflavin as a visible light photoinitiator and L-arginine as a co-photoinitiator. DXM was prepared by acylation of dextran (DX) with methacryloyl chloride (MAC), and PEGMA was synthesized by polycondensation of poly(ethylene glycol) (PEG) and maleic acid (MA). The DXM and PEGMA were characterized by FT-IR and 1HNMR spectroscopy. Different types of hydrogels from various ratios of DXM and PEGMA were prepared and characterized by SEM. The results showed that the prepared hydrogel by photo-cross-linking of DXM (DPHG0) was transparent and flexible, and its physical shape was excellent, but it was sticky. The stickiness was reduced by increasing the PEGMA contents, and different types of DXM/PEGMA hydrogels (DPHG1-4) with various properties were prepared. For example, DPHG2 (PEGMA content was 0.25 g) was transparent and flexible, its physical shape was excellent, and it was not sticky. The prepared hydrogels showed excellent cytocompatibility, and their tensile and compressive strength were also evaluated. Additionally, the in vitro degradation and swelling ratios of the prepared hydrogels were studied in buffer solution at different pHs.
Collapse
Affiliation(s)
- Majid Kolahdoozan
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Tayebeh Rahimi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Ameneh Taghizadeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Hamidreza Aghaei
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
21
|
Photocatalytic activity of ZnO-PbS nanoscale toward Allura Red AC in an aqueous solution: Characterization and mechanism study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Mokhtari S, Faghihian H, Mirmohammadi M. A core/shell TiO 2 magnetized molecularly imprinted photocatalyst (MMIP@TiO 2): synthesis and its photodegradation activity towards sulfasalazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13624-13638. [PMID: 36138289 DOI: 10.1007/s11356-022-22792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Although the selectivity of TiO2 for the degradation of target molecules is not enough, it is a broadly employed photocatalyst for the degradation of many pollutants. Molecularly imprinted compounds owing to their extreme recognition specificity have become increasingly popular for preparing selective photocatalysts. In this work, based on molecularly imprinted magnetized TiO2 (MMIP@TiO2), a selective photocatalyst was prepared. Via the co-precipitation method, Fe3O4 particles were prepared and coated respectively by SiO2, vinyl end groups, and molecularly imprinted polymers (MIP). The synthesized photocatalyst was characterized by the X-ray diffraction method (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), vibrating sample magnetometry (VSM), high-performance liquid chromatography (HPLC), and photoluminescence analysis (PL). The photocatalyst was then used to degrade the sulfasalazine pharmaceutical pollutant under UV irradiation. An average crystallite size of 9 nm was obtained for the MMIP@TiO2 sample from the Scherrer formula and 34.5 nm by the Williamson-Hall formula. The results revealed that compared to the non-imprinted counterpart, the molecularly imprinted photocatalyst had significantly higher efficiency and selectivity for the degradation of target molecules. The process was forwarded with 90% efficiency within 10 min. Optimal conditions were 10.0 min irradiation when 25 mL SSZ solution (50 mg/L), 0.07 g/L catalyst dose, and pH 6.0 were applied. The maximum removal efficiency was calculated to be 92%. The external magnetic field quickly removed the photocatalyst from the solution and regenerated it. It was revealed that after each regeneration cycle, the efficiency dropped. Nevertheless, 63% of the preliminary effectiveness remained after four regeneration steps.
Collapse
Affiliation(s)
- Sheida Mokhtari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Hossein Faghihian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Mehrosadat Mirmohammadi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
23
|
Preparation of a novel acidic functionalized diatomite and its catalytic application in the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Yousefi A, Nezamzadeh-Ejhieh A. Characterization of BiOCl/BiOI binary catalyst and its photocatalytic activity towards rifampin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Hemmatpour P, Nezamzadeh-Ejhieh A. A Z-scheme CdS/BiVO 4 photocatalysis towards Eriochrome black T: An experimental design and mechanism study. CHEMOSPHERE 2022; 307:135925. [PMID: 35952786 DOI: 10.1016/j.chemosphere.2022.135925] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The synergistic photocatalytic activity was obtained when CdS and BiVO4 nanoparticles (NPs) were coupled. The samples were characterized by XRD, FTIR, SEM-EDX, and UV-DRS techniques, and their pHpzc was also estimated. The crystallite size of the coupled sample was estimated at 37.3 and 12.5 nm by the Scherrer and Williamson-Hall equations, respectively. The band gaps and the potential positions of VB and CB levels of the semiconductors used were determined. The highest boosted photocatalytic activity was obtained when the CdS: BiVO4 mole ratio was 1:1. RSM studied the simultaneous interactions between the selected variables, and the model F-value of 110.61> F0.05, 14, 13 = 2.4 accompanied by the LOF F-value of 5.20 < F0.05, 10, 3 = 8.79 confirm the model significance. The correlation coefficients of R2 = 0.9861, the adjusted R2 = 0.9710, and the predicted R2 = 0.9417, also establish a satisfactory model for processing the experimental data. In the scavenging agent study, photodegradation mechanisms were suggested; among them, the direct Z-scheme mechanism is more favorable for illustrating the EBT-photodegradation by the binary CdS-BiVO4 photocatalyst. The proposed system, especially the direct Z-scheme mechanism, is suitable as a potential hydrogen production system.
