1
|
Wang X, Chen H, Xu Y, Deng Q. The role of micro-structures in the aqueous phase of emulsion in lipid oxidation process. Food Chem 2025; 464:141760. [PMID: 39471561 DOI: 10.1016/j.foodchem.2024.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The instability of emulsions depended on participation of many physical structures in the emulsion. The walnut oil emulsion stabilized by sunflower phospholipid was used to study the potential relationship between the micro-structures in aqueous phase and the overall physicochemical stability of the emulsion. The vesicles and micro- structures (<70 nm, containing trace amounts of triglycerides) was observed by Cryo-TEM in the aqueous phase of emulsions. The content of triglycerides decreased gradually with the instability of the emulsion. The increase of phospholipid concentration inhibited the formation of lipid hydroperoxides (LOOH). However, the degradation of LOOH occurred preferentially in the aqueous micro- structures of high concentrations of phospholipids emulsions. These micro- structures did not affect the distribution of LOOH in the initial emulsion, but affected the distribution of malondialdehyde (MDA). This study provided insights into understanding the oxidative stability of emulsions - highlighting the role of micro- structures in the aqueous phase.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Yingying Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
2
|
Wang X, Chen Y, McClements DJ, Peng D, Chen H, Xu S, Deng Q, Geng F. Regulation of Microlocalization of Antioxidants by Surfactant Micelles in Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25306-25318. [PMID: 39485063 DOI: 10.1021/acs.jafc.4c08855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The mass transport effect of aqueous micelles on antioxidants and oxidation products in emulsions may alter the rate, degree, and pathway of lipid oxidation. In this study, the dynamic mass transport of oxidation products and endogenous tocopherol during storage at different micelle concentrations was monitored by UV-vis spectrophotometry and high-performance liquid chromatography. Furthermore, the microlocalization of tocopherol in micelles was investigated using 1H nuclear magnetic resonance and nuclear Overhauser effect spectroscopy, fluorescence measurements, and molecular dynamics simulation. It was demonstrated that high-concentration micelles enhanced the emulsion stability by promoting the mass transport of hydroperoxides and endogenous antioxidants. The enhancement of micelles was a superposition effect of concentration, interaction sites, and binding force between tocopherols and Tween 20 molecules. Tween 20 concentration-induced favorable changes of microlocalization of tocopherol and dynamic mass transport demonstrated a new integrated perspective to control lipid oxidation.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Shufang Xu
- Clinical Nutrition Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430030, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, Hubei 430062, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Zheng J, Ding L, Yi J, Zhou L, Zhao L, Cai S. Revealing the potential effects of oil phase on the stability and bioavailability of astaxanthin contained in Pickering emulsions: In vivo, in vitro and molecular dynamics simulation analysis. Food Chem 2024; 456:139935. [PMID: 38870805 DOI: 10.1016/j.foodchem.2024.139935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
This study investigated the effects of oil phases on the encapsulation rate, storage stability, and bioavailability of astaxanthin (ASTA) in Pickering emulsions (PEs). Results showed PEs of mixed oils (olive oil/edible tea oil) had excellent encapsulation efficiency (about 96.0%) and storage stability of ASTA. In vitro simulated gastrointestinal digestion results showed the mixed oil PE with a smaller interfacial area and higher monounsaturated fatty acid content may play a better role in improving ASTA retention and bioaccessibility. In vivo absorption results confirmed the mixed oil PE with an olive oil/edible tea oil of 7:3 was more favorable for ASTA absorption. Molecular dynamics simulation showed ASTA bound more strongly and stably to fatty acid molecules in the system of olive oil/edible tea oil of 7:3; and van der Waals force was the main binding force. NMR further proved there really were interactions between ASTA and four main fatty acids.
