1
|
Su H, Li Z, Yu W, Liu T, Luo L. Integrating mineral elements and metabolite features to distinguish Lotus seeds from different geographic origins. Food Chem 2024; 463:141486. [PMID: 39368199 DOI: 10.1016/j.foodchem.2024.141486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
The characteristics of lotus seeds (LS) are influenced by variety and environment. However, it remains unknown the difference of metabolites and elements of LS from different origins. In this study, an accurate quantification method (97-107 %) for 20 mineral elements in LS was developed, and a metabolomic method was established to identify a total of 323 metabolites in LS. Mineral composition analysis revealed significant variations in the mineral element contents among LS samples from seven geographical regions. LS were rich in potassium (14,710 mg/kg), manganese (67.19 mg/kg), with a low level of sodium (210 mg/kg). A total of 10 mineral elements and 117 metabolites (p < 0.05 and VIP > 1) were identified as the potential geographical markers of LS by integration analysis. The linear discriminant analysis model showed high prediction accuracy. This study provides strong experimental evidence to maintain the authenticity and quality of LS in the food industry.
Collapse
Affiliation(s)
- Haoran Su
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
2
|
Ali SI, Elkhalifa AME, Nabi SU, Hayyat FS, Nazar M, Taifa S, Rakhshan R, Shah IH, Shaheen M, Wani IA, Muzaffer U, Shah OS, Makhdoomi DM, Ahmed EM, Khalil KAA, Bazie EA, Zawbaee KI, Al Hasan Ali MM, Alanazi RJ, Al Bataj IA, Al Gahtani SM, Salwi AJ, Alrodan LS. Aged garlic extract preserves beta-cell functioning via modulation of nuclear factor kappa-B (NF-κB)/Toll-like receptor (TLR)-4 and sarco endoplasmic reticulum calcium ATPase (SERCA)/Ca 2+ in diabetes mellitus. Diabetol Metab Syndr 2024; 16:110. [PMID: 38778421 PMCID: PMC11110209 DOI: 10.1186/s13098-024-01350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Peripheral insulin resistance and compromised insulin secretion from pancreatic β-cells are significant factors and pathogenic hallmarks of diabetes mellitus (DM). NF-κβ/TLR-4 and SERCA/Ca2+ pathways have been identified as potential pathways regulating insulin synthesis by preserving pancreatic β-cell functioning. The current study aimed to evaluate the therapeutic effect of aged garlic extract (AGE) against DM in a streptozotocin (STZ)-induced rat model with particular emphasis on pancreatic β-cell functioning. METHODS AGE was characterized by gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) to evaluate its physio-chemical characteristics followed by in-vitro anti-diabetic and antioxidant potential. This was followed by the induction of DM in laboratory animals for investigating the therapeutic action of AGE by evaluating the role of NF-κβ/TLR-4 and the SERCA/Ca2+ pathway. The parameters assessed in the present experimental setup encompassed antioxidant parameters, metabolic indicators, insulin concentration, intracellular calcium levels, apoptotic markers (CCK-8 and Caspase Glo-8), and protein expression (P-62 and APACHE-II). RESULTS AGE characterization by SEM, GC-MS, and X-ray diffraction (XRD) revealed the presence of phenylalanine, alliin, S-allylmercaptocysteine (SAMC), tryptophan, 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid as major bioactive constituents of AGE. Metabolic studies, including intraperitoneal glucose tolerance test (IPGTT), revealed significantly lower blood glucose levels in the AGE group compared to the disease control group. In contrast, the intraperitoneal insulin tolerance test (ITT) exhibited no significant difference in insulin sensitivity between the AGE supplementation group and the DM control group. Interestingly, AGE was found to have no significant effect on fasting glucose and serum insulin levels. In contrast, AGE supplementation was found to cause significant hypoglycaemia in postprandial blood glucose and insulin levels. Importantly, AGE causes restoration of intracellular Ca2+ levels by modulation of SERCA/Ca2 functioning and inhibition NF-κB/TLR-4 pathway. AGE was found to interact with and inhibit the DR-5/ caspase-8/3 apoptotic complex. Furthermore, microscopic studies revealed degeneration and apoptotic changes in pancreatic β-cells of the DM control group, while supplementation of AGE resulted in inhibition of apoptotic pathway and regeneration of pancreatic β-cells. CONCLUSION The current study suggests that AGE enhance glucose homeostasis by exerting their effects on pancreatic β-cells, without ameliorating peripheral sensitivity. Moreover, AGEs promote an increase in β-cell mass by mitigating the apoptosis of pancreatic β-cells. These findings suggest that AGE could aid in developing a viable alternative therapy for diabetes mellitus (DM).
