1
|
Zhang R, Yang J, Li J, Gao Y, Mao L. Modification of the interface of oleogel-hydrogel bigel beads for enhanced stability and prolonged release of bioactives. Food Chem 2025; 468:142448. [PMID: 39693889 DOI: 10.1016/j.foodchem.2024.142448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
In this study, novel bigel beads based on alginate hydrogel and monoglycerol oleogel were developed using tea saponin (TS) for interfacial modification. We investigated the impact of the structures of oleogel-hydrogel interface on the stability and bioactives release of bigel beads, with curcumin as the model hydrophobic bioactive. With higher TS content, the particle size and ζ-potential of the bigel emulsions was first decreased and then increased. Beads with lower TS levels (0-1 %) showed reduced shrinkage and enhanced swelling as TS content was increased, while higher TS levels (1 %-2 %) led to increased shrinkage and decreased swelling. The interfacial modification with TS also significantly enhanced the mechanical strength and reduced lipid oxidation of the beads. Moreover, TS-stabilized beads demonstrated prolonged curcumin release during intestinal digestion, indicating the potential for sustained delivery of bioactives. These findings highlighted the roles of interfacial engineering in improving the functionality of bigel beads for bioactives delivery.
Collapse
Affiliation(s)
- Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingyi Yang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Li
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu (611430), Sichuan, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu (611430), Sichuan, China.
| |
Collapse
|
2
|
Guo ZW, Li HJ, Peng N, Li YQ, Liang Y, Zhao YR, Wang CY, Wang ZY, Wang C, Ren X. Characterization of astaxanthin-loaded Pickering emulsions stabilized by conjugates of pea protein isolate and dextran with different molecular weights. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2403-2411. [PMID: 39483104 DOI: 10.1002/jsfa.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Pea protein isolate (PPI) is gaining increasing popularity in the food industry. It provides a diverse range of health benefits, such as hypoallergenic and gluten-free characteristics. However, the functional performance of PPI is hindered by its low solubility and poor stability. Therefore, in this article, PPI and dextran (DX) of different molecular weights were grafted to investigate the effects of grafting DX with different molecular weights on the interface properties and antioxidant properties of PPI. Additionally, the stability and digestive properties of the glycated PPI nanoemulsion system were explored. RESULTS The result showed that the grafting degree of PPI-DX conjugates (PPI-DC) decreased with an increase in the molecular weight of DX. Surface hydrophobicity, antioxidant activity and solubility of PPI-DC were significantly improved after grafting compared with PPI and PPI-DX mixtures (PPI-DM). Astaxanthin-loaded emulsions stabilized by grafted conjugates had smaller droplets and higher astaxanthin encapsulation rate compared to PPI emulsions. In vitro digestion demonstrated that the bioavailability of PPI-DC emulsions was higher than of PPI emulsion. Furthermore, after 24 days of storage, retention rate of astaxanthin-loaded emulsions prepared by conjugates remained above 70%, surpassing that of PPI emulsion. CONCLUSION These results indicated that DX grafting can improve the emulsion properties of PPI. In addition, the DX with a molecular weight of 5 kDa showed the most significant improvement. This study contributes to the advancement of natural emulsifiers by modifying PPI through glycation, and furnishes a valuable reference for its utilization in functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Wei Guo
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Heng-Juan Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ning Peng
- School of Agriculture and Forestry Science, Weifang Engineering Vocational College, Weifang, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yu-Ru Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cai-Yue Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zi-Yue Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xidong Ren
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
3
|
Nie C, Liu B, Niu Y, Wu P, Song Z, Wei X, Wang J. Enhancement of Pickering effect of ovalbumin with bacterial cellulose nanofibers prepared by electron beam irradiation and encapsulation of curcumin. Int J Biol Macromol 2024; 279:135145. [PMID: 39216578 DOI: 10.1016/j.ijbiomac.2024.135145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In this study, the enhancement of Pickering effect of ovalbumin (OVA) with bacterial cellulose nanofibers (BCNFs) prepared by electron beam irradiation was investigated and the environmental stability of oil-in-water Pickering emulsions stabilized by OVA/BCNFs complexes was explored by varying ratios of OVA/BCNFS (1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1) and oil phase concentrations (10 %, 20 %, 30 %, 40 %, 50 %, 60 %). Droplet sizes of Pickering emulsions were decreased with the increase of the proportion of BCNFs, while the viscosity and storage modulus (G') of Pickering emulsions were increased. The gel strength of Pickering emulsions was positively correlated with the oil phase content. Pickering emulsions stabilized by OVA/BCNFs complexes were endowed excellent environmental stability under varying pH, ionic strength, and thermal conditions. Moreover, after encapsulating curcumin in Pickering emulsions, the retention rates of curcumin were improved significantly during room temperature, UV light, and thermal treatment. The present study would contribute to the advancement of novel protein/polysaccharide stabilizers and offer novel insight for investigating the stability of Pickering emulsions and delivering lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingqian Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yefan Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengrui Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhihong Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xindi Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Hunan Nobel Life Science Research Institute Co., LTD, 229 Guyuan Road, Changsha, Hunan 410221, China.
