1
|
Zhou R, Chen X, Xu D, Zhang S, Huang M, Chen H, Gao P, Zeng Y, Zhang L, Dai X. Hybrid wavelength selection strategy combined with ATR-FTIR spectroscopy for preliminary exploration of vintage labeling traceability of sauce-flavor baijiu. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124691. [PMID: 38909557 DOI: 10.1016/j.saa.2024.124691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The allure of substantial profits has perpetuated the illicit trade of counterfeit vintage labels for baijiu. While various approaches have been employed to intelligently ascertain the vintage of baijiu, many of them are both cost-intensive and time-consuming. This work pioneered the use of Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, coupled with chemometric analysis, offering a non-destructive and economically viable method for discriminating sauce-flavor baijiu across different aging periods (1-, 2-, and 3-year). In this research, principal component analysis (PCA) was first conducted to explore clustering trends among distinct vintage groups. Subsequently, the effect of spectral pre-processing on modeling performance was explored. For wavelength selection, four wavelength selection methods (ReliefF, random forest variable importance (RFVI), variable importance in projection (VIP), and Venn) were first used to identify the subset of candidate features that potentially best mapped the vintage labels. Immediately following this, to explore the possibility of further improving the identification capabilities of the model as well as to reduce the redundant data that may still be present, sequential backward selection (SBS) was utilized for secondary feature reduction within the subset of candidates. The amalgamation of these two techniques is termed a "hybrid wavelength selection strategy." Additionally, the dimensionality reduction effects of PCA and kernel principal component analysis (KPCA) were compared to demonstrate the robustness of the proposed method. Finally, classification models such as partial least squares discriminant analysis (PLS-DA), random forest (RF), and grasshopper optimization algorithm-based support vector machine (GOA-SVM) were developed. The results show that the spectral data need not be pre-processed, and the proposed hybrid wavelength selection strategy can further improve the identification ability of the model. Among the many models developed, ReliefF-SBS-GOA-SVM emerged as the most proficient classification model, yielding accuracy, sensitivity, and specificity rates of 94.44%, 95.23%, and 94.44%, respectively. This method not only holds promise for the discrimination of baijiu class attributes such as brand, origin, flavor, and vintage but also exhibits potential applicability in other non-targeted identification studies involving spectroscopy methodologies.
Collapse
Affiliation(s)
- Rui Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China.
| | - Defu Xu
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| | - Min Huang
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Peng Gao
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Yu Zeng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Lili Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoxue Dai
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| |
Collapse
|
2
|
Zheng YF, Lin YS, Huang JW, Tang KT, Kuo CY, Wang WC, Chien HJ, Chang CJ, Hu NJ, Lai CC. SWATH-MS Based Secretome Proteomic Analysis of Pseudomonas aeruginosa Against MRSA. Proteomics 2024:e202300649. [PMID: 39420696 DOI: 10.1002/pmic.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The study uses Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH)-MS in conjunction with secretome proteomics to identify key proteins that Pseudomonas aeruginosa secretes against methicillin-resistant Staphylococcus aureus (MRSA). Variations in the inhibition zones indicated differences in strain resistance. Multivariate statistical methods were applied to filter the proteomic results, revealing five potential protein biomarkers, including Peptidase M23. Gene ontology (GO) analysis and sequence alignment supported their antibacterial activity. Thus, SWATH-MS provides a comprehensive understanding of the secretome of P. aeruginosa in its action against MRSA, guiding future antibacterial research.