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Ahmed M E Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, 11673, Riyadh, Saudi Arabia.
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan.
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India.
| | | | - Mehak Nazar
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Muzaffer Shaheen
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics and Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Imtiyaz Ahmad Wani
- Department of Endocrinology and Clinical Research, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, 190002, India
| | - Umar Muzaffer
- Department of Medicine, Govt. Medical College, Srinagar, Jammu and Kashmir, India
| | - Ovais Shabir Shah
- Department of Sheep Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Dil Mohammad Makhdoomi
- Directorate of Extension, Sher-E-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, Jammu and Kashmir, 190006, India
| | - Elsadig Mohamed Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Khalil A A Khalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Elsharif A Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Khalid Ibrahim Zawbaee
- Department of Blood Bank, Autonomous University of Barcelona, Al-Ghad International College for Applied Sciences, 155166, Riyadh, Saudi Arabia
| | - Moataz Mohamed Al Hasan Ali
- Department of Pathology, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Rakan J Alanazi
- Department of Pharmacy Practice, College of Pharmacy, Alfaisal University, 50927, Riyadh, Saudi Arabia
| | | | - Saeed Musfar Al Gahtani
- Department of Blood Bank, College of Applied Medical Sciences, University of King Saud, 11433, Riyadh, Saudi Arabia
| | - Ali Jubran Salwi
- Department of Blood Bank, College of Applied Medical Sciences, University of King Saud, 11433, Riyadh, Saudi Arabia
| | - Lina Saeed Alrodan
- Department of Blood Bank, College of Applied Medical Sciences, University of King Saud, 11433, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Pianezze S, Paolini M, D'Archivio AA, Perini M. Gas chromatography-stable isotope ratio mass spectrometry prior solid phase microextraction and gas chromatography-tandem mass spectrometry: development and optimization of analytical methods to analyse garlic ( Allium sativum L.) volatile fraction. Heliyon 2024; 10:e30248. [PMID: 38726102 PMCID: PMC11078878 DOI: 10.1016/j.heliyon.2024.e30248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Garlic (Allium sativum L.) is not only appreciated for its flavour and taste, but it is also recognized for various health properties. The European Commission, through the attribution of the Protected Designation of Origin (PDO) certification mark, has officially recognized some specific varieties of garlic. To protect not only the commercial value but also the reputation of this appreciated product, effective tools are therefore required. For the first time, a new compound specific isotope analysis method based on carbon stable isotopic ratio measurement of the three major volatile garlic compounds allyl alcohol (AA), diallyl disulphide (DD) and diallyl trisulphide (DT) through head-space solid phase microextraction (HS-SPME) followed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was developed. A within-day standard deviation (Srwithin-day) of 0.3 ‰, 0.4 ‰ and 0.2 ‰ for δ(13C) and a between-day standard deviation (Srbetween-day) of 0.8 ‰, 1.0 ‰ and 0.6 ‰ of AA, DT and DD was estimated. For the first time, the ranges of isotopic variability for the three volatile compounds of red garlic from two neighbouring Italian regions (Abruzzo and Lazio) were defined analysing 30 samples. The same dataset was also considered in analysing the percentage composition of the previously mentioned three volatile compounds through HS-SPME followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The two analytical approaches were combined in this explorative study, aiming to provide potential parameters to discriminate garlic samples based on their geographical origin.