Collapse
Affiliation(s)
- Pooneh Hemmatpour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box, 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
26
|
Immobilization of the Bacillus licheniformis α-Amylase on Azole Functionalized Nanoparticle: More Active, Stable, and Usability. Protein J 2022; 41:671-680. [PMID: 36266499 DOI: 10.1007/s10930-022-10082-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Enzymes are a powerful tool employed in industrial applications due to their high specificity and efficiency. Amylase enzymes play an important role in detergent, textile, analytical chemistry, and paper industries. Here we present the design, synthesis, and characterization of azole functionalized nanoparticles for the immobilization of α-amylase from Bacillus licheniformis (BlA). A modest binding efficiency (47%) was determined by the BCA assay. Enzymatic activity was measured using DNS method and illustrated the immobilization of amylase with the designed nanoparticles enhanced the thermal stability and long-term storage of amylases at a wide range of temperatures and pHs. With the required scale-up study, these implications amplify novel ways to implement this Fe3O4-PGMA-5A immobilized BlA enzyme in particular industrial applications.
Collapse
|
27
|
Gao X, Wei C, Qi H, Li C, Lu F, Qin HM. Directional immobilization of D-allulose 3-epimerase using SpyTag/SpyCatcher strategy as a robust biocatalyst for synthesizing D-allulose. Food Chem 2022; 401:134199. [PMID: 36115227 DOI: 10.1016/j.foodchem.2022.134199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
D-Allulose, as low-calorie rare sugar, possessed several notable biological activities and was biosynthesized by D-allulose 3-epimerase (DAEase). Here, CcDAE from Clostridium cellulolyticum was successfully immobilization via covalent attachment (RI-CcDAE), and Resin-SpyCatcher/SpyTag-CcDAE modular (DI-CcDAE). Both immobilized CcDAEs exhibited higher thermal and pH stabilities than the free form, and they maintained 80.0 % of relative activity after 7 consecutive cycles and 25 days of storage. Predominantly, DI-CcDAE represented superior catalytic efficiency with a 2.4-fold increase of kcat/Km, compared with RI-CcDAE (0.75 s-1 mM-1 vs 0.31 s-1 mM-1). The RI-CcDAE and DI-CcDAE were then applied in mixed fruit Jiaosu to convert D-fructose into D-allulose, which exhibited the productivity of D-allulose 1.08 g/Lh-1 and 1.57 g/Lh-1, respectively. This research provided a promising directional immobilization strategy for DAEase, and robust biocatalyst for production of functional foodstuff containing D-allulose.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hongbin Qi
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
28
|
Hunt for α-amylase from metagenome and strategies to improve its thermostability: a systematic review. World J Microbiol Biotechnol 2022; 38:203. [PMID: 35999473 DOI: 10.1007/s11274-022-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.
Collapse
|
29
|
DAVOODI ELHAM, TAHANPESAR ELHAM, MASSAH AHMADREZA. Synthesis of 1,8‐dioxo-octahydroxanthenes utilizing nanodiatomite@melamine-SO3H as a novel heterogeneous catalyst under solvent-free conditions. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02065-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Jaafar NR, Jailani N, Rahman RA, Öner ET, Murad AMA, Illias RM. Protein surface engineering and interaction studies of maltogenic amylase towards improved enzyme immobilisation. Int J Biol Macromol 2022; 213:70-82. [DOI: 10.1016/j.ijbiomac.2022.05.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
|
31
|
Shet SM, Bharadwaj P, Bisht M, Pereira MM, Thayallath SK, Lokesh V, Franklin G, Kotrappanavar NS, Mondal D. Presenting B-DNA as macromolecular crowding agent to improve efficacy of cytochrome c under various stresses. Int J Biol Macromol 2022; 215:184-191. [PMID: 35716795 DOI: 10.1016/j.ijbiomac.2022.06.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
Existence of numerous biomolecules results in biological fluids to be extremely crowded. Thus, Macromolecular crowding is an essential phenomenon to sustain active conformation of proteins in biological systems. Herein, double helical deoxyribonucleic acid (B-DNA) is presented for the first time as a biomacromolecular crowding system for sustainable packaging of cytochrome c (Cyt C). The peroxidase activity of Cyt C was investigated in the presence of various concentrations of B-DNA (from salmon milt). At an optimized concentration of 0.125 mg/mL B-DNA, an 11-fold higher catalytic activity was found than in native Cyt C with improved stability. Molecular docking and spectroscopic analyses revealed that electrostatic and H-bonding are the main interactions between DNA and Cyt C that affect the structural stability and activity of the protein. Moreover, the catalytic activity and stability of the protein were further investigated in the presence of severe process conditions by UV-visible, circular dichroism, and Fourier-transform infrared spectroscopies. Molecularly crowded Cyt C showed significantly higher activity and stability under severe environments such as high temperature (110 °C), oxidative stress, high pH (pH 10) and biological (trypsin) and chemical denaturants (urea) compared to bare Cyt C. The observed results support the suitability of DNA-based macromolecular crowding media as a viable and effective stabilizer of proteins against multiple stresses.