| |
Collapse
|
4
|
Yao XN, Dong RL, Li YC, Lv AJ, Zeng LT, Li XQ, Lin Z, Qi J, Zhang CH, Xiong GY, Zhang QY. pH-shifting treatment improved the emulsifying ability of gelatin under low-energy emulsification. Int J Biol Macromol 2024; 282:136979. [PMID: 39490473 DOI: 10.1016/j.ijbiomac.2024.136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The effects of pH-shifting treatments (pH 3, 5, 7, 9, and 11) on the stability of gelatin emulsions made by low-energy stirring were investigated. pH-shifting treatments significantly enhanced the ESI and EAI of the emulsion (P < 0.05) and reduced its particle size (P < 0.05) under low-energy emulsifying conditions. The pH11-7 shifting treatment significantly increased the degree of depolymerization and the level of ordered structure of gelatin (P < 0.05). These transformations resulted in a significant increase in the exposure of hydrophobic and negatively charged residues (P < 0.05) on the surface of gelatin, facilitating a faster adsorption rate of gelatin onto the oil-water interface as well as an increase in the amount of gelatin adsorbed at the interface. Moreover, the alkali-shifting treatment promoted the formation of a thin viscoelastic interfacial film, which contributed to the enhanced stability of the emulsion.
Collapse
Affiliation(s)
- Xiu-Ning Yao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Rui-Ling Dong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Yu-Cong Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Ao-Jing Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Li-Ting Zeng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Xue-Qing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Zhou Lin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China.
| | - Chun-Hui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guo-Yuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Qing-Yong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China
| |
Collapse
|
5
|
Fang F, Tian Z, Huang L, Cai Y, Van der Meeren P, Wang J. A novel Pickering emulsion gels stabilized by cellulose nanofiber/dihydromyricetin composite particles: Microstructure, rheological behavior and oxidative stability. Int J Biol Macromol 2024; 278:135281. [PMID: 39256126 DOI: 10.1016/j.ijbiomac.2024.135281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Particle concentrations (w) and oil content (Φ) are crucial factors influencing the gel stability of Pickering emulsions. To understand the stabilization mechanism comprehensively, we prepared emulsion gels stabilized by CNF/DMY composite particles at various w (0.5-1.5 wt%) and Φ (0.2-0.6, v/v). The microstructure revealed the adsorption of these particles at the oil-water interface, with excess particles forming a three-dimensional network structure in the continuous phase. Rheological studies showed that the network structure of Pickering emulsions was significantly influenced by w and Φ, resulting in improved emulsion gel strength that hindered the movement of oil droplets and oxygen in the continuous phase, thereby enhancing emulsion stability. Three scenarios for the critical strain (γco) were observed: at Φ = 0.2, γco decreased with increasing w, while at Φ = 0.4, γco increased with increasing w. At Φ = 0.6, γco remained relatively constant regardless of w. In conclusion, adjusting particle concentration and oil content enabled the control of microstructure, rheological properties, and antioxidant capacity of emulsion gels. These findings could be a valuable resource for formulating and ensuring the quality of emulsion gel-based products in the food industry.
Collapse
Affiliation(s)
- Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zijing Tian
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Lihua Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Ghent University, B-9000 Gent, Belgium
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
6
|
Wang Y, Huang Y, Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Xia G, Shen X. Effect of non-covalent binding of tannins to sodium caseinate on the stability of high-internal-phase fish oil emulsions. Int J Biol Macromol 2024; 277:134171. [PMID: 39067727 DOI: 10.1016/j.ijbiomac.2024.134171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, we designed the noncovalent binding of sodium caseinate (SC) to tannic acid (TA) to stabilize high internal phase emulsions (HIPEs) used as fish oil delivery systems. Hydrogen bonding was the dominant binding force, followed by weak hydrophobic interaction and weak van der Waals forces, as demonstrated by FTIR, fluorescence spectroscopy, and molecular docking experiments, with a binding constant of 3.25 × 106, a binding site of 1.2, and a static quenching of the binding. Increasing SC:TA from SC to 2:1 decreased the particle size from 107.37 ± 10.66 to 76.07 ± 2.77 nm and the zeta potential from -6.99 ± 2.71 to -22 ± 2.42 mV. TA increased the interfacial tension of SC, decreased the surface hydrophobicity from 1.3 × 104 to 1.6 × 103 and improved the oxidation resistance of SC. The particle size of high internal phase emulsions stabilized by complexes with different mass ratios (SC:TA from 1:0 to 2:1) increased from 4.9 ± 0.02 to 12.9 μm, the potential increased from -32.37 ± 2.7 to -35.07 ± 2.58 mV, and the instability index decreased from 0.75 to 0.02. Thicker interfacial layers could be observed by laser confocal microscopy, and an increase in the storage modulus indicated a formation of a stronger gel network. SC:TA of 1:0 showed emulsion breakage after 14 d of storage at room temperature. SC:TA of 2:1 showed the lowest degree of oil-water separation after freeze-thaw treatment. Especially, the most stable high endo-phase emulsion (at SC:TA of 2:1) prepared at each mass ratio was selected for further stability exploration. The emulsion particle size increased only from 15.63 ± 0.06 to 22.27 ± 0.35 μm at salt ion concentrations of 50-200 mM and to 249.33 ± 31.79 μm at 300 mM. The instability index and storage modulus of the high endo-phase emulsions increased gradually with increasing salt ion concentrations. At different heating temperatures (55-85 °C), the instability index of the high internal phase emulsion gradually decreased and the storage modulus gradually increased. Meanwhile, at 50 °C for 15 d of accelerated oxidation, the content of hydroperoxide decreased from 53.32 ± 0.18 to 37.48 ± 0.77 nmol/g, about 29.7 %, and the thiobarbituric acid value decreased from 1.06 × 103 to 0.8 × 103, about 24.5 %, in the high endo-phase emulsions prepared by 2:1 SC:TA compared to the fish oils, and the SC-stabilized high endo-phase only emulsion broke at the sixth day of oxidation. From the above findings, it was concluded that the high internal phase emulsion prepared with SC:TA of 2:1 can be used as a good delivery system for fish oil.
