1
|
Teng C, Liu J, Li S, Ma K, Xu L, Feng J, Chai Z, Hu X, Lu Y, Li Y. Structural characterization, physicochemical properties and hypoglycemic activity of soluble dietary fibers from salt stressed mung bean sprouts. Int J Biol Macromol 2024; 278:134979. [PMID: 39181370 DOI: 10.1016/j.ijbiomac.2024.134979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Low-salt stress germination is an effective way to improve the nutritional composition of food crops. A novel soluble dietary fiber (MS-SDF) was isolated from low-salt stress mung bean sprouts that were exposed to low-salt stress using anion exchange and gel permeation techniques. Structural analysis revealed that MS-SDF was a homogeneous heteropolysaccharide with an average molecular weight of 164.997 KDa. It featured a loose structure and contained the characteristic functional groups typical of polysaccharides. MS-SDF was composed of arabinose, galactose, glucose, and mannose with a molar ratio of 3.95:3.86:82.69:9.02. The structure was mainly composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,6)-α-D-Glcp-(1→ as the main chain. Branched at O-3 position with single β-D-Manp-(1→ as major the side chain. Furthermore, in vitro hypoglycemic assays indicate that MS-SDF exhibits α-glucosidase inhibitory activity, significantly enhancing glucose uptake, glycogen synthesis, and pyruvate kinase activity in insulin-resistant HepG2 cells. Overall, MS-SDF could be used as a promising source of functional hypoglycemic foods.
Collapse
Affiliation(s)
- Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinge Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Suling Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kaiyang Ma
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lujing Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhi Chai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xindi Hu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yifei Lu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wang C, Lin J, Bu Y, Sun R, Lu Y, Gai J, Xing H, Guo N, Zhao J. Genome-wide transcriptome analysis reveals key regulatory networks and genes involved in the determination of seed hardness in vegetable soybean. HORTICULTURE RESEARCH 2024; 11:uhae084. [PMID: 38766533 PMCID: PMC11101316 DOI: 10.1093/hr/uhae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
Seed hardness is an important quality trait of vegetable soybean. To determine the factors underlying seed hardness, two landraces with contrasting seed hardness, Niumaohuang (low seed hardness) and Pixiansilicao (high seed hardness), were selected from 216 soybean accessions originating from 26 provinces in China. The contents of the main components in vegetable soybean seeds such as water, soluble sugar, starch, protein and oil were measured, and transcriptome analyses performed during five stages of seed developmental. Transcriptome analysis indicates that during the middle and late stages of seed development, a large number of genes involved in the synthesis or degradation of starch, storage protein, and fatty acids were differentially expressed, leading to differences in the accumulation of stored substances during seed maturation among Niumaohuang and Pixiansilicao. The activity of cell proliferation and the formation of cell walls in the middle and late stages of seed development may also affect the hardness of seeds to a certain extent. In addition, weighted gene co-expression network analysis (WGCNA) was undertaken to identify co-expressed gene modules and hub genes that regulate seed hardness. Overexpression of a candidate seed hardness regulatory hub gene, GmSWEET2, resulted in increased seed hardness. In this study, the important role of GmSWEET2 in regulating the hardness of vegetable soybean seeds was verified and numerous potential key regulators controlling seed hardness and the proportion of seed components were identified, laying the groundwork for improving the texture of vegetable soybean.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianyu Lin
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanpeng Bu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruidong Sun
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Lu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - JunYi Gai
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Xing
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Liu Z, Yan J, Wang T, Chen W, Suo J, Yan J, Wu J. TgLCYB1 regulated by TgWRKY22 enhances the tolerance of Torreya grandis to waterlogging stress. Int J Biol Macromol 2023; 253:126702. [PMID: 37673161 DOI: 10.1016/j.ijbiomac.2023.126702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
β-Carotene functions in plant growth and development and plays an important role in resisting abiotic stress, such as drought and salt stress. The specific function and mechanism by which β-carotene responds to waterlogging stress, however, remain elusive. In this study, we found that β-carotene content and lycopene cyclase (TgLCYB1) expression, both in leaves and roots of Torreya grandis, were increased under waterlogging treatment. Subcellular localization assays indicated that TgLCYB1 was localized in the chloroplasts. Phenotypic, physiological, and metabolome analysis showed that overexpression of TgLCYB1 enhanced the tolerance of tomato plants to waterlogging stress. Furthermore, application of a LCYB enzyme inhibitor, 2-(4-chlorophenylthio)-triethylamine hydrochloride, markedly enhanced the sensitivity of T. grandis to waterlogging stress. In addition, yeast one-hybrid assay, the dual luciferase assay system, and real-time quantitative PCR indicated that waterlogging stress induced TgWRKY22 to increase TgLCYB1 expression by binding to the TgLCYB1 promoter. Collectively, our results indicated that TgWRKY22 positively regulated TgLCYB1 expression to improve the activities of antioxidant enzyme and increase the levels of some key metabolites, thereby relieving waterlogging-induced oxidative damage, and consequently modulating the waterlogging stress response. This study contributes to a more comprehensive understanding of carotenoid functions and the role LCYB genes play in plant stress response.
