1
|
Ren W, Wu M, Wang B, Xu H, Wei W, Sun D. Constant temperature and humidity combined with vacuum-steam pulsed steaming of Polygonatum cyrtonema rhizome: Quality attribute and browning mechanism. Food Chem 2025; 463:141472. [PMID: 39369607 DOI: 10.1016/j.foodchem.2024.141472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The quality of Polygonatum cyrtonema rhizome is considerably influenced by steaming, a post-harvest procedure; however, the mechanisms behind this quality formation are not well understood. This study explored two innovative streaming methods for Polygonatum cyrtonema rhizome: constant temperature and humidity steaming and drying (CTHSD) and constant temperature and humidity combined with vacuum-steam pulsed steaming and drying (CTH + VSPSD). Traditional atmospheric steaming, simmering, and drying (ASD) were also used. We evaluated the microstructure, colour and polysaccharide, reducing sugar, 5-hydroxymethylfurfural, amino acid, phenolics and diosgenin contents as well as its antioxidant capacity. Results indicated that all methods enhanced antioxidant activity, released phenolic compounds and disrupted the microscopic pore wall structure. The processed samples exhibited increased browning values owing to non-enzymatic browning reactions between amino acids and reducing sugars. Notably, the CTH + VSPSD method yielded the highest antioxidant capacity, better preservation of polysaccharides and lower levels of 5-hydroxymethylfurfural compared to other methods. Additionally, CTH + VSPSD reduced production time by 66.7 % while achieving a comparable colour profile to that of conventional ASD technology. Therefore, the CTH + VSPSD method shows great promise for producing high-quality Polygonatum cyrtonema rhizome products.
Collapse
Affiliation(s)
- Weike Ren
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia.
| | - Huihuang Xu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenguang Wei
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Dongyu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Pan J, Ni ZJ, Thakur K, Khan MR, Zhang JG, Wei ZJ. Bioactivity and application potential of O/W emulsions derived from carboxylic acid-based NADES-extracted total saponins from Polygonatum cyrtonema Hua. Food Chem 2025; 463:141363. [PMID: 39321654 DOI: 10.1016/j.foodchem.2024.141363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
This study focuses on evaluating new methods for the green extraction of saponin compounds from Polygonatum cyrtonema Hua (PCH). This study utilized a combination of carboxylic acid-based natural deep eutectic solvents (NADES) and various extraction techniques including conventional heat reflux-, ultrasound-, and microwave-assisted extraction. The primary objectives were to assess total saponin yield, antioxidant capacity, and enzyme inhibition efficiency. Additionally, the solvents and extracts were evaluated for their antibacterial activity. Oil-in-water (O/W) emulsions of NADES extracts were also characterized and analyzed for stability. Results indicated that three NADES systems were effective in extracting saponins, with choline chloride and lactic acid (ChCl-LA) system being the most efficient. The ChCl:LA extract exhibited antimicrobial and antioxidant activities superior to conventional organic solvent extracts. Additionally, it demonstrated maximum inhibitory activity (IC50 values: 0.98 ± 0.03 and 1.46 ± 0.07 mg/mL, respectively) against α-glucosidase and α-amylase. The NADES extract as an aqueous phase significantly improved the stationarity of the O/W emulsion. Collectively, the study highlights the antimicrobial and technological advantages of NADES as a potential solvent for extracting saponin compounds from PCH.
Collapse
Affiliation(s)
- Jing Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Chen P, Fei C, Fu R, Xiao X, Qin Y, Li X, Guo Z, Huang J, Ji D, Li L, Lu T, Guo Q, Su L. Polygonati Rhizoma varieties and origins traceability based on multivariate data fusion combined with an artificial intelligence classification algorithm. Food Chem 2024; 460:140350. [PMID: 39032291 DOI: 10.1016/j.foodchem.2024.140350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
This study collected multidimensional feature data such as spectra, texture, and component contents of Polygonati Rhizoma from different origins and varieties (Polygonatum kingianum Coll. et Hemsl from Yunnan and Guizhou; Polygonatum cyrtonema Hua from Anhui and Jiangxi; Polygonatum sibiricum Red from Hunan). Multivariate statistical analysis was used to select 39 characteristic factors for distinguishing PR origins and 14 characteristic factors for discriminating PR varieties (VIP > 1 and P < 0.05). In addition, by combining multivariate statistical analysis with a deep belief network (DBN) classification algorithm, a novel artificial intelligence algorithm was developed and optimized. Compared to traditional discriminant analysis methods, the accuracy of this new approach was significantly improved, achieving a 100% discrimination rate for PR varieties and a 100% accuracy rate for tracing the origin of PR. This research provides a reference and data support for constructing intelligent algorithms based on multidimensional data fusion, to achieve food variety discrimination and origin tracing.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenghao Fei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rao Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyan Xiao
- Suzhou Liliangji Health Industry Co., Ltd, Suzhou, 215000, China
| | - Yuwen Qin
- Wenzhou Medical University, Wenzhou, 325035, China; Jiuhuashan Polygonati Rhizoma Research Institute, Chizhou, 247100, China
| | - Xiaoman Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhijun Guo
- China Resources Sanjiu Modern Chinese Medicine Pharmaceutical Co., Ltd, Shenzhen, 518000, China
| | - Jianmin Huang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Wang Y, Wang Y. Feasibility study on discrimination of Polygonatum kingianum origins by NIR and MIR spectra data. J Food Sci 2024; 89:7172-7188. [PMID: 39354654 DOI: 10.1111/1750-3841.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
Most existing studies have focused on identifying the origin of species with protected geographical indications while neglecting to determine the proximate geographical origin of different species. In this study, we investigated the feasibility of using near- and mid-infrared spectroscopy to identify the origin of 156 Polygonatum kingianum samples from six regions in Yunnan, China. In this work, spectral images of different modes reveal more information about the P. kingianum. Comparing the performance of traditional machine learning models according to single spectrum and data fusion, the middle-level data fusion-principal component model has the best performance, and its sensitivity, specificity, and accuracy are all 1, and the model has the least number of variables. The residual convolutional neural network (ResNet) model constructed in the 1050-850 cm-1 band confirms that fewer variables are beneficial in improving the accuracy of the model. In conclusion, this study verifies the feasibility of the proposed strategy and establishes a practical model to determine the source of P. kingianum.