Collapse
Affiliation(s)
- Yanchen Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yikai Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Ying Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mantong Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yongqiang Zhao
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
7
|
Luo J, Jia M, Yang X, Chai Y, Bao Y. Interaction between lactic acid bacteria and Polygonatum sibiricum saponins and its application to microencapsulated co-delivery. Food Chem 2024; 448:138959. [PMID: 38552464 DOI: 10.1016/j.foodchem.2024.138959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/24/2024]
Abstract
This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.
Collapse
Affiliation(s)
- Jiayuan Luo
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Mingjie Jia
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Xue Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China
| | - Yangyang Chai
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China.
| | - Yihong Bao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China
| |
Collapse
|
8
|
Zhu B, Yang J, Dou J, Ning Y, Qi B, Li Y. Comparison of the physical stability, microstructure and protein-lipid co-oxidation of O/W emulsions stabilized by l-arginine/l-lysine-modified soy protein hydrolysate. Food Chem 2024; 447:138901. [PMID: 38458131 DOI: 10.1016/j.foodchem.2024.138901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
This work investigated the physical stability, microstructure, and oxidative stability of the emulsions prepared by soy protein hydrolysate (SPH) after modification with different concentrations of l-arginine and l-lysine. l-Arginine and l-lysine significantly increased the absolute zeta potential values, and decreased droplet sizes of the emulsions, thereby improving the physical stability of the emulsions. Meanwhile, l-arginine and l-lysine markedly decreased the apparent viscosity of the emulsions. The measurement of interfacial protein adsorption percentage showed that l-arginine (≤0.5 %) promoted the adsorption of SPH at the oil-water interface, whereas l-lysine (≤1%) reduced the adsorption of SPH at the oil-water interface. In addition, l-arginine and l-lysine (≤0.5 %) could retard lipid and protein oxidation. Correlation analysis indicated that the improvement in the physical stability of the emulsions by l-arginine and l-lysine also enhanced the oxidative stability of the emulsions. In summary, l-arginine and l-lysine could be effective modifiers for the protein-based emulsion systems.
Collapse
Affiliation(s)
- Bin Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jinjie Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingjing Dou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yijie Ning
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
9
|
Wang X, Yuan S, Kong J, Chen C, Yu C, Huang L, Sun H, Peng X, Hu Y. Tea saponin co-ball milled commercial micro zero-valent iron for boosting Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134668. [PMID: 38788577 DOI: 10.1016/j.jhazmat.2024.134668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Tea saponins (TS), a natural biosurfactant extracted from tea trees, were co-ball milled with commercial micro zero-valent iron (mZVI) to produce TS modified mZVI (TS-BZVI) for efficient hexavalent chromium (Cr(VI)) removal. The findings demonstrated that TS-BZVI could nearly remove 100% of Cr(VI) within 2 h, which was 1.43 times higher than that by ball milled mZVI (BZVI) (70%). Kinetics analysis demonstrated a high degree of compatibility with the pseudo-second-order (PSO), revealing that TS-BZVI exhibited a 2.83 times faster Cr(VI) removal rate involved primarily chemisorption. Further, X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) measurements indicated that the TS co-ball milling process improved the exposure of Fe(II) and Fe(0) on mZVI, which further promoted the Cr(VI) reduction process. Impressively, the introduction of TS increased the hydrophobicity of ZVI, effectively inhibiting the H2 evolution by 95%, thus improved electron selectivity for efficient Cr(VI) removal. Ultimately, after operating for 10 days, a simulated permeable reactive barrier (PRB) column experiment revealed that TS-BZVI had a higher Cr(VI) elimination efficiency than BZVI, indicating that TS-BZVI was promising for practical environment remediation.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512023, PR China
| | - Shangbin Yuan
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512023, PR China
| | - Jiajia Kong
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512023, PR China
| | - Cailan Chen
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512023, PR China
| | - Chaozhen Yu
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512023, PR China
| | - Lizhen Huang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512023, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yue Hu
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512023, PR China.