Collapse
Affiliation(s)
- Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Sheng Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Division of Chest Medicine, Asia University Hospital, Asia University, Taichung, Taiwan
| | - Jing-Wen Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Han-Ju Chien
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chih-Jui Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Nien-Jen Hu
- Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Varunjikar MS, Pineda-Pampliega J, Belghit I, Palmblad M, Einar Grøsvik B, Meier S, Asgeir Olsvik P, Lie KK, Rasinger JD. Fish species authentication in commercial fish products using mass spectrometry and spectral library matching approach. Food Res Int 2024; 192:114785. [PMID: 39147490 DOI: 10.1016/j.foodres.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Seafood fraud has become a global issue, threatening food security and safety. Adulteration, substitution, dilution, and incorrect labeling of seafood products are fraudulent practices that violate consumer safety. In this context, developing sensitive, robust, and high-throughput molecular tools for food and feed authentication is becoming crucial for regulatory purposes. Analytical approaches such as proteomics mass spectrometry have shown promise in detecting incorrectly labeled products. For the application of these tools, genome information is crucial, but currently, for many marine species of commercial importance, such information is unavailable. However, when combining proteomic analysis with spectral library matching, commercially important fish species were successfully identified, differentiated, and quantified in pure muscle samples and mixtures, even when genome information was scarce. This study further tested the previously developed spectral library matching approach to differentiate between 29 fish species from the North Sea and examined samples including individual fish, laboratory-prepared mixtures and commercial products. For authenticating libraries generated from 29 fish species, fresh muscle samples from the fish samples were matched against the reference spectral libraries. Species of the fresh fish samples were correctly authenticated using the spectral library approach. The same result was obtained when evaluating the laboratory-prepared mixtures. Furthermore, processed commercial products containing mixtures of two or three fish species were matched against these reference spectral libraries to test the accuracy and robustness of this method for authentication of fish species. The results indicated that the method is suitable for the authentication of fish species from highly processed samples such as fish cakes and burgers. The study shows that current and future challenges in food and feed authentication can efficiently be tackled by reference spectral libraries method when prospecting new resources in the Arctic.
Collapse
Affiliation(s)
| | | | - Ikram Belghit
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.
| | - Magnus Palmblad
- Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | | | - Sonnich Meier
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.
| | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| | - Kai K Lie
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.
| | - Josef D Rasinger
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
4
|
Haridas PC, Ravichandran R, Shaikh N, Kishore P, Kumar Panda S, Banerjee K, Sekhar Chatterjee N. Authentication of the species identity of squid rings using UHPLC-Q-Orbitrap MS/MS-based lipidome fingerprinting and chemoinformatics. Food Chem 2024; 442:138525. [PMID: 38271906 DOI: 10.1016/j.foodchem.2024.138525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Species mislabeling of commercial loliginidae squid can undermine important conservation efforts and prevent consumers from making informed decisions. A comprehensive lipidomic fingerprint of Uroteuthis singhalensis, Uroteuthis edulis, and Uroteuthis duvauceli rings was established using high-resolution mass spectrometry-based lipidomics and chemoinformatics analysis. The principal component analysis showed a clear separation of sample groups, with R2X and Q2 values of 0.97 and 0.85 for ESI+ and 0.96 and 0.86 for ESI-, indicating a good model fit. The optimized OPLS-DA and PLS-DA models could discriminate the species identity of validation samples with 100 % accuracy. A total of 67 and 90 lipid molecules were putatively identified as biomarkers in ESI+ and ESI-, respectively. Identified lipids, including PC(40:6), C14 sphingomyelin, PS(O-36:0), and PE(41:4), played an important role in species discrimination. For the first time, this study provides a detailed lipidomics profile of commercially important loliginidae squid and establishes a faster workflow for species authentication.
Collapse
Affiliation(s)
- Pranamya C Haridas
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India; Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682016, India
| | - Rajesh Ravichandran
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India
| | - Nasiruddin Shaikh
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Manjri Farm, Pune 412307, India
| | - Pankaj Kishore
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India
| | - Satyen Kumar Panda
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India; Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi 110002, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Manjri Farm, Pune 412307, India
| | - Niladri Sekhar Chatterjee
- National Reference Laboratory, ICAR-Central Institute of Fisheries Technology, Matsyapuri P.O., W. Island, Cochin 682029, India.