Collapse
Affiliation(s)
- Yue Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
5
|
Chen D, Si D, Liu J, Si J. Huangjing is not only a good medicine but also an affordable healthy diet. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2520-2522. [PMID: 39349790 DOI: 10.1007/s11427-024-2713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024]
Affiliation(s)
- Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dun Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Xiong S, Tao P, Yu Y, Wu W, Li Y, Chen G, Si J, Yang H. Effect of Polygonatum cyrtonema Hua polysaccharides on gluten structure, in vitro digestion and shelf-life of fresh wet noodle. Int J Biol Macromol 2024; 279:135475. [PMID: 39260637 DOI: 10.1016/j.ijbiomac.2024.135475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
This study aimed to investigate the effects of raw Polygonatum cyrtonema Hua polysaccharides (RPCPs) and "zhi" P. cyrtonema Hua polysaccharides (ZPCPs) on the gluten structure, in vitro digestion, and shelf life of fresh wet noodles (FWN). The results demonstrated that incorporating PCPs improved the cooking and sensory qualities of FWN. Moreover, the shelf life of FWN was extended by 6 days with 1.5 % RPCPs (w/w) compared with the control FWN. Furthermore, incorporating 1.5 % ZPCPs led to a 1.2- and 0.2-fold increase in the disulfide bond and α-helix content, respectively, compared with the control FWN. This resulted in enhanced gluten structure, improved springiness and viscidity, and reduced cooking loss by 14.47 %-52.19 %. The scanning electron microscopy analysis revealed that the starch particles were entrapped by PCPs, leading to higher gelatinization temperature and lower setback value of FWN, thereby reducing the starch digestion ratio to 55.50 %. In summary, the findings suggested that FWN containing PCPs can extend shelf life, improve taste, and slow starch digestion staple.
Collapse
Affiliation(s)
- Siqing Xiong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Pengcheng Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanguo Yu
- Hemudu Yuanguo Agricultural Products Development Co., Ltd, Yuyao 315414, China
| | - Wenbing Wu
- Hunan Fenggu Food Technology Co., Ltd, Loudi 417612, China
| | - Yongxin Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Gang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Huqing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
7
|
Apolinário da Silva AP, Xavier da Silva Neto J, Wemmenson Gonçalves Moura LF, de Lima Rebouças E, Flávio da Silva Lopes F, Barbosa da Silva WM, Maia de Morais S, Bezerra da Silva B, Florindo Guedes MI. Okra (Abelmoschus esculentus L. moench) fruit powder standardized in flavonoids improves glycemic control and metabolic memory in acute and chronic hyperglycemia. FOOD BIOSCI 2024; 61:104870. [DOI: 10.1016/j.fbio.2024.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Ren Y, Sun Y, Liao YY, Wang S, Liu Q, Duan CY, Sun L, Li XY, Yuan JL. Mechanisms of action and applications of Polygonatum sibiricum polysaccharide at the intestinal mucosa barrier: a review. Front Pharmacol 2024; 15:1421607. [PMID: 39224782 PMCID: PMC11366640 DOI: 10.3389/fphar.2024.1421607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
As a medicinal and edible homologous Chinese herb, Polygonatum sibiricum has been used as a primary ingredient in various functional and medicinal products. Damage to the intestinal mucosal barrier can lead to or worsen conditions such as type 2 diabetes and Alzheimer's disease. Traditional Chinese medicine and its bioactive components can help prevent and manage these conditions by restoring the integrity of the intestinal mucosal barrier. This review delves into the mode of action of P. sibiricum polysaccharide in disease prevention and management through the restoration of the intestinal barrier. Polysaccharide from P. sibiricum effectively treats conditions by repairing the intestinal mucosal barrier, offering insights for treating complex diseases and supporting the application of P. sibiricum in clinical settings.