| |
Collapse
|
10
|
Chen H, Iqbal S, Wu P, Pan R, Wang N, Bhutto RA, Rehman W, Chen XD. Enhancing rheology and reducing lipid digestion of oil-in-water emulsions using controlled aggregation and heteroaggregation of soybean protein isolate-peach gum microspheres. Int J Biol Macromol 2024; 273:132964. [PMID: 38852719 DOI: 10.1016/j.ijbiomac.2024.132964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
There is a growing interest in developing highly viscous lipid foods using plant protein and polysaccharide gum-based emulsion technology. However, gaps remain in understanding the rheological, microstructural, and digestive properties of plant proteins like soybean protein isolate (SPI) in combination with various gums. This study investigates how combining SPI and peach gum (PG) affects rheology and lipolysis of oil-in-water (O/W) emulsions containing 20 wt% soybean oil. Emulsions with varying SPI and PG compositions including SPI-PG single and SPI/PG mixed droplet systems were prepared. Heating induced alterations in viscosity (e.g., SPI-PG from 14.88 to 90.27 Pa·s and SPI/PG from 9.66 to 85.32 Pa·s) and microstructure revealing aggregate formation at oil-water interface. The viscosity decreased significantly from the oral to intestinal phase (SPI-PG: 28.10 to 0.19 Pa·s, SPI/PG: 21.27 to 0.10 Pa·s). These changes affected lipid digestion, notably in SPI-PG and SPI/PG emulsions where a compact interface hindered lipolysis during digestion. Interestingly, free fatty acid (FFA) release during small intestinal phase followed a different order: SPI (82.51 %) > SPI-PG (70.77 %) > SPI/PG (63.60 %) > PG (56.09 %). This study provides insights into creating highly viscous O/W spreads with improved rheology, stability, and delayed lipid digestion, offering potential benefits in food product formulation.
Collapse
Affiliation(s)
- Haozhi Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shahid Iqbal
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Myddelton College Jinhua, Rongguang Road, Wucheng, Jinhua, Zhejiang 321025, China.
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Ronggang Pan
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ni Wang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rizwan Ahmed Bhutto
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
11
|
Wang X, Wu Q, Mao X, Zhang J. Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins. Foods 2024; 13:1513. [PMID: 38790813 PMCID: PMC11120051 DOI: 10.3390/foods13101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Walnuts are high in protein content and rich in nutrients and are susceptible to oxidation during production and processing, leading to a decrease in the stability of walnut protein emulsions. In this paper, the effect of alkyl peroxyl radical oxidation on the stability of walnut protein emulsions is investigated. With the increase of 2,2-azobis (2-methylpropionamidine) dihydrochloride (AAPH) concentration, both its protein and fat were oxidized to different degrees, and the droplets of the emulsion were first dispersed and then aggregated as seen from the laser confocal, and the stability of walnut protein emulsion was best at the AAPH concentration of 0.2 mmol/L. In addition to this, the adsorption rate of adsorbed proteins showed a decreasing and then an increasing trend with the increase in the oxidized concentration. The results showed that moderate oxidation (AAPH concentration: 0-0.2 mmol/L) promoted an increase in protein flexibility and a decrease in the protein interfacial tension, leading to the decrease in emulsion droplet size and the increase of walnut protein emulsion stability, and excessive oxidation (AAPH concentration: 1-25 mmmol/L) weakened protein flexibility and electrostatic repulsion, making the walnut protein emulsion less stable. The results of this study provide theoretical references for the quality control of walnut protein emulsions.
Collapse
Affiliation(s)
| | | | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | | |
Collapse
|
12
|
Meng R, Chen P, Feng R, Tao H, Zhang B, Su DL. Interfacial engineering method to regulate the performances of bilayer emulsions co-stabilized by casein/butyrylated dextrin nanoparticles and chitosan. Int J Biol Macromol 2024; 266:131160. [PMID: 38547946 DOI: 10.1016/j.ijbiomac.2024.131160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
In present study, bilayer emulsions with different interfacial structures stabilized by casein/butyrylated dextrin nanoparticles (CDNP), chitosan (CS) and chitosan nanoparticles (CSNP) were prepared to overcome the limitations of conventional emulsions. The effects of chitosan morphology and incorporation sequences on the bilayer emulsions were examined. Bilayer emulsions prepared with CDNP as the inner layer and CS/CSNP as the outer layer were observed to have smaller droplet sizes (1.39 ± 86.74 um and 1.45 ± 7.87 um). Bilayer emulsions prepared with CDNP as the inner layer and CS as the outer layer exhibited the lowest creaming index (2.38 %) after 14 days of storage, indicating excellent stability. Furthermore, bilayer emulsion prepared with CDNP as the inner layer and CS as the outer layer also exhibited a uniform water distribution, excellent protein oxidative stability, and uniformly distributed droplets by the measurement of Low-field NMR, intrinsic tryptophan fluorescence and laser confocal laser scanning microscopy. These results indicated that the study provided a theoretical basis for the development and design of bilayer emulsions with different interfacial structures. This study also provides a new material for the preparation of delivery systems that protect biologically active compounds. Bilayer emulsions are promising for applications in traditional and manufactured food products.