| |
Collapse
|
5
|
Gent L, Chiappetta ME, Hesketh S, Palmowski P, Porter A, Bonicelli A, Schwalbe EC, Procopio N. Bone Proteomics Method Optimization for Forensic Investigations. J Proteome Res 2024; 23:1844-1858. [PMID: 38621258 PMCID: PMC11077585 DOI: 10.1021/acs.jproteome.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
The application of proteomic analysis to forensic skeletal remains has gained significant interest in improving biological and chronological estimations in medico-legal investigations. To enhance the applicability of these analyses to forensic casework, it is crucial to maximize throughput and proteome recovery while minimizing interoperator variability and laboratory-induced post-translational protein modifications (PTMs). This work compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC-MS)/MS including an in-StageTip protocol previously optimized for forensic applications and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. This study also compared data-dependent acquisition (DDA) with data-independent acquisition (DIA). By testing all of the workflows on 30 human cortical tibiae samples, S-Trap workflows resulted in increased proteome recovery with both lysis solutions tested and in decreased levels of induced deamidations, and the DIA mode resulted in greater sensitivity and window of identification for the identification of lower-abundance proteins, especially when open-source software was utilized for data processing in both modes. The newly developed S-Trap protocol is, therefore, suitable for forensic bone proteomic workflows and, particularly when paired with DIA mode, can offer improved proteomic outcomes and increased reproducibility, showcasing its potential in forensic proteomics and contributing to achieving standardization in bone proteomic analyses for forensic applications.
Collapse
Affiliation(s)
- Luke Gent
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Maria Elena Chiappetta
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Department
of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Stuart Hesketh
- School
of Medicine, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Pawel Palmowski
- NUPPA
Facility, Medical School, Newcastle University, Newcastle Upon Tyne NE1
7RU, United Kingdom
| | - Andrew Porter
- NUPPA
Facility, Medical School, Newcastle University, Newcastle Upon Tyne NE1
7RU, United Kingdom
| | - Andrea Bonicelli
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Edward C. Schwalbe
- Department
of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1
8ST, United Kingdom
| | - Noemi Procopio
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
6
|
Su G, Yu C, Liang S, Wang W, Wang H. Multi-omics in food safety and authenticity in terms of food components. Food Chem 2024; 437:137943. [PMID: 37948800 DOI: 10.1016/j.foodchem.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
One of the main goals of food science is to ensure the high quality and safety of food. The inspection technology for known hazards has matured, and the identification of unknown and potential food safety hazards, as well as the identification of their composition and origin, is a challenge faced by food safety. Food safety and authenticity require multi-omics methods to support the implementation of qualitative discrimination to precise quantitative analysis, from targeted screening to non-target detection, and from multi component to full component analysis to address these challenges. The present review aims to provide characterizations, advantages, the latest progress, and prospects of using omics (including genomics, proteomics, and metabonomics) in food safety and authenticity. Multi omics strategies used to detect and verify different standard biomarkers of food will contribute to understanding the basic relationship between raw materials, processing, foods, nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR of China
| | - Chong Yu
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuwen Liang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haifeng Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
7
|
Hao P, Han L, Wu Y, Wang Y, Ruan S, Liu Z, Zhang W, Ding J. TMT-based proteomics analysis of sea urchin (Strongylocentrotus intermedius) under high temperature stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101186. [PMID: 38159402 DOI: 10.1016/j.cbd.2023.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the context of global warming and continuous high temperatures in the northern part of China in summer, the mortality rate of Strongylocentrotus intermedius through the summer reaches 70-80 %. The protein regulatory mechanism of S. intermedius in response to high temperature stress is still unclear. In order to investigate the protein expression of S. intermedius under high temperature stress, the study was conducted with the high-temperature resistant strain of S. intermedius and the control group of S. intermedius. Tandem Mass Tag (TMT) tagging technique was applied to resolve the protein expression profile of S. intermedius in response to high temperature stress. The results showed that, compared to 15 °C,136 DEPs were screened in high-temperature resistant strain groups of S. intermedius under high temperature stress and 87 DEPs were screened in the control group of S. intermedius. There were 33 common differential proteins in the two groups, such as APOLP, HSP 70, CDC37 and CALM. Further Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses revealed that the up-regulated proteins CALM and HSP70 are significantly enriched in the "Phosphatidylinositol signaling system" and "Protein processing in endoplasmic reticulum" in heat-tolerant S. intermedius strains under high temperature stress. The control group of S. intermedius DEPs were significantly enriched in protein processing in the endoplasmic reticulum. These results provide a theoretical basis for the molecular mechanism of sea urchin heat tolerance and fundamental data for sea urchin selection and breeding for high temperature tolerance.