Collapse
Affiliation(s)
- Yu Ren
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yu-Ying Liao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qian Liu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Yan Duan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lan Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-Ya Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jia-Li Yuan
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
9
|
Shen J, Pu W, Song Q, Ye B, Shi X, Chen Y, Yu Y, Li H. Traditional Processing Can Enhance the Medicinal Effects of Polygonatum cyrtonema by Inducing Significant Chemical Changes in the Functional Components in Its Rhizomes. Pharmaceuticals (Basel) 2024; 17:1074. [PMID: 39204179 PMCID: PMC11359098 DOI: 10.3390/ph17081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The aims of this study were to explore the significant chemical changes in functional components induced by the traditional processing method and evaluate whether this method based on nine cycles of steaming and drying can effectively enhance the medicinal effects of Polygonatum cyrtonema rhizome. A global analysis on dynamic changes in secondary metabolites during nine processing cycles was performed, and the significantly differentially accumulated secondary metabolites were initially identified based on the secondary metabolome. Unsupervised principal component analysis (PCA), hierarchical clustering analysis (HCA), and orthogonal partial least squares discriminant analysis (OPLA-DA) on secondary metabolites clearly showed that processing significantly increased the global accumulation of secondary metabolites in processed P. cyrtonema rhizomes compared to unprocessed crude rhizomes. The first six processing cycles induced drastic changes in the accumulation of functional components, while the last three did not induce further changes. The accumulations of most functional components were significantly enhanced after the first three cycles and stabilized after six cycles; meanwhile, the first three cycles also led to numerous new components. However, the enhancing effects were unavoidably reversed or weakened under continued processing lasting 6-9 cycles. Furthermore, continued processing also reduced the contents of a small number of original components to undetectable levels. Processing induced some significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, among which the first three processing cycles enhanced the synthesis of various secondary metabolites and significantly affected the metabolisms of amino acids. In conclusion, this study not only reveals that processing can effectively enhance the medicinal effects, by two main mechanisms including enhancing chemical synthesis and inducing structural transformation of functional components, but also provides theoretical guidance for the optimization of the traditional processing method based on nine cycles of steaming and drying for achieving optimal effects on enhancing the medicinal effects of P. cyrtonema rhizome.
Collapse
Affiliation(s)
- Jianjun Shen
- Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.S.)
| | - Weiting Pu
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Qiyan Song
- Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.S.)
| | - Bihuan Ye
- Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.S.)
| | - Xiaoxiao Shi
- Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.S.)
| | - Youwu Chen
- Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.S.)
| | - Yefei Yu
- Zhejiang Dapanshan National Natural Reserve Administration, Panan 322300, China
| | - Haibo Li
- Zhejiang Academy of Forestry, Hangzhou 310023, China; (J.S.)
| |
Collapse
|
10
|
Zheng T, Chen H, Yu Y, Wang P, Li Y, Chen G, Si J, Yang H. Property and quality of japonica rice cake prepared with Polygonatum cyrtonema powder. Food Chem X 2024; 22:101370. [PMID: 38623510 PMCID: PMC11016865 DOI: 10.1016/j.fochx.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
Rice cake is a common traditional food in China. In this study, the effect of Polygonatum cyrtonema (PC) on the qualities and characteristics of rice cake was investigated. The incorporation of PC powder in rice cakes endowed a light-yellow color and increased the water content and water absorption of products. Rheological analysis showed that the rice cake containing PC exhibited weak-gel properties. Additionally, PC (40%) inhibited the rice cake aging and lowered the hardness of rice cakes to 13.86 N after 4 h storage. In vitro starch digestion analysis showed that PC (40%) reduced the digestibility of rice cakes by decreasing the starch hydrolysis rate from 88.70 to 58.95%, displaying a low estimated glycemic index (eGI) of 52.14. The findings mentioned above indicated that the inclusion of PC powder in rice cakes enhanced their characteristics and attributes, which also provided an approach for the development of PC products.
Collapse
Affiliation(s)
- Tian Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huiyun Chen
- Institute of Agricultural Processing Research, Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Yuanguo Yu
- Hemudu Yuanguo Agricultural Products Development Co., Ltd, Yuyiao 315414, China
| | - Pan Wang
- Pan'an traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, 322300, China
| | - Yongxin Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Gang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huqing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
11
|
Mo X, Wang L, Yu C, Kou C. Combined Metabolomics and Transcriptomics Analysis of the Distribution of Flavonoids in the Fibrous Root and Taproot of Polygonatum kingianum Coll.et Hemsl. Genes (Basel) 2024; 15:828. [PMID: 39062607 PMCID: PMC11275391 DOI: 10.3390/genes15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Polygonati rhizoma, known for its distinct yellow rhizomes, is a common therapeutic and culinary plant in Far East Asia. The hue of medicinal plants is closely tied to the flavonoid biosynthesis and content levels. In this research, the fibrous root and taproot of Polygonatum kingianum Coll.et Hemsl. were studied to explore the secondary metabolite expression and flavonoid biosynthesis mechanisms using transcriptomics and metabolomics. Metabolic analysis identified that the differentially accumulated metabolites (DAMs) in the fibrous root and taproot were predominantly flavonoids, steroids, alkaloids, and phenolic acids. Overall, 200 flavonoids were identified in P. kingianum Coll.et Hemsl., with 170 exhibiting variances between the fibrous root and taproot. The transcriptome analysis revealed that a total of 289 unigenes encoding 32 enzymes were annotated into four flavonoid biosynthesis pathways, which include phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway, isoflavonoid biosynthesis pathway, and flavone and flavonol biosynthesis pathway. The integration of transcriptomic and metabolomic data elucidated that the 76 differentially expressed genes (DEGs) encoding 13 enzyme genes (HCT, CCOMT, C4H, C3'H, CHI, PGT1, FLS, F3'H, CHS, ANR, DFR, F3'5'H, and LAR) and 15 DAMs preferred to be regulated in the flavonoid biosynthesis pathway. The expression of 10 DEGs was validated by qRT-PCR, agreeing with the same results by RNA-Seq. These findings shed light into the biosynthesis of secondary metabolites in P. kingianum Coll.et Hemsl., offering valuable information for the sustainable utilization and enhancement of this plant species.