Collapse
Affiliation(s)
- Silvia Pianezze
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach, Via E. Mach n.2, 38098, San Michele all’Adige, TN, Italy
| | - Mauro Paolini
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach, Via E. Mach n.2, 38098, San Michele all’Adige, TN, Italy
| | - Angelo Antonio D'Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy
| | - Matteo Perini
- Centro Trasferimento Tecnologico, Fondazione Edmund Mach, Via E. Mach n.2, 38098, San Michele all’Adige, TN, Italy
| |
Collapse
|
4
|
Sun X, Fu Q, Ren J, Sun-Waterhouse D, Waterhouse GIN, Qiao X. Defective copper-based metal-organic frameworks for the efficient extraction of organosulfur compounds from garlic-processing wastewater. Food Chem 2024; 435:137628. [PMID: 37804731 DOI: 10.1016/j.foodchem.2023.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Organosulfur compounds (OSCs) in garlic-processing wastewater are decomposed and generated to toxic and harmful substances with unpleasant odors under anaerobic conditions. Herein, were report the successful development of novel copper-based metal organic framework (Cu-MOF) adsorbents with high adsorption capacities for OSCs in aqueous media. Defect-rich Cu-MOF-X samples, with particle sizes between 360 and 750 nm, synthesized hydrothermal in the presence of acetic acid (where X denotes the molar ratio of acetic acid relative to the pentadentate MOF linker H4PPYD). OSC adsorption experiments using allicin, ajoene and 2-ethenyl-4H-1,3-dithiine (2-VDT) showed that Cu-MOF-200 delivered fast adsorption kinetics and high OSC adsorption capacities (149.02-171.33 mg g-1) owing to the pore accessibility and range of adsorption sites in the MOF. FT-IR, Raman, and XPS analyses, together with density functional theory (DFT) calculations, verified the strong yet reversible adsorption of OSCs in Cu-MOF-200. Results guide the development of improved adsorbents for OSC capture from garlic-processing wastewater.
Collapse
Affiliation(s)
- Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China
| | - Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China
| | - Jun Ren
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, PR China
| | | | | | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, PR China.
| |
Collapse
|
5
|
Zhou X, Xiong B, Ma X, Jin B, Xie L, Rogers KM, Zhang H, Wu H. Towards Verifying the Imported Soybeans of China Using Stable Isotope and Elemental Analysis Coupled with Chemometrics. Foods 2023; 12:4227. [PMID: 38231675 DOI: 10.3390/foods12234227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Verifying the geographical origin of soybeans (Glycine max [Linn.] Merr.) is a major challenge as there is little available information regarding non-parametric statistical origin approaches for Chinese domestic and imported soybeans. Commercially procured soybean samples from China (n = 33) and soybeans imported from Brazil (n = 90), the United States of America (n = 6), and Argentina (n = 27) were collected to characterize different producing origins using stable isotopes (δ2H, δ18O, δ15N, δ13C, and δ34S), non-metallic element content (% N, % C, and % S), and 23 mineral elements. Chemometric techniques such as principal component analysis (PCA), linear discriminant analysis (LDA), and BP-artificial neural network (BP-ANN) were applied to classify each origin profile. The feasibility of stable isotopes and elemental analysis combined with chemometrics as a discrimination tool to determine the geographical origin of soybeans was evaluated, and origin traceability models were developed. A PCA model indicated that origin discriminant separation was possible between the four soybean origins. Soybean mineral element content was found to be more indicative of origin than stable isotopes or non-metallic element contents. A comparison of two chemometric discriminant models, LDA and BP-ANN, showed both achieved an overall accuracy of 100% for testing and training sets when using a combined isotope and elemental approach. Our findings elucidate the importance of a combined approach in developing a reliable origin labeling method for domestic and imported soybeans in China.