Collapse
Affiliation(s)
- Jingyi Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Ren K, Cao X, Zheng L, Liu S, Li L, Cheng L, Tian T, Tong X, Wang H, Jiang L. Liposomes decorated with β-conglycinin and glycinin: Construction, structure and in vitro digestive stability. Int J Biol Macromol 2024; 269:131900. [PMID: 38677675 DOI: 10.1016/j.ijbiomac.2024.131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Liposomes were modified with different proportions of β-conglycinin (7S) and glycinin (11S) to form Lip-7S and Lip-11S. The morphology, interaction and in vitro simulated digestion of liposomes were studied. The particle size of Lip-7S was smaller than that of Lip-11S. When the values of Lip-7S and Lip-11S were 1:1 and 1:0.75, respectively, the ζ-potential had the maximum absolute value and the dispersion of the system was good. The results of multispectral analysis showed that hydrogen-bond and hydrophobic interaction dominated protein-modified liposomes, the protein structure adsorbed on the surface of liposomes changed, the content of α-helix decreased, and the structure of protein-modified liposomes became denser. The surface hydrophobicity and micropolarity of liposomes decreased with the increase of protein ratio, and tended to be stable after Lip-7S (1:1) and Lip-11S (1:0.75). Differential scanning calorimetry showed that Lip-7S had higher phase transition temperature (≥170.5 °C) and better rigid structure. During simulated digestion, Lip-7S (22.5 %) released less Morin than Lip (40.6 %) and Lip-11S (26.2 %), and effectively delayed the release of FFAs. The environmental stability of liposomes was effectively improved by protein modification, and 7S had better modification effect than 11S. This provides a theoretical basis for 7S and 11S modified liposomes, and also provides a data reference for searching for new materials for stabilization of liposomes.
Collapse
Affiliation(s)
- Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinru Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lexi Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lanxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Tian
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xiaohong Tong
- College of Agricultural, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
5
|
Cheng C, Yuan C, Cui B, Li J, Liu G. β-Cyclodextrin based Pickering emulsions for α-tocopherol delivery: Antioxidation stability and bioaccessibility. Food Chem 2024; 438:138000. [PMID: 38000154 DOI: 10.1016/j.foodchem.2023.138000] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
β-Cyclodextrin (β-CD) Pickering emulsion and cinnamaldehyde/β-cyclodextrin (CIN/β-CD) Pickering emulsion were prepared and the influences of oxidation and digestion were investigated. CIN/β-CD composite was better dispersed at the oil-water interface than β-CD. Hydrophobic group of CIN anchored in the oil phase and Hydrophilic hydroxyl group of β-CD extended into the aqueous phase, which allowed CIN/β-CD composite to be oriented at the oil-water interface and formed a more stable oil-water interface layer. β-CD Pickering emulsion was more susceptible to oxidative deterioration than CIN/β-CD Pickering emulsion, its malondialdehyde (MDA) value was as high as 509.41 ± 9.37 nmol/L. Digestion experiment indicated that CIN/β-CD Pickering emulsion was released inner oil phase in the small intestine and free fatty acid (FFA) release rate was 44.32 ± 1.08%. Pharmacokinetic parameters manifested that α-tocopherol peak concentration (Cmax) was 64.32 ± 6.45 mg/L and the peak time (Tmax) appeared at 5 h after administration of CIN/β-CD Pickering emulsion.