Collapse
Affiliation(s)
- Xinchun Mo
- Department of Applied Technology, Lijiang Teachers College, Lijiang 674199, China; (L.W.); (C.Y.); (C.K.)
| | | | | | | |
Collapse
|
12
|
Pan M, Wu Y, Sun C, Ma H, Ye X, Li X. Polygonati Rhizoma: A review on the extraction, purification, structural characterization, biosynthesis of the main secondary metabolites and anti-aging effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118002. [PMID: 38437890 DOI: 10.1016/j.jep.2024.118002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizome (PR) is a plant that is extensively widespread in the temperate zones of the Northern Hemisphere. It is a member of the Polygonatum family of Asparagaceae. PR exhibits diverse pharmacological effects and finds applications in ethnopharmacology, serving as a potent tonic for more than two millennia. PR's compounds endow it with various pharmacological properties, including anti-aging, antioxidant, anti-fatigue, anti-inflammatory, and sleep-enhancing effects, as well as therapeutic potential for osteoporosis and age-related diseases. AIM OF THE STUDY This review seeks to offer a thorough overview of the processing, purification, extraction, structural characterization, and biosynthesis pathways of PR. Furthermore, it delves into the anti-aging mechanism of PR, using organ protection as an entry point. MATERIALS AND METHODS Information on PR was obtained from scientific databases (Google Scholar, Web of Science, ScienceDirect, SciFinder, PubMed, CNKI) and books, doctoral theses, and master's dissertations. RESULTS In this investigation, 49 polysaccharides were extracted from PR, and the impact of various processing, extraction, and purification techniques on the structure and activity of these polysaccharides was evaluated. Additionally, 163 saponins and 46 flavonoids were identified, and three key biosynthesis pathways of secondary metabolites were outlined. Notably, PR and Polygonat Rhizomai polysaccharides (PRP) exhibit remarkable protective effects against age-induced injuries to the brain, liver, kidney, intestine, heart, and vessels, thereby promoting longevity and ameliorating the aging process. CONCLUSIONS PR, a culinary and therapeutic herb, is rich in active components and pharmacological activities. Based on this review, PR plays a meaningful role in lifespan extension and anti-aging, which can be attributed to PRP. Future research should delve deeper into the structural aspects of PRP that underlie its anti-aging effects and explore potential synergistic interactions with other compounds. Moreover, exploring the potential applications of PR in functional foods and pharmaceutical formulations is recommended to advance the development of industries and resources focused on healthy aging.
Collapse
Affiliation(s)
- Miao Pan
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Yajing Wu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Chunyong Sun
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Salimi A, Khezri S, Vahabzadeh Z, Rajabi P, Samimi R, Adhami V. Hesperidin, vanillic acid, and sinapic acid attenuate atorvastatin-induced mitochondrial dysfunction via inhibition of mitochondrial swelling and maintenance of mitochondrial function in pancreas isolated mitochondria. Drug Dev Res 2024; 85:e22199. [PMID: 38812443 DOI: 10.1002/ddr.22199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into β-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 μM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic β-cells.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zoleikhah Vahabzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Paria Rajabi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rojin Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahed Adhami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
14
|
Hu Y, Zhang Y, Cui X, Wang D, Hu Y, Wang C. Structure-function relationship and biological activity of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 268:131701. [PMID: 38643920 DOI: 10.1016/j.ijbiomac.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoao Cui
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yong Hu
- Agricultural Products Processing Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
15
|
Gong Q, Yu J, Guo Z, Fu K, Xu Y, Zou H, Li C, Si J, Cai S, Chen D, Han Z. Accumulation mechanism of metabolite markers identified by machine learning between Qingyuan and Xiushui counties in Polygonatum cyrtonema Hua. BMC PLANT BIOLOGY 2024; 24:173. [PMID: 38443808 PMCID: PMC10916035 DOI: 10.1186/s12870-024-04871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavonoids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptomics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expression system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4'-O-glucopyranosid, and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided valuable genetic insights for engineering the biosynthesis of these compounds.