Collapse
Affiliation(s)
- Zhihui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiawen Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Tongtong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
4
|
Zhang Z, Tao L, Gao L, Gao Y, Suo J, Yu W, Hu Y, Wei C, Farag MA, Wu J, Song L. Transcription factors TgbHLH95 and TgbZIP44 cotarget terpene biosynthesis gene TgGPPS in Torreya grandis nuts. PLANT PHYSIOLOGY 2023; 193:1161-1176. [PMID: 37399247 PMCID: PMC10517253 DOI: 10.1093/plphys/kiad385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 07/05/2023]
Abstract
Terpenes are volatile compounds responsible for aroma and the postharvest quality of commercially important xiangfei (Torreya grandis) nuts, and there is interest in understanding the regulation of their biosynthesis. Here, a transcriptomics analysis of xiangfei nuts after harvest identified 156 genes associated with the terpenoid metabolic pathway. A geranyl diphosphate (GPP) synthase (TgGPPS) involved in production of the monoterpene precursor GPP was targeted for functional characterization, and its transcript levels positively correlated with terpene levels. Furthermore, transient overexpression of TgGPPS in tobacco (Nicotiana tabacum) leaves or tomato (Solanum lycopersicum) fruit led to monoterpene accumulation. Analysis of differentially expressed transcription factors identified one basic helix-loop-helix protein (TgbHLH95) and one basic leucine zipper protein (TgbZIP44) as potential TgGPPS regulators. TgbHLH95 showed significant transactivation of the TgGPPS promoter, and its transient overexpression in tobacco leaves led to monoterpene accumulation, whereas TgbZIP44 directly bound to an ACGT-containing element in the TgGPPS promoter, as determined by yeast 1-hybrid test and electrophoretic mobility shift assay. Bimolecular fluorescence complementation, firefly luciferase complementation imaging, co-immunoprecipitation, and GST pull-down assays confirmed a direct protein-protein interaction between TgbHLH95 and TgbZIP44 in vivo and in vitro, and in combination these proteins induced the TgGPPS promoter up to 4.7-fold in transactivation assays. These results indicate that a TgbHLH95/TgbZIP44 complex activates the TgGPPS promoter and upregulates terpene biosynthesis in xiangfei nuts after harvest, thereby contributing to its aroma.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Lingling Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Weiyu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Chunyan Wei
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Desheng Middle Road No. 298, Hangzhou, 310021 Zhejiang Province, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin’an, 311300 Zhejiang Province, China
| |
Collapse
|
5
|
Chen L, Jiang Q, Jiang C, Lu H, Hu W, Yu S, Li M, Tan CP, Feng Y, Xiang X, Shen G. Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota. Food Funct 2023; 14:2870-2880. [PMID: 36883533 DOI: 10.1039/d2fo02524h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Hongling Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Wenjun Hu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Malaysia
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
6
|
Unraveling the malate biosynthesis during development of Torreya grandis nuts. Curr Res Food Sci 2022; 5:2309-2315. [DOI: 10.1016/j.crfs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
|
7
|
Liu Y, Jiang Z, Ye Y, Wang D, Jin S. Enhanced Salt Tolerance of Torreya grandis Genders Is Related to Nitric Oxide Level and Antioxidant Capacity. FRONTIERS IN PLANT SCIENCE 2022; 13:906071. [PMID: 35646003 PMCID: PMC9135447 DOI: 10.3389/fpls.2022.906071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO), a bioactive molecule, is often involved in the regulation of physiological and biochemical processes in stressed plants. However, the effects of NO donors on dioecious plants remain unclear. Using a pot experiment, female and male Torreya grandis were used to study the role of sex and NO in salt stress tolerance. In the present study, female and male T. grandis seedlings pretreated with an NO donor (sodium nitroprusside, SNP) were exposed to salt stress, and then leaf relative water content (RWC), photosynthetic pigments, chlorophyll fluorescence parameters, NO and glutathione levels, oxidative damage, and antioxidant enzyme activities were investigated. Female T. grandis plants had better tolerance to salinity, as they were characterized by significantly higher RWC, pigment content, and photochemical activities of photosystem II (PSII) and fewer negative effects associated with higher nitrate reductase (NR) activity and NO content. Pretreatment with an NO donor further increased the endogenous NO content and NR activity of both female and male T. grandis plants compared with salt treatment. Moreover, pretreatment with an NO donor alleviated salt-induced oxidative damage of T. grandis, especially in male plants, as indicated by reduced lipid peroxidation, through an enhanced antioxidant system, including proline and glutathione accumulation, and increased antioxidant enzyme activities. However, the ameliorating effect of the NO donor was not effective in the presence of the NO scavenger (Nω-nitro-L-arginine methyl ester, L-name). In conclusion, enhanced salt tolerance in T. grandis plants is related to nitric oxide levels and the supply of NO donors is an interesting strategy for alleviating the negative effect of salt on T. grandis. Our data provide new evidence to contribute to the current understanding of NO-induced salt stress tolerance.
Collapse
Affiliation(s)
- Yang Liu
- Jiyang College, Zhejiang A&F University, Zhuji, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Zhuoke Jiang
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Yuting Ye
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Donghui Wang
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
| |
Collapse
|