Collapse
Affiliation(s)
- Ran Meng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Pin Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Dong-Lin Su
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, PR China.
| |
Collapse
|
13
|
Zhao S, Zhao Y, Liu H, Chen Q, Sun H, Kong B. Combined effects of high-intensity ultrasound treatment and hydrogen peroxide addition on the thermal stabilities of myofibrillar protein emulsions at low ionic strengths. ULTRASONICS SONOCHEMISTRY 2024; 104:106841. [PMID: 38442572 PMCID: PMC10924124 DOI: 10.1016/j.ultsonch.2024.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
In this study, the effects of high-intensity ultrasound (HIU) treatment combined with hydrogen peroxide (H2O2) addition on the thermal stability of myofibrillar protein (MP)-stabilized emulsions in low-salt conditions were investigated. Results showed that compared to using either HIU or H2O2 treatment alone, HIU treatment combined with H2O2 was most effective in enhancing the physical stability of emulsions. Moreover, the emulsion stabilized by MPs co-treated with HIU and H2O2 exhibited the most uniform distribution, highest absolute zeta potential, and optimal rheological properties upon heating. This combination effect during heating was caused by the inhibition of disulfide bond cross-linking of myosin heads by H2O2 and the dissociation of filamentous myosin structures using the HIU treatment. In addition, the results of oxidative stability analysis indicated that the addition of H2O2 increased the content of oxidation products; however, the overall influence on the oxidative stability of emulsions was not significant. In conclusion, the combination of HIU and H2O2 treatment is a promising approach to suppress heat-induced MP aggregation and improve the thermal stability of corresponding emulsions.
Collapse
Affiliation(s)
- Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yubo Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongbo Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
14
|
Xu Z, Zhang X, Wu X, Ma D, Huang Y, Zhao Q, Zhang S, Li Y. Co-delivery of vitamin C and β-carotene in W/O/W emulsions stabilized by modified aggregated insoluble soybean protein hydrolysate-xanthan gum complexes. Int J Biol Macromol 2024; 261:129855. [PMID: 38302013 DOI: 10.1016/j.ijbiomac.2024.129855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Environmentally friendly emulsifiers safe for human consumption are urgently needed to stabilize emulsions for applications in the food industry. In this study, we prepared complexes combining modified aggregated insoluble soybean protein hydrolysate (AISPH) mixed with xanthan gum (XG) (0.05-0.3 %, w/v), and further to construct water-in-oil-in-water (W/O/W) emulsions to deliver vitamin C and β-carotene. We observed a decrease in the AISPH α-helix and β-sheet content, surface hydrophobicity, and fluorescence intensity all decreased after binding. In contrast, the particle size and absolute ξ-potential significantly increased, indicating that molecular non-covalent interactions occurred in the solution. The emulsification property of AISPH was also improved by adding XG, and the AISPH-XG-stabilized emulsion showed improved stability, encapsulation efficiency, and rheological properties. Among them, AISPH-XG-0.25-stabilized emulsion exhibited a smaller particle size (8.41 ± 0.49 μm) and the highest encapsulation efficiency for vitamin C (90.03 ± 0.23 %) and β-carotene (70.56 ± 0.06 %). Additionally, simulated gastric digestion indicated that vitamin C and β-carotene bioavailability increased by 3.6 and 5.8 times, respectively. Finally, the emulsion exhibited good pH, ionic, and thermal stability. In general, AISPH-XG-stabilized W/O/W emulsions showed good stability and carrying capacity, providing a theoretical basis for improving their application.
Collapse
Affiliation(s)
- Zheng Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Qingkui Zhao
- Research and Product Development Unit, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Xu T, Li X, Wu C, Fan G, Li T, Zhou D, Zhu J, Wu Z, Hua X. Improved encapsulation effect and structural properties of whey protein isolate by dielectric barrier discharge cold plasma. Int J Biol Macromol 2024; 257:128556. [PMID: 38061529 DOI: 10.1016/j.ijbiomac.2023.128556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
The whey protein isolate (WPI) was modified by dielectric barrier discharge cold plasma (DBD) in order to improve its encapsulation efficiency of rutin. In this work, the effect of DBD treatment on structure and physicochemical properties of WPI and the interaction between DBD-treated WPI and rutin were investigated. The results showed that the structural change of WPI leaded to the exposure of internal hydrophobic groups, increasing the interaction site with rutin. The encapsulation efficiency of DBD-treated WPI (30 kV, 30 s) on rutin was improved by 12.42 % compared with control group. The results of multispectral analysis showed that static quenching occurred in the process of interaction between DBD-treated and rutin, hydrogen bond and van der Waals force were the main forces between them. Therefore, DBD treatment can be used as a method to improve the encapsulation efficiency of WPI on hydrophobic active substances.