Collapse
Affiliation(s)
- Qiqi Gong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jianfeng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhicheng Guo
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, China
| | - Ke Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hui Zou
- Yipuyuan Huangjing Technology Co., Ltd, Xinhua, 417600, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shengguan Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310030, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
16
|
Zhang Q, Yang Z, Su W. Review of studies on polysaccharides, lignins and small molecular compounds from three Polygonatum Mill. (Asparagaceae) spp. in crude and processed states. Int J Biol Macromol 2024; 260:129511. [PMID: 38242391 DOI: 10.1016/j.ijbiomac.2024.129511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Since ancient times, Polygonatum Mill. (Asparagaceae) has been utilized as a medicinal and culinary resource in China. Its efficacy in treating various illnesses has been well documented. Traditional processing involves the Nine-Steam-Nine-Bask method, which results in a reduction of toxicity and enhanced effectiveness of Polygonatum. Many substances, such as polysaccharides, lignins, saponins, homoisoflavones, alkaloids, and others, have been successfully isolated from Polygonatum. This review presents the research progress on the chemical composition of three crude and processed Polygonatum, including Polygonatum sibiricum Redouté (P. sibiricum), Polygonatum kingianum Collett & Hemsl (P. kingianum), and Polygonatum cyrtonema Hua (P. cyrtonema). The review also includes the pharmacology of Polygonatum, specifically on the pharmacology of polysaccharides both before and after processing. Its objective is to provide a foundation for uncovering the significance of the processing procedure, and to facilitate the development and utilization of Polygonatum in clinical practice.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zouyue Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
17
|
Nuchuchua O, Srinuanchai W, Chansriniyom C, Suttisansanee U, Temviriyanukul P, Nuengchamnong N, Ruktanonchai U. Relationship of phytochemicals and antioxidant activities in Gymnema inodorum leaf extracts. Heliyon 2024; 10:e23175. [PMID: 38163201 PMCID: PMC10755283 DOI: 10.1016/j.heliyon.2023.e23175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Gynmena inodorum (GI) is a green leafy vegetable used in the Northern Thai cuisine which has antioxidant activities and may be applicable for preventing oxidative stress and aging-related disease. However, understanding the relationship between GI phytonutrients and their antioxidant properties has been unclear. The aims of this study were to identify the GI leaf phytochemicals and to study their antioxidant activities. A chromatogram of LC-ESI-MS/QTOF-MS showed that the GI leaves were potentially composed of phenolics, quinic acids, flavonoids, and triterpenoid saponins. This study was able to authenticate quercetin, kaempferol, and triterpenoid GIA1 in the samples. The GI materials with high contents of phenolics, flavonoids, quercetin, and kaempferol showed significant relation to antioxidation and protection in endothelial cell death suppressed by reactive nitrogen species. Meanwhile, triterpenoids had a low antioxidant impact. Ultimately, GI leaves with high phenolic compounds are a promising raw material to develop as an antioxidant functional food.
Collapse
Affiliation(s)
- Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Natural products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Nitra Nuengchamnong
- Science Laboratory Center, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Uracha Ruktanonchai
- National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
18
|
Dong YH, Wang ZX, Chen C, Wang PP, Fu X. A review on the hypoglycemic effect, mechanism and application development of natural dietary polysaccharides. Int J Biol Macromol 2023; 253:127267. [PMID: 37820903 DOI: 10.1016/j.ijbiomac.2023.127267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Diabetes mellitus (DM) as one chronic metabolic disease was greatly increased over recent decades. The major agents treating diabetes have noticeable side effects as well as the tolerability problems. The bioactive dietary polysaccharides from abundant natural resources exhibit good hypoglycemic effect with rare adverse effects, which might serve as a candidate to prevent and treat diabetes. However, the correlations between the hypoglycemic mechanism of polysaccharides and their structure were not mentioned in several studies, what's more, most of the current hypoglycemic studies on polysaccharides were based on in vitro and in vivo experiments, and there was a lack of knowledge about the effects in human clinical trials. The aim of this review is to discuss recent literature about the variety of dietary polysaccharides with hypoglycemic activity, as well the mechanism of action and the structure-function relationship are highlighted. Meanwhile, the application of dietary polysaccharides in functional foods and clinical medicine are realized with an in-depth understanding. So as to promote the exploration of dietary polysaccharides in low glycemic healthy foods or clinical medicine to prevent and treat diabetes.
Collapse
Affiliation(s)
- Yu-Hao Dong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhen-Xing Wang
- College of life Science, Southwest Forestry University, Kunming 650224, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Ping-Ping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
19
|
Cao M, Wang J, Jiang X, Sun Z, Zhao L, Chen G. Phenolic Constituents from Black Quinoa Alleviate Insulin Resistance in HepG2 Cells via Regulating IRS1/PI3K/Akt/GLUTs Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18780-18791. [PMID: 37991345 DOI: 10.1021/acs.jafc.3c05900] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Quinoa is a nutrient-rich pseudocereal with a lower glycemic index and glycemic load. However, its therapeutic potency and underlying mechanism against insulin resistance (IR) have not been fully elucidated. In this work, network pharmacology was applied to screen IR targets and their related pathways. The efficacy and mechanism of black quinoa polyphenols (BQP) on IR improvement were evaluated and uncovered based on the IR model in vitro combined with molecular docking. Ten phenolic constituents of BQP were detected, and the network pharmacology results show that PI3K/Akt pathways are the main pathways in BQP against IR. The in vitro assay proved that BQP increases the glucose consumption and glycogen synthesis via upregulating insulin receptor substrate 1 (IRS1)/PI3K/Akt/glucose transporters (GLUTs) signaling pathways to alleviate IR. Rutin, resveratrol, and catechin show lower binding energy docking with IRS1, PI3K, Akt, and GLUT4 proteins, indicating better interactions. It might be an effective constituent against IR. Hence, BQP could become a potential functional food source for blood glucose management among insulin-resistant people.