Collapse
Affiliation(s)
- Pengfei Hao
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Lingshu Han
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, PR China
| | - Yanglei Wu
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yongjie Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Shuchao Ruan
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Ziyu Liu
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jun Ding
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
8
|
Gkini IP, Christopoulos P, Conides A, Kalogianni DP, Christopoulos TK. Molecular Rapid Test for Identification of Tuna Species. BIOSENSORS 2024; 14:82. [PMID: 38392001 PMCID: PMC10887179 DOI: 10.3390/bios14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Tuna is an excellent food product, relatively low in calories, that is recommended for a balanced diet. The continuously increasing demand, especially for bluefin-tuna-based food preparations, and its relatively high market price make adulteration by intentionally mixing with other lower-priced tunas more prospective. The development of rapid methods to detect tuna adulteration is a great challenge in food analytical science. We have thus developed a simple, fast, and low-cost molecular rapid test for the visual detection of tuna adulteration. It is the first sensor developed for tuna authenticity testing. The three species studied were Thunnus thynnus (BFT), Thunnus albacares, and Katsuwonus pelamis. DNA was isolated from fresh and heat-treated cooked fish samples followed by PCR. The PCR products were hybridized (10 min) to specific probes and applied to the rapid sensing device. The signal was observed visually in 10-15 min using gold nanoparticle reporters. The method was evaluated employing binary mixtures of PCR products from fresh tissues and mixtures of DNA isolates from heat-treated tissues (canned products) at adulteration percentages of 1-100%. The results showed that the method was reproducible and specific for each tuna species. As low as 1% of tuna adulteration was detected with the naked eye.
Collapse
Affiliation(s)
- Isidora P. Gkini
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Patras, Greece; (I.P.G.); (P.C.)
| | - Panagiotis Christopoulos
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Patras, Greece; (I.P.G.); (P.C.)
| | - Alexis Conides
- Hellenic Centre for Marine Research, Institute for Marine Biological Resources, 46.7 km Athens-Sounion, Mavro Lithari, Anavyssos, 19013 Attika, Greece;
| | - Despina P. Kalogianni
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Patras, Greece; (I.P.G.); (P.C.)
| | - Theodore K. Christopoulos
- Analytical/Bioanalytical Chemistry & Nanotechnology Group, Department of Chemistry, University of Patras, 26504 Patras, Greece; (I.P.G.); (P.C.)
- Institute of Chemical Engineering Sciences/Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| |
Collapse
|
9
|
Zhou R, Chen X, Huang M, Chen H, Zhang L, Xu D, Wang D, Gao P, Wang B, Dai X. ATR-FTIR spectroscopy combined with chemometrics to assess the spectral markers of irradiated baijius and their potential application in irradiation dose control. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123162. [PMID: 37478760 DOI: 10.1016/j.saa.2023.123162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Although some methods have been proposed for the identification of irradiated baijius, they are often costly, time-consuming, and destructive. It is also unclear what instrumentation can be used to fully characterize the quality changes in irradiated baijius. To address this issue, this study pioneers the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in combination with chemometrics to open up new avenues for characterizing irradiated baijius and their quality control. Principal component analysis, five spectral pre-processing methods (Savitzky-Golay smoothing (S-G), second-order derivative (SD), multiple scattering correction (MSC), S-G + SD and S-G + MSC), five wavelength selection methods (random forest variable importance (RFVI), two-dimensional correlation spectroscopy (2D-COS), variable importance in projection (VIP), ReliefF, and Venn), and three classification models (partial least squares-discriminant analysis (PLS-DA), random forest (RF), and grasshopper optimization algorithm-based support vector machine (GOA-SVM)) were integrated into the analytical framework of ATR-FTIR spectroscopy, aiming to accurately identify baijiu samples according to different irradiation doses and to search for irradiation-induced spectral difference characteristics (spectral markers). The results showed that SD was the best spectral pre-processing method, and RF models constructed using the 20 most competitive and discriminative spectral markers (selected by Venn) could achieve accurate identification of baijiu samples based on irradiation dose (0, 4, 6, and 8 kGy). After Pearson correlation analysis, the five significantly (P<0.05) changed spectral markers (1596, 2025, 2309, 2329, and 2380 cm-1) were attributed to changes in the content of total acids, alcohols, and aromatic compounds. These findings demonstrate for the first time the potential of ATR-FTIR spectroscopy as a fast, low-cost, and non-destructive tool for the characterization and identification of irradiated baijiu samples. This approach may also offer a promising solution for labeling management of irradiated foods, vintage identification of baijius, and brand protection.