Collapse
Affiliation(s)
- Ting Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhihao Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaowen Hua
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| |
Collapse
|
16
|
Zhang J, Qi X, Shen M, Yu Q, Chen Y, Xie J. Antioxidant stability and in vitro digestion of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-Mesona chinensis polysaccharide conjugates. Food Res Int 2023; 174:113584. [PMID: 37986450 DOI: 10.1016/j.foodres.2023.113584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The aim of this study was to investigate the delivery of functional factor β-carotene by emulsion stabilized with whey protein isolate-Mesona chinensis polysaccharide (WPI-MCP) conjugate. Results showed that the WPI-MCP complex had better antioxidant properties than WPI. Correspondingly, the emulsions stabilized by this complex also had better oxidative stability compared with protein emulsions alone. The particle size of WPI-MCP emulsion was smaller and had a better stability when MCP was added at 0.2 % (w/v). The sizes of WPI-MCP and WPI emulsions were 3594.33 and 7765.67 nm at pH 4, indicating improved emulsion stability around isoelectric point of WPI. At different NaCl concentrations, the absolute values of zeta-potential of WPI-MCP emulsions were larger than that of WPI emulsions except 0.1 % (mol/L) NaCl. The sizes of WPI and WPI-MCP emulsions were 2384.32 and 790.12 nm, respectively. During in vitro digestion, WPI-MCP stabilized emulsions slowed down the release of free fatty acids and achieved about 80 % bioaccessibility of β-carotene, indicating that WPI-MCP-stabilized emulsions encapsulating β-carotene can effectively control the release of bioactive substances. These studies have potential significance and value for the construction of food-grade emulsion delivery system.
Collapse
Affiliation(s)
- Jiahui Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
17
|
Bravo-Núñez Á, Golding M, Gómez M, Matia-Merino L. Emulsification Properties of Garlic Aqueous Extract: Effect of Heat Treatment and pH Modification. Foods 2023; 12:3721. [PMID: 37893614 PMCID: PMC10606844 DOI: 10.3390/foods12203721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the broad research available in the literature dealing with garlic health benefits, little information is found regarding the functional properties of garlic components. The aim of this study was to evaluate the emulsification properties of garlic water-soluble compounds (GWSC), encompassing proteins, saponins, and carbohydrates, after heat treatment (10 min at 95 °C) or pH adjustments (2.5, 3.5, and 7.8). After the various treatments, the extracts were used as such or filtrated (0.45 µm), and 10% soybean oil-in-water emulsions were prepared using low (0.48%) or high (6.55% wt/wt) extract concentrations. Results showed that whereas at low GWSC concentrations, both heating and acidifying resulted in the formation of bigger oil droplet sizes (i.e., from d32 = 0.36 µm using unmodified extract to d32 = 7-22 µm at pH 2.5 with or without extract filtration), the effects were opposite at the highest GWSC concentration. In the latter, heat treatment clearly reduced the droplet size as observed from the micrographs as well as the degree of creaming, though the occurrence of depletion and/or bridging flocculation was still strong. The acidification of the extract at this high GWSC concentration significantly reduced the droplet size, as observed from the micrographs; however, a strong flocculation was observed. Removal of protein aggregates, and possibly also saponin micelles, from the extract resulted in an obvious increase in emulsion droplet size. This research brings valuable insights on this study and utilisation of novel natural food emulsifiers from plant sources.
Collapse
Affiliation(s)
- Ángela Bravo-Núñez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34071 Palencia, Spain; (Á.B.-N.); (M.G.)
| | - Matt Golding
- School of Food and Advanced Technology, Massey University, Palmerston North 11222, New Zealand;
| | - Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, 34071 Palencia, Spain; (Á.B.-N.); (M.G.)
| | - Lara Matia-Merino
- School of Food and Advanced Technology, Massey University, Palmerston North 11222, New Zealand;
| |
Collapse
|
18
|
Huang H, Tian Y, Bai X, Cao Y, Fu Z. Influence of the Emulsifier Sodium Caseinate-Xanthan Gum Complex on Emulsions: Stability and Digestive Properties. Molecules 2023; 28:5460. [PMID: 37513332 PMCID: PMC10384958 DOI: 10.3390/molecules28145460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, virgin coconut oil (VCO) nanoemulsions were prepared by ultrasonication using a sodium caseinate (SC) and xanthan gum (XG) complex as an emulsifier. The stability and digestion characteristics of SC/XG-VCO emulsions formed by co-adsorption and SC-VCO-XG emulsions formed by layer adsorption were compared. The stability of the two emulsions was studied under different pH, ionic strength, heat treatment, freeze-thaw cycles, and storage conditions, and the droplet size and zeta potential were used as indicators to assess the stability. In addition, the stability of oxidation and the digestive properties of both emulsions were studied. It was found that the SC-VCO-XG emulsions had better environmental stability, oxidative stability, storage stability, and digestibility compared to SC/XG-VCO emulsions. This study has shown that the formation method of protein-polysaccharide stabilized emulsions has an impact on the stability and digestibility properties of the emulsions, and that the emulsion carriers constructed by layer adsorption are more suitable for subsequent industrial production and development.