Collapse
Affiliation(s)
- Sachin M Shet
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, India
| | - Pranav Bharadwaj
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, India
| | - Meena Bisht
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Matheus M Pereira
- Departamento de Química, CICECO, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | | | - Veeresh Lokesh
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Gregory Franklin
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | | | - Dibyendu Mondal
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, India; Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
32
|
Hao Y, Guo T, Ren J, Wang Y, Wang L, Shi Y, Feng W. Characterization of a thermostable, protease-tolerant inhibitor of α-glycosidase from carrot: A potential oral additive for treatment of diabetes. Int J Biol Macromol 2022; 209:1271-1279. [PMID: 35460754 DOI: 10.1016/j.ijbiomac.2022.04.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
Abstract
Inhibiting α-glucosidase activity is important in controlling postprandial hyperglycemia and, thus, helping to manage type-2 diabetes mellitus (T2DM). In the present study, we purified a hypothetical protein of carrots called DCHP (Daucus Carrot hypoglycemic peptide), and their inhibitory effects on α-glucosidase, as well as related mechanisms, were investigated. The recombinant DCHP protein with a molecular weight of 8 kDa showed strong inhibitory activity against α-glycosidase and maintained good stability in solution. DCHP exhibited no inhibitory activity but was tolerant to trypsin and chymotrypsin. Cellular experiments demonstrated that glucose consumption and lactic acid production increased rapidly when treated with DCHP in Caco-2 and HepG2 cells. DCHP crystal was generated, and the crystal structure, which was similar to that of rBTI and consisted of a central α-helix and a two-stranded β-sheet with a unique loop region. The interaction between DCHP and α-glycosidase was investigated by molecular docking and site-directed mutation, which revealed that Glu43, Pro46, Thr47 Thr48 and Gln49 are the key residues in DCHP that inhibit α-glycosidase activity. This work provides potential bioactive peptides as functional foods or nutraceutical supplements in preventing and managing T2DM.
Collapse
Affiliation(s)
- Yang Hao
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Tao Guo
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jinqi Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaxin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Lei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yawei Shi
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, China; Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A designed experiment for CdS-AgBr photocatalyst toward methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33013-33032. [PMID: 35018594 DOI: 10.1007/s11356-021-17569-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
A boosted photocatalytic activity was observed for the CdS-AgBr nanocomposite in the degradation of methylene blue (MB). The experimental design method based on the response surface methodology (RSM) approach used to study the simultaneous interaction effects between the influencing variables. Analysis of variance (ANOVA) of the results confirmed a significant model for processing the data because an F value of 32.34 for the suggested model was higher than that of the critical value of F0.05, 14, 13 = 2.55 at 95% confidence interval. This analysis also showed a non-significant lack of fit (LOF) (as a measure of the randomness of the deviations around the obtained data) because the LOF F value of 8.27 was smaller than that of the critical value of F0.05, 10, 3 = 8.79. R2 values near to unity were achieved (the multiple correlation coefficients R2 (R2 = 0.9627), adjusted R2 (adj-R2 = 0.9226), and predicted R2 (pred-R2 = 0.7423)). Six center points suggested by the model included the following conditions: pH, 6.1; CMB, 3.5 mg/L; a dose of the catalyst, 0.68 g/L; and irradiation time, 40.5 min. During the center point runs, the degradation efficiencies were obtained in the range of 38 to 43%. The optimal run included pH, 9; catalyst dosage, 1 g/L; irradiation time, 60 min; and CMB, 2 mg/L, and the best removal efficiency of 98% was achieved during these conditions.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
34
|
Co-precipitation synthesis of BiOI/(BiO)2CO3: Brief characterization and the kinetic study in the photodegradation and mineralization of sulfasalazine. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Ren C, Wang H, Cheng Y, Ma X, Wang Y. Cyclodextrin polymer-confined urease for the fast and efficient removal of urea. NEW J CHEM 2022. [DOI: 10.1039/d2nj03303h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient urease immobilized material was synthesized for fast and efficient urea removal with high pH and temperature tolerance.
Collapse
Affiliation(s)
- Cui Ren
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - He Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - Xiaofei Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 30072, China
| |
Collapse
|