1
|
Liu Q, Zhao X, Jiang Z, Han X, Peng S, Wang J. Co-evolutionary dynamics of microbial communities and flavor profiles during natural fermentation of Cabernet Sauvignon and Merlot: A comparative study within a single vineyard. Food Res Int 2025; 200:115517. [PMID: 39779148 DOI: 10.1016/j.foodres.2024.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard. The physicochemical results revealed that during fermentation of Merlot and Cabernet Sauvignon wines, ethanol content significantly increased, while residual sugar, pH, malic acid, citric acid, and yeast assimilable nitrogen notably decreased. High-throughput sequencing (HTS) results showed that fungal diversity and richness in Merlot were significantly higher than in Cabernet Sauvignon, whereas bacterial diversity exhibited the opposite trend. The predominant fungal genera in Merlot were Hanseniaspora, followed by Lachancea, whereas the opposite was observed in Cabernet Sauvignon. Erysiphe and Pantoea were exclusively present in Merlot, whereas Erwinia was detected only in Cabernet Sauvignon. A total of 106 flavor compounds were quantified using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), identifying 22 core volatile compounds in Merlot and 19 in Cabernet Sauvignon. Moreover, at the end of fermentation, the total ester content in Cabernet Sauvignon was significantly higher than in Merlot, imparting a more pronounced fruity and floral aroma, which was further confirmed using sensory analysis. Correlation analysis indicated that Saccharomyces was positively correlated with alcohol content, total acidity, and 16 core volatile compounds, while Hanseniaspora and Lachancea showed opposite correlations. These insights provide a data reference for producing high-quality wines with regional characteristics.
Collapse
Affiliation(s)
- Qinqin Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefang Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingquan Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Cheng Y, Geng S, Zhang J, Zhao X, Jiang J, Liang Y, Mu H, Li W, Qin Y, Liu Y, Song Y. A comprehensive study on fermentation and aroma contributions of Torulaspora delbrueckii in diverse wine varieties: Insights from pure and co-fermentation studies. Food Res Int 2025; 199:115340. [PMID: 39658146 DOI: 10.1016/j.foodres.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
As a well-commercialized and utilized non-Saccharomyces yeast, Torulaspora delbruineckii is gaining increasing relevance in the winemaking industry. However, its ability to produce distinctive aromas in wine has been inconsistently reported in the literature. This study aimed to evaluate the fermentation performance and aroma properties of T. delbrueckii isolates through pure and co-fermentation with Saccharomyces cerevisiae across eight different wine varieties: Merlot, Zidaifu, Petit Verdot, Marselan, Italian Riesling, Sauvignon Blanc, Ugni Blanc, and Petit Manseng. A comprehensive analysis using HS-SPME-GC-MS, OPLS-DA, and Spearman's correlation analysis was conducted. Key findings include: (1) The strain T. delbrueckii R12 exhibited higher extracellular enzyme activity compared to S. cerevisiae CECA and demonstrated superior sugar tolerance compared to six other native T. delbrueckii strains. (2) T. delbrueckii R12 exhibited strong fermentative capability, completing fermentation in 23 days across the eight wines, producing lower levels of acetic acid (0 ∼ 0.8 g/L reduction) and ethanol (0.1 ∼ 4.0 % v/v reduction), and higher levels of glycerol (0.1 ∼ 0.9 g/L increase) in the majority of wines. (3) Co-