Collapse
Affiliation(s)
- Huan Huang
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Yan Tian
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Xinpeng Bai
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Haikou Zhisu Biological Resources Research Institute Co., Ltd., Haikou 570203, China
| | - Yumiao Cao
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Zihuan Fu
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| |
Collapse
|
19
|
Wen C, Cao L, Yu Z, Liu G, Zhang J, Xu X. Advances in lipo-solubility delivery vehicles for curcumin: bioavailability, precise targeting, possibilities and challenges. Crit Rev Food Sci Nutr 2023; 64:10835-10854. [PMID: 37410019 DOI: 10.1080/10408398.2023.2229433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Curcumin (Cur) is a natural pigment containing a diketone structure, which has attracted extensive attention due to its strong functional activities. However, the low solubility and poor stability of Cur limit its low bioavailability and multi-function. It is essential to develop effective measures to improve the unfavorable nature of Cur and maximize its potential benefits in nutritional intervention. SCOPE AND APPROACH The focus of this review is to emphasize the construction of lipo-solubility delivery vehicles for Cur, including emulsion, nanoliposome and solid liposome. In addition, the potential benefits of vehicles-encapsulated Cur in the field of precise nutrition were summarized, including high targeting properties and multiple disease interventions. Further, the deficiencies and prospects of Cur encapsulated in vehicles for precise nutrition were discussed. KEY FINDINGS AND CONCLUSIONS The well-designed lipo-solubility delivery vehicles for Cur can improve its stability in food processing and the digestion in vivo. To meet the nutritional requirements of special people for Cur-based products, the improvement of the bioavailability by using delivery vehicles will provide a theoretical basis for the precise nutrition of Cur in functional food.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Zhenyue Yu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| |
Collapse
|
20
|
Zhao J, Wang S, Jiang D, Chen C, Tang J, Tomasevic I, Sun W. The influence of protein oxidation on structure, pepsin diffusion, and in vitro gastric digestion of SPI emulsion. Food Chem 2023; 428:136791. [PMID: 37429241 DOI: 10.1016/j.foodchem.2023.136791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
The stability behaviors of oxidized SPI emulsions under in vitro gastric conditions and the effects of pepsin diffusion on the proteolysis of emulsions were investigated using a static gastric model and the fluorescence recovery after photobleaching method. Results showed that protein oxidation increased the particle size of droplets and decreased the viscoelasticity of the interfacial layer. Compared to the control group (82.81 m2/s), the pepsin diffusivity decreased to 68.52 m2/s (7LA + LOX group) due to the space hindrance of oil droplets. After gastric digestion, protein hydrolysates were re-absorbed on the oil-water interface and formed a thick layer, thereby decreasing the size of oil droplets and reducing the contents of free amino acids in gastric digesta. The protein oxidation may affect the adsorption of interfacial proteins and alter the distribution of droplets, decreasing pepsin diffusion and ultimately impairing the emulsion gastric digestion. And this should be considered in the design of emulsion as the controllable delivery system.
Collapse
Affiliation(s)
- Jie Zhao
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Shuaiqian Wang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Diandian Jiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Chong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jie Tang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
21
|
Zou Q, Wang W, Xu Q, Yan M, Lan D, Wang Y. Influence of Proteins on Bioaccessibility of α-Tocopherol Encapsulation within High Diacylglycerol-Based Emulsions. Foods 2023; 12:2483. [PMID: 37444221 DOI: 10.3390/foods12132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
α-Tocopherol has been widely used in medicine, cosmetics, and food industry as a nutritional supplement and antioxidant. However, α-tocopherol showed low bioaccessibility, and there is a widespread α-tocopherol deficiency in society today. The preparation of oil-in-water emulsions with high safety and low-calorie property is necessary. The aim of this research was to investigate the effects of different protein emulsifiers (whey protein isolate (WPI), soy protein isolate (SPI), and sodium casein (SC)) on the properties of emulsions delivery system, and diacylglycerol (DAG) was picked as a low-accumulated lipid. The interfacial changes, microstructural alterations, and possible interactions of the protein-stabilized DAG emulsions were investigated during the in vitro digestion. The results show that different proteins affect the degree of digestibility and α-tocopherol bioaccessibility of the emulsions. Both WPI- and SPI-coated emulsions showed good digestibility and α-tocopherol bioaccessibility (77.64 ± 2.93%). This might be due to the strong hydrolysis resistance of WPI (β-lactoglobulin) and the good emulsification ability of SPI. The SC-coated emulsion showed the lowest digestibility and α-tocopherol bioaccessibility, this might be due to the emulsification property of hydrolysis products of SC and the potential interaction with calcium ions. This study provides new possibilities for the application of DAG emulsions in delivery systems.