Collapse
Affiliation(s)
- Mingyuan Cao
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jie Wang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xueying Jiang
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhipeng Sun
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Guitang Chen
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
20
|
Trifonov RE, Ostrovskii VA. Tetrazoles and Related Heterocycles as Promising Synthetic Antidiabetic Agents. Int J Mol Sci 2023; 24:17190. [PMID: 38139019 PMCID: PMC10742751 DOI: 10.3390/ijms242417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Tetrazole heterocycle is a promising scaffold in drug design, and it is incorporated into active pharmaceutical ingredients of medications of various actions: hypotensives, diuretics, antihistamines, antibiotics, analgesics, and others. This heterocyclic system is metabolically stable and easily participates in various intermolecular interactions with different biological targets through hydrogen bonding, conjugation, or van der Waals forces. In the present review, a systematic analysis of the activity of tetrazole derivatives against type 2 diabetes mellitus (T2DM) has been performed. As it was shown, the tetrazolyl moiety is a key fragment of many antidiabetic agents with different activities, including the following: peroxisome proliferator-activated receptors (PPARs) agonists, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase (AR) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) agonists, G protein-coupled receptor (GPCRs) agonists, glycogen phosphorylases (GP) Inhibitors, α-glycosidase (AG) Inhibitors, sodium glucose co-transporter (SGLT) inhibitors, fructose-1,6-bisphosphatase (FBPase) inhibitors, IkB kinase ε (IKKε) and TANK binding kinase 1 (TBK1) inhibitors, and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In many cases, the tetrazole-containing leader compounds markedly exceed the activity of medications already known and used in T2DM therapy, and some of them are undergoing clinical trials. In addition, tetrazole derivatives are very often used to act on diabetes-related targets or to treat post-diabetic disorders.
Collapse
Affiliation(s)
- Rostislav E. Trifonov
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
| | - Vladimir A. Ostrovskii
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), St. Petersburg 199178, Russia
| |
Collapse
|
21
|
Su LL, Li X, Guo ZJ, Xiao XY, Chen P, Zhang JB, Mao CQ, Ji D, Mao J, Gao B, Lu TL. Effects of different steaming times on the composition, structure and immune activity of Polygonatum Polysaccharide. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116351. [PMID: 36914038 DOI: 10.1016/j.jep.2023.116351] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a commonly used traditional Chinese herbal medicine, Polygonati Rhizoma has high medicinal value, it can enhance the immune capacity of the body, regulate the metabolism of blood glucose and lipids, treat weakness of the stomach and intestines and physical fatigue, and so on. There are three plant varieties of Polygonati Rhizoma recorded in Chinese Pharmacopoeia, including Polygonatum sibiricum Red., Polygonatum kingianum Coll. et Hemsl. and Polygonatum cyrtonema Hua, compared with the first two, Polygonatum cyrtonema Hua is less studied. Polygonatum cyrtonema Hua is one of the basal plants of the Chinese herb Polygonati Rhizoma, that strengthens the spleen, moistens the lungs, and benefits the kidneys. Polygonatum polysaccharide is the main active substance of Polygonatum cyrtonema Hua, which has various biological effects of regulating immune system, anti-inflammatory, anti-antidepressant, antioxidant and other effects. AIM OF THE STUDY In order to analyze the necessity and scientificity of multiple cycles of steaming during the traditional nine-steaming and nine-drying process of the concoction of Polygonatum, we investigated the changes in the composition and structure of polysaccharides, and explored its immunomodulatory activity and molecular biological mechanism. METHODS The structural characterization and molecular weight of polysaccharides were studied by scanning electron microscope (SEM), high-performance size exclusion chromatography-evaporative light scattering detector (HPSEC-ELSD) and Matrix.assisted laser resolutionu ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The composition and proportion of monosaccharides were determined by PMP-HPLC method. A mouse immunosuppression model was established by intraperitoneal injection of cyclophosphamide to compare the immunomodulatory effects and mechanisms of different steaming times of Polygonatum, The changes of body mass and immune organ indices of mice were measured; the secretion levels of interleukin-2 (IL-2), interferon γ (IFN-γ) and the expression levels of immunoglobulin M (IgM) and immunoglobulin A (IgA) in serum were determined by enzyme-linked immunosorbent assay; and then flow cytometry was used to detect T-lymphocyte subpopulations to evaluate the differences of immunomodulatory effects of polysaccharides during the processing and preparation of Polygonatum. Finally, the Illumina MiSeq high-throughput sequencing platform was used to analyze short-chain fatty acids and to investigate the effects of different steaming times of Polygonatum polysaccharides on immune function and intestinal flora in immunosuppressed mice. RESULTS The structure of the Polygonatum polysaccharide with different steaming times changed significantly, the relative molecular weight of Polygonatum polysaccharide decreased significantly, and the monosaccharide composition of Polygonatum cyrtonema Hua with different steaming times was the same but the content was different. The immunomodulatory activity of the Polygonatum polysaccharide was enhanced after concoction, which significantly increased the spleen index and thymus index, and increased the expression of IL-2, IFN-γ, IgA and IgM. The CD4+/CD8+ ratio of Polygonatum polysaccharide also increased gradually with different steaming times, indicating enhanced immune function and significant immunomodulatory effect. The content of short-chain fatty acids in the feces of mice in both six steaming six sun-drying of Polygonatum polysaccharides (SYWPP) and nine steaming nine sun-drying of Polygonatum polysaccharides (NYWPP) groups increased significantly, including the content of propionic acid, isobutyric acid, valeric acid, and isovaleric acid, and also had a good effect on the regulation and improvement of microbial community abundance and diversity, SYWPP and NYWPP increased the relative abundance of Bacteroides and the ratio of Bacteroides and Firmicutes (B:F), while SYWPP significantly increased the abundance of Bacteroides, Alistipes and norank_f__Lachnospiraceae, but the effect of raw Polygonatum polysaccharides (RPP) and NYWPP was not significant than SYWPP. CONCLUSION Overall, both SYWPP and NYWPP could significantly enhance the immune activity of the organism, improve the imbalance of intestinal flora in immunosuppressed mice, and increase the content of intestinal short chain fatty acids (SCFAs), it is noteworthy that SYWPP has a better effect on the improvement of the immune activity of the organism. These findings can explore the stage of the concoction process of Polygonatum cyrtonema Hua to achieve the best effect, provide a reference basis for the development of quality standards, and at the same time promote the application of new therapeutic agents and health foods in raw and different steaming times of Polygonatum polysaccharide.