Collapse
Affiliation(s)
- Rui Zhou
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoming Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China.
| | - Min Huang
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Lili Zhang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Defu Xu
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Peng Gao
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Bensheng Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoxue Dai
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| |
Collapse
|
10
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Abedini A, Salimi M, Mazaheri Y, Sadighara P, Alizadeh Sani M, Assadpour E, Jafari SM. Assessment of cheese frauds, and relevant detection methods: A systematic review. Food Chem X 2023; 19:100825. [PMID: 37780280 PMCID: PMC10534187 DOI: 10.1016/j.fochx.2023.100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 10/03/2023] Open
Abstract
Dairy products are widely consumed in the world due to their nutritional and functional characteristics. This group of food products are consumed by all age groups due to their health-giving properties. One of these products is cheese which has a high price compared to other dairy products. Because of this, it can be prone to fraud all over the world. Fraud in food products threatens the world's food safety and can cause serious damage to human health. There are many concerns among food authorities in the world about the fraud of food products. FDA, WHO, and the European Commission provide different legislations and definitions for fraud. The purpose of this review is to identify the most susceptible cheese type for fraud and effective methods for evaluating fraud in all types of cheeses. For this, we examined the Web of Science, Scopus, PubMed, and ScienceDirect databases. Mozzarella cheese had the largest share among all cheeses in terms of adulteration due to its many uses. Also, the methods used to evaluate different types of cheese frauds were PCR, Spectrometry, stable isotope, image analysis, electrophoretic, ELISA, sensors, sensory analysis, near-infrared and NMR. The methods that were most used in detecting fraud were PCR and spectrometry methods. Also, the least used method was sensory evaluation.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahla Salimi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Mazaheri
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
Yuan P, Chen X, Benjakul S, Sun J, Zhang B. Label-free based proteomics revealed the specific changes of muscle proteins in pike eel ( Muraenesox cinereus) under cold stress. Food Chem X 2022; 14:100275. [PMID: 35284818 PMCID: PMC8904379 DOI: 10.1016/j.fochx.2022.100275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/12/2023] Open
Abstract
Changes in protein profiles were investigated in pike eel during cold storage. Cold storage decreased the springiness and MP content in muscle tissues. 137 and 148 DAPs were identified in the CPE and FPE compared with the PE samples. Membrane and cytoskeletal proteins were vulnerable to damage during storage. Proteomics revealed significant protein alterations in fresh and stored fish comparisons.
Chemical- and liquid chromatography coupled with mass spectrometry (LC–MS) based proteomics strategies were executed to investigate the alterations of protein profiles in pike eel (Muraenesox cinereus) muscle during chilling (CPE) and frozen (FPE) storage. Chemical results indicated that springiness and myofibrillar protein (MP) content of muscle tissues decreased significantly during 6 days of chilled and 120 days of frozen storage. LC–MS-based proteomics analysis suggested that great alterations occurred in muscle proteins mainly induced by cold stress. The differentially abundant proteins (DAPs) with low abundances in CPE and FPE samples included the annexins, fibronectin, ribosomal proteins, T-complex proteins, tubulin beta chain, and histones, which were mostly associated with the membrane structural constituents, cytoskeleton, and binding functional proteins. Results of eukaryotic cluster of orthologous group (KOG) verified that these identified DAPs were mainly converged in the cytoskeleton function resulting from cold conditions, which in turn affected the physical structure and chemical performances of muscle tissues.
Collapse
Affiliation(s)
- Pengxiang Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Xiaonan Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Jipeng Sun
- Zhejiang Marine Development Research Institute, China
- Corresponding authors at: No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, China.
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, China
- Pisa Marine Graduate School, Zhejiang Ocean University, China
- Corresponding authors at: No.1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|