Collapse
Affiliation(s)
- Caiyun Cheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
6
|
Quezada C, Urra M, Mella C, Zúñiga RN, Troncoso E. Plant-Based Oil-in-Water Food Emulsions: Exploring the Influence of Different Formulations on Their Physicochemical Properties. Foods 2024; 13:513. [PMID: 38397490 PMCID: PMC10888144 DOI: 10.3390/foods13040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The global focus on incorporating natural ingredients into the diet for health improvement encompasses ω-3 polyunsaturated fatty acids (PUFAs) derived from plant sources, such as flaxseed oil. ω-3 PUFAs are susceptible to oxidation, but oil-in-water (O/W) emulsions can serve to protect PUFAs from this phenomenon. This study aimed to create O/W emulsions using flaxseed oil and either soy lecithin or Quillaja saponins, thickened with modified starch, while assessing their physical properties (oil droplet size, ζ-potential, and rheology) and physical stability. Emulsions with different oil concentrations (25% and 30% w/w) and oil-to-surfactant ratio (5:1 and 10:1) were fabricated using high-pressure homogenization (800 bar, five cycles). Moreover, emulsions were thickened with modified starch and their rheological properties were measured. The physical stability of all emulsions was assessed over a 7-day storage period using the TSI (Turbiscan Stability Index). Saponin-stabilized emulsions exhibited smaller droplet diameters (0.11-0.19 µm) compared to lecithin (0.40-1.30 µm), and an increase in surfactant concentration led to a reduction in droplet diameter. Both surfactants generated droplets with a high negative charge (-63 to -72 mV), but lecithin-stabilized emulsions showed greater negative charge, resulting in more intense electrostatic repulsion. Saponin-stabilized emulsions showed higher apparent viscosity (3.9-11.6 mPa·s) when compared to lecithin-stabilized ones (1.19-4.36 mPa·s). The addition of starch significantly increased the apparent viscosity of saponin-stabilized emulsions, rising from 11.6 mPa s to 2117 mPa s. Emulsions stabilized by saponin exhibited higher stability than those stabilized by lecithin. This study confirms that plant-based ingredients, particularly saponins and lecithin, effectively produce stable O/W emulsions with flaxseed oil, offering opportunities for creating natural ingredient-based food emulsions.
Collapse
Affiliation(s)
- Carolina Quezada
- Doctoral Program in Materials Science and Process Engineering, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Matías Urra
- School of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Camila Mella
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (C.M.); (R.N.Z.)
| | - Rommy N. Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (C.M.); (R.N.Z.)
- Universitary Institute for Research and Technology Development (UIRTD), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Elizabeth Troncoso
- Universitary Institute for Research and Technology Development (UIRTD), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
7
|
Olbińska E, Trela-Makowej A, Larysz W, Orzechowska A, Szymańska R. The effect of α-tocopherol incorporated into different carriers on the oxidative stability of oil in water (O/W) emulsions. Colloids Surf B Biointerfaces 2023; 230:113536. [PMID: 37696162 DOI: 10.1016/j.colsurfb.2023.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
The effect of the antioxidant activity of α-tocopherol incorporated into different carriers on the oxidative stability of oil in water emulsion was investigated. The antioxidant activity of free and encapsulated α-tocopherol was measured in a 2,2-diphenyl-1-picrylhydrazyl reaction. Apart from α-tocopherol micelles, the samples showed similar antioxidant activity. The number of primary oxidation products in the emulsion with tocopherol liposomes and niosomes was lower than in the emulsion with micelles. During storage, the lipid peroxides gradually increased, whereas in emulsion with no α-tocopherol carriers added they remained constant. The content of the conjugated dienes first increased, and after 14 days at the end of testing time it remained stable in both types of emulsions. Our results might suggest that α-tocopherol when encapsulated into carriers exhibits lower antioxidant activity. The results obtained could be due to the better solubility of α-tocopherol in lipid droplets and thus the lower availability for the interfacial region, which is thought to be the place of the most pronounced lipid oxidation.
Collapse
Affiliation(s)
- Ewa Olbińska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Weronika Larysz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
8
|
Gao Z, Ji Z, Wang L, Deng Q, Quek SY, Liu L, Dong X. Improvement of Oxidative Stability of Fish Oil-in-Water Emulsions through Partitioning of Sesamol at the Interface. Foods 2023; 12:foods12061287. [PMID: 36981213 PMCID: PMC10048168 DOI: 10.3390/foods12061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The susceptibility of polyunsaturated fatty acids to oxidation severely limits their application in functional emulsified foods. In this study, the effect of sesamol concentration on the physicochemical properties of WPI-stabilized fish oil emulsions was investigated, focusing on the relationship between sesamol-WPI interactions and interfacial behavior. The results relating to particle size, zeta-potential, microstructure, and appearance showed that 0.09% (w/v) sesamol promoted the formation of small oil droplets and inhibited oil droplet aggregation. Furthermore, the addition of sesamol significantly reduced the formation of hydrogen peroxide, generation of secondary reaction products during storage, and degree of protein oxidation in the emulsions. Molecular docking and isothermal titration calorimetry showed that the interaction between sesamol and β-LG was mainly mediated by hydrogen bonds and hydrophobic interactions. Our results show that sesamol binds to interfacial proteins mainly through hydrogen bonding, and increasing the interfacial sesamol content reduces the interfacial tension and improves the physical and oxidative stability of the emulsion.