Collapse
Affiliation(s)
- Xiuwen Zhou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Beibei Xiong
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518033, China
| | - Xiao Ma
- Department of Chromatography and Mass Spectrometry, Thermo Fisher Scientific (China) Co., Ltd., Shanghai 201206, China
| | - Baohui Jin
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518033, China
| | - Liqi Xie
- Food Inspection and Quarantine Center, Shenzhen Customs, Shenzhen 518033, China
| | - Karyne M Rogers
- National Isotope Centre, GNS Science, Lower Hutt 5040, New Zealand
| | - Hui Zhang
- Comprehensive Technology Centre, Zhangjiagang Customs, Suzhou 215000, China
| | - Hao Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Yu DX, Guo S, Zhang X, Yan H, Mao SW, Wang JM, Zhou JQ, Yang J, Yuan YW, Duan JA. Combining stable isotope, multielement and untargeted metabolomics with chemometrics to discriminate the geographical origins of ginger (Zingiber officinale Roscoe). Food Chem 2023; 426:136577. [PMID: 37301043 DOI: 10.1016/j.foodchem.2023.136577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/14/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Ginger (Zingiber officinale Roscoe) is a high-value food and herb worldwide. The quality of ginger is often related to its production regions. In this study, stable isotopes, multiple elements, and metabolites were investigated together to realize ginger origin traceability. Chemometrics showed that ginger samples could be preliminarily separated, and 4 isotopes (δ13C, δ2H, δ18O, and δ34S), 12 mineral elements (Rb, Mn, V, Na, Sm, K, Ga, Cd, Al, Ti, Mg, and Li), 1 bioelement (%C), and 143 metabolites were the most important variables for discrimination. Furthermore, three algorithms were introduced, and the fused dataset based on VIP features led to the highest accuracies for origin classification, with predictive rates of 98% for K-nearest neighbor and 100% for support vector machine and random forest. The results demonstrated that isotopic, elemental, and metabolic fingerprints were useful indicators for the geographical origins of Chinese ginger.
Collapse
Affiliation(s)
- Dai-Xin Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xia Zhang
- College of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Yan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Su-Wan Mao
- College of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie-Mei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia-Qi Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu-Wei Yuan
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Cui L, Chen H, Yuan Y, Zhu F, Nie J, Han S, Fu Y, Hou H, Hu Q, Chen Z. Tracing the geographical origin of tobacco at two spatial scales by stable isotope and element analyses with chemometrics. Food Chem X 2023; 18:100716. [PMID: 37397212 PMCID: PMC10314160 DOI: 10.1016/j.fochx.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Tobacco is a widely cultivated cash crop, but it is often smuggled and sold illegally. Unfortunately, there is currently no way to verify the origin of tobacco in China. In an effort to address this issue, we conducted a study using stable isotopes and elements from 176 tobacco samples at both provincial and municipal scales. Our findings revealed significant differences in δ13C, K, Cs, and 208/206Pb at the provincial-level, and Sr, Se, and Pb at the municipal level. We created a heat map at the municipal level, which showed a similar cluster classification to geographic grouping and provided an initial assessment of tobacco origins. Using OPLS-DA modeling, we achieved a 98.3% accuracy rate for the provincial scale and 97.6% for the municipal scale. It is worth noting that the importance of rankings of variables varied depending on the spatial scale of the evaluation. This study offers the first traceability fingerprint dataset of tobacco and has the potential to combat mislabeling and fraudulent conduct by identifying the geographical origin of tobacco.
Collapse
Affiliation(s)
- Lili Cui
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Beijing Life Science Academy, Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100101, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Beijing Life Science Academy, Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100101, China
| | - Yuwei Yuan
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Fengpeng Zhu
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Jing Nie
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Beijing Life Science Academy, Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100101, China
| | - Ya'ning Fu
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Beijing Life Science Academy, Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100101, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Beijing Life Science Academy, Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100101, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
- Beijing Life Science Academy, Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing 100101, China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Nie J, Yang J, Liu C, Li C, Shao S, Yao C, Chen B, Tao Y, Wang F, Zhang Y, Rogers KM, Wang P, Yuan Y. Stable isotope and elemental profiles determine geographical origin of saffron from China and Iran. Food Chem 2023; 405:134733. [DOI: 10.1016/j.foodchem.2022.134733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
|
9
|
Recent advances in Chinese food authentication and origin verification using isotope ratio mass spectrometry. Food Chem 2023; 398:133896. [DOI: 10.1016/j.foodchem.2022.133896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022]
|
10
|
Song T, Xia Z, Liu C, Nie J, Zhou Y, Wadood SA, Zhang Y, Li C, Rogers KM, Yuan Y. Model Optimization for Geographical Discrimination of Lentinula edodes based Stable Isotopes and Multi-elements in China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|