Collapse
Affiliation(s)
- Lian-Lin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoman Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Jun Guo
- China Resources Sanjiu Pharmaceutical Co., Ltd, Shenzhen, 518000, China
| | - Xiao-Yan Xiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiu-Ba Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chun-Qin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, China
| | - Bo Gao
- China Resources Sanjiu Pharmaceutical Co., Ltd, Shenzhen, 518000, China.
| | - Tu-Lin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
22
|
Mariod AA, Jabbar AA, Alamri ZZ, Salim Al Rashdi A, Abdulla MA. Gastroprotective effects of Polygonatum odoratum in rodents by regulation of apoptotic proteins and inflammatory cytokines. Saudi J Biol Sci 2023; 30:103678. [PMID: 37266408 PMCID: PMC10230262 DOI: 10.1016/j.sjbs.2023.103678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
In an increasing interest in natural antiulcer compounds that may have gastric healing effects and possibly prevent ulcer recurrence, Polygonatum odoratum appears as a strong candidate. The gastroprotective potentials of P. odoratum rhizome extract (PORE) were explored on ethanol-induced gastric ulceration in rats. Sprague Dawley rats were caged in 5 groups, normal and ulcer control rats received CMC (1% carboxymethyl cellulose). Omeprazole (20 mg/kg) was given to reference Rats. Experimental rats were treated with 250 mg/kg and 500 mg/kg PORE, respectively. After an hour, the normal control rats received 1% CMC, whereas rat groups 2-5 were given absolute ethanol by oral gavage. After 60 min, rats received anesthesia and were sacrificed. Dissected gastric tissue was analyzed by histopathological and immunohistochemical techniques. PORE treatment significantly lowered the ethanol-induced gastric injury, as shown by up-surging gastric pH and mucus content, reduced leukocyte infiltration, lower ulcerative areas in mucosal layers, and increased antioxidants (SOD and CAT) and (MDA) levels. Furthermore, PORE pre-treated rats showed significantly increased expression of the Periodic acid-Schiff (PAS), HSP-70 protein, and decreased Bax protein in their gastric epithelial layers. PORE treatment showed an important regulation of inflammatory cytokines shown by decreasing the TNF-a, and IL-6 and increasing the IL-10 values. The detected biological activity of PORE is encouraging and presents the scientific evidence for its traditional use as a gastroprotection agent however further studies are required to determine the exact phytochemicals and mechanism pathway responsible for this bioactivity.
Collapse
Affiliation(s)
- Abdalbasit A. Mariod
- College of Science and Arts, Alkamil Branch, University of Jeddah, Alkamil 21931, Saudi Arabia
- Indigenous Knowledge and Heritage Centre, Ghibaish College of Science and Technology, 110 Ghibaish, Sudan
| | - Ahmed A.J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Zaenah Zuhair Alamri
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
23
|
De Decker I, Notebaert M, Speeckaert MM, Claes KEY, Blondeel P, Van Aken E, Van Dorpe J, De Somer F, Heintz M, Monstrey S, Delanghe JR. Enzymatic Deglycation of Damaged Skin by Means of Combined Treatment of Fructosamine-3-Kinase and Fructosyl-Amino Acid Oxidase. Int J Mol Sci 2023; 24:ijms24108981. [PMID: 37240327 DOI: 10.3390/ijms24108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The consensus in aging is that inflammation, cellular senescence, free radicals, and epigenetics are contributing factors. Skin glycation through advanced glycation end products (AGEs) has a crucial role in aging. Additionally, it has been suggested that their presence in scars leads to elasticity loss. This manuscript reports fructosamine-3-kinase (FN3K) and fructosyl-amino acid oxidase (FAOD) in counteracting skin glycation by AGEs. Skin specimens were obtained (n = 19) and incubated with glycolaldehyde (GA) for AGE induction. FN3K and FAOD were used as monotherapy or combination therapy. Negative and positive controls were treated with phosphate-buffered saline and aminoguanidine, respectively. Autofluorescence (AF) was used to measure deglycation. An excised hypertrophic scar tissue (HTS) (n = 1) was treated. Changes in chemical bonds and elasticity were evaluated using mid-infrared spectroscopy (MIR) and skin elongation, respectively. Specimens treated with FN3K and FAOD in monotherapy achieved an average decrease of 31% and 33% in AF values, respectively. When treatments were combined, a decrease of 43% was achieved. The positive control decreased by 28%, whilst the negative control showed no difference. Elongation testing of HTS showed a significant elasticity improvement after FN3K treatment. ATR-IR spectra demonstrated differences in chemical bounds pre- versus post-treatment. FN3K and FAOD can achieve deglycation and the effects are most optimal when combined in one treatment.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margo Notebaert
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Elisabeth Van Aken
- Department of Head and Skin, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Filip De Somer
- Department of Cardiac Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margaux Heintz