Collapse
Affiliation(s)
- Qian Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Menglei Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Yue-Shan Special Nutrition Technology Co., Ltd., Foshan 528000, China
| |
Collapse
|
22
|
Chen Z, Wang W, Zheng W, Cao Y, Xiao J. A combined experimental and computational study on the interfacial distribution behavior in colloidal particle-surfactant co-stabilized Pickering emulsions. Food Res Int 2023; 168:112752. [PMID: 37120205 DOI: 10.1016/j.foodres.2023.112752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/18/2023] [Accepted: 03/21/2023] [Indexed: 05/01/2023]
Abstract
Recently, co-stabilized Pickering emulsion (CPE) that stabilized by colloidal particles and surfactant has received increased research attention, owing to its improved stability and fluid properties comparing with conventional emulsions stabilized by particles or surfactants alone. Herein, the dynamic distribution behavior at multi-scale and the synergistic-competitive interfacial absorption in CPE co-stabilized by Tween20 (Tw20) and zein particles (Zp) were studied by experiment combined simulation method. The experimental studies identified the delicate synergistic-competitive stabilization phenomenon tuned by the molar ratio of Zp and Tw20. Meanwhile, dissipative particle dynamic (DPD) simulation was utilized to reveal the distribution and kinetic motion. Based on the two- and three-dimensional simulation on the formation of CPE, simulation revealed that Zp - Tw20 aggregates were formed when anchoring at the interface. The interfacial adsorption efficiency of Zp was improved at low Tw 20 concentration (0-1.0%wt), Tw20 inhibited the Brownian motion of Zp at the interface and competed them out at high concentrations (1.5-2.0%wt). Zp was departured from the interface 4.5 Å to 10 Å, as Tw20 increased from 1.06% to 5%. The study offers a novel approach to reveal the dynamic distribution behavior of surface active substances during the dynamic formation process of CEP, which will expand our current strategies for interface engineering of emulsions.
Collapse
Affiliation(s)
- Zhibin Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbo Wang
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Wenxu Zheng
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
23
|
Yu Y, Chen D, Lee YY, Chen N, Wang Y, Qiu C. Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers. Foods 2023; 12:foods12102045. [PMID: 37238863 DOI: 10.3390/foods12102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.
Collapse
Affiliation(s)
- Yasi Yu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
24
|
Feng M, Dai X, Yang C, Zhang Y, Tian Y, Qu Q, Sheng M, Li Z, Peng X, Cen S, Shi X. Unification of medicines and excipients: The roles of natural excipients for promoting drug delivery. Expert Opin Drug Deliv 2023; 20:597-620. [PMID: 37150753 DOI: 10.1080/17425247.2023.2210835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Drug delivery systems (DDSs) formed by natural active compounds be instrumental in developing new green excipients and novel DDS from natural active compounds (NACs). 'Unification of medicines and excipients'(UME), the special inherent nature of the natural active compounds, provides the inspiration and conduction to achieve this goal. AREAS COVERED This review summarizes the typical types of NACs from herbal medicine, such as saponins, flavonoids, polysaccharides, etc. that act as excipients and their main application in DDS. The comparison of the drug delivery systems formed by NACs and common materials and the primary formation mechanisms of these NACs are also introduced to provide a deepened understanding of their performance in DDS. EXPERT OPINION Many natural bioactive compounds, such as saponins, polysaccharides, etc. have been used in DDS. Diversity of structure and pharmacological effects of NACs turn out the unique advantages in improving the performance of DDSs like targeting ability, adhesion, encapsulation efficiency(EE), etc. and enhancing the bioavailability of loaded drugs.
Collapse
Affiliation(s)
- Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| | - Cuiting Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| |
Collapse
|
25
|
Liao Y, Sun Y, Peng X, Qi B, Li Y. Effects of tannic acid on the physical stability, interfacial properties, and protein/lipid co-oxidation characteristics of oil body emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Sun S, Zhang C, Li S, Yan H, Zou H, Yu C. Improving emulsifying properties using mixed natural emulsifiers: Tea saponin and golden pompano protein. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Zhou L, Zhang M, Cheng J, Wang Z, Guo Z, Li B. Raman Spectroscopy investigate structural change of rice bran protein induced by three oxidants. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Linyi Zhou
- College of Food Science, Beijing Technology and Business University, Beijing, China
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Min Zhang
- College of Food Science, Beijing Technology and Business University, Beijing, China
| | - Jieyi Cheng
- College of Food Science, Beijing Technology and Business University, Beijing, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
28
|
Yan S, Yao Y, Xie X, Zhang S, Huang Y, Zhu H, Li Y, Qi B. Comparison of the physical stabilities and oxidation of lipids and proteins in natural and polyphenol-modified soybean protein isolate-stabilized emulsions. Food Res Int 2022; 162:112066. [DOI: 10.1016/j.foodres.2022.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
29
|
Li Y, Liu X, Liu H, Zhu L. Interfacial adsorption behavior and interaction mechanism in saponin–protein composite systems: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Zhao Q, Hong X, Fan L, Liu Y, Li J. Freeze-thaw stability and rheological properties of high internal phase emulsions stabilized by phosphorylated perilla protein isolate: Effect of tea saponin concentration. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|