Collapse
Affiliation(s)
- Zhihui Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhongyan Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Leixi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Riddet Institute, Palmerston North 4474, New Zealand
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review paper focuses on the antioxidant properties of phenolic compounds in oil in water (o/w) emulsion systems. The authors first provide an overview of the most recent studies on the activity of common, naturally occurring phenolic compounds against the oxidative deterioration of o/w emulsions. A screening of the latest literature was subsequently performed with the aim to elucidate how specific parameters (polarity, pH, emulsifiers, and synergistic action) affect the phenolic interfacial distribution, which in turn determines their antioxidant potential in food emulsion systems. An understanding of the interfacial activity of phenolic antioxidants could be of interest to food scientists working on the development of novel food products enriched with functional ingredients. It would also provide further insight to health scientists exploring the potentially beneficial properties of phenolic antioxidants against the oxidative damage of amphiphilic biological membranes (which link to serious pathologic conditions).
Collapse
|
10
|
Wang Z, Zhao J, Zhang T, Karrar E, Chang M, Liu R, Wang X. Impact of interactions between whey protein isolate and different phospholipids on the properties of krill oil emulsions: A consideration for functional lipids efficient delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
In vitro digestion of binary mixture of α-tocopherol and γ-oryzanol in oil-in-water emulsion: Changes in stability and antioxidant potential. Food Res Int 2022; 159:111606. [DOI: 10.1016/j.foodres.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
|
12
|
Wang Z, Zhao J, Liu R, Chang M, Wang X. Changes of lipid compositions of krill oil emulsions during storage, a role of ultrasound treatment, and the possible process of lipid migration. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhangtie Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, International Joint Research Laboratory for Lipid Nutrition and Safety, Jiangnan University Wuxi 214122 Jiangsu People’s Republic of China
| | - Jinjin Zhao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, International Joint Research Laboratory for Lipid Nutrition and Safety, Jiangnan University Wuxi 214122 Jiangsu People’s Republic of China
| | - Ruijie Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, International Joint Research Laboratory for Lipid Nutrition and Safety, Jiangnan University Wuxi 214122 Jiangsu People’s Republic of China
| | - Ming Chang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, International Joint Research Laboratory for Lipid Nutrition and Safety, Jiangnan University Wuxi 214122 Jiangsu People’s Republic of China
| | - Xingguo Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, International Joint Research Laboratory for Lipid Nutrition and Safety, Jiangnan University Wuxi 214122 Jiangsu People’s Republic of China
| |
Collapse
|
13
|
Zhang M, Fan L, Liu Y, Huang S, Li J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem 2022; 397:133726. [PMID: 35908463 DOI: 10.1016/j.foodchem.2022.133726] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
To obtain a stable protein-added emulsion system, researchers have focused on the design of the oil-water interface. This review discussed the updated details of protein adsorption behavior at the oil-water interface. We evaluated methods of monitoring interfacial proteins as well as their strengths and limitations. Based on the effects of structure on protein adsorption, we summarized the contribution of pre-changing methods to adsorption. In addition, the interaction of proteins and other surface-active molecules at the interface had been emphasized. Results showed that protein adsorption is affected by conformation, oil polarity and aqueous environments. The monitoring of interfacial proteins through spectroscopic properties in actual emulsion systems is an emerging trend. Pre-changing could improve the protein adsorption and the purpose of pre-changing of proteins is similar. In the interaction with other surface-active molecules, co-adsorption is desirable. By co-adsorption, the respective advantages can be exploited to obtain a more stable emulsion system.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510931, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Demulsification of (W1+W2+W3)/O Reverse Cerberus Emulsion from Vibrational Emulsification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|