- Faculty of Medicine and Health Sciences, Ghent University, Sint-Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Liao S, Fan Z, Huang X, Ma Y, Huang F, Guo Y, Chen T, Wang P, Chen Z, Yang M, Yang T, Xie J, Si J, Liu J. Variations in the morphological and chemical composition of the rhizomes of Polygonatum species based on a common garden experiment. Food Chem X 2023; 17:100585. [PMID: 36824147 PMCID: PMC9941356 DOI: 10.1016/j.fochx.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Polygonatum species have great potential in fighting chronic and hidden hunger. In this study, five Polygonatum species collected from different populations were cultivated in a common garden for 4 years. The species mainly differed in yield, saponin and polysaccharide contents, stem diameter, leaf width, inflorescence length, and floret inflorescence length. P. cyrtonema (PC) provides high-quality yield when planted in Zhejiang, with output as high as 7.5 tons per hectare and a promising breeding potential. Moreover, stem diameter can be used as an indicator of the harvest in the screening of varieties. In addition, the formation of plant genetic traits from different provenances is affected by the climatic factors of the origin. Furthermore, near-infrared spectroscopy combined with chemometrics for polysaccharide and saponin quantitation provides a rapid assessment of PC quality. Our findings provide a scientific basis for the development and sustainable utilization of PC as a high-yielding and high-quality forest crop.
Collapse
Affiliation(s)
- Shuhui Liao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhiwei Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Guizhou Botanical Garden, Guiyang, Guizhou 550004, China
| | - Xiujing Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuru Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Fangyan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuntao Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Tianqi Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Pan Wang
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang 322300, China
| | - Zilin Chen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang 322300, China
| | - Meisen Yang
- Xiushan Traditional Chinese Medicine Industry Center, Chongqing 409900, China
| | - Tongguang Yang
- Xiushan Traditional Chinese Medicine Industry Center, Chongqing 409900, China
- Xiushan Jiawo Agricultural Development Co., Ltd, Chongqing 409902, China
| | - Jianqiu Xie
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323000, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
25
|
In vitro hypoglycemic and antioxidant activities of steamed Polygonatum cyrtonema Hua with various steaming degrees: Relationship with homoisoflavonoids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
26
|
Wei M, Li F, Guo K, Yang T. Exploring the Active Compounds of Traditional Mongolian Medicine Baolier Capsule (BLEC) in Patients with Coronary Artery Disease (CAD) Based on Network Pharmacology Analysis, Molecular Docking and Experimental Validation. Drug Des Devel Ther 2023; 17:459-476. [PMID: 36819991 PMCID: PMC9938670 DOI: 10.2147/dddt.s395207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Objective Baolier Capsule (BLEC) is a Traditional Mongolian Medicine comprising fifteen herbs. This study aims to illustrate the synergistic mechanism of BLEC in the treatment of Coronary Artery Disease (CAD) by using network pharmacology method, molecular docking and experimental validation. Methods Searching and screening the active ingredients of different herbs in BLEC and target genes related to CAD in multiple databases. Subsequently, Protein-Protein Interactions Network (PPI-Net), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment were used to identify the key targets. AutoDock was used to verify the binding ability between the active ingredient and key target through molecular docking. Reverse Transcription-Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) was used to verify the effect of active ingredient of BLEC on the key target gene. Finally, effect of BLEC on the degree of blood lipids and atherosclerosis was validated by animal experiment. Results There are 144 active components and 80 CAD-related targets that are identified in BLEC in the treatment of CAD. What is more, 8 core genes were obtained by clustering and topological analysis of PPI-Net. Further, GO and KEGG analysis showed that fluid shear stress and atherosclerosis are the key pathways for BLEC to treat CAD. These results were validated by molecular docking method. In vitro, active compounds of BLEC (Quercetin, luteolin, kaempferol, naringenin, tanshinone IIA, β-carotene, 7-O-methylisomucronulatol, piperine, isorhamnetin and Xyloidone) can inhibit 8 core gene (AKT1, EGFR, FOS, MAPK1, MAPK14, STAT3, TP53 and VEGFA) expression. Moreover, BLEC not only improve blood lipid levels but also inhibit the development of atherosclerosis in ApoE-knockout mice. Conclusion Our research first revealed the basic pharmacological effects and related mechanisms of in the treatment of CAD. The predicted results provide some theoretical support for BLEC or its important active ingredients to treat CAD.
Collapse
Affiliation(s)
- Mengqiu Wei
- Intensive Care Unit, Zhongshan City People’s Hospital, Zhongshan, 528400, People’s Republic of China
| | - Fengjin Li
- Department of Gynecology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 36400, People’s Republic of China
| | - Kai Guo
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, People’s Republic of China,Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, People’s Republic of China,Correspondence: Kai Guo; Tianxiao Yang, Email ;
| | - Tianxiao Yang
- Department of Cardiology, Shandong University Zibo Central Hospital, Zibo, 255000, People’s Republic of China
| |
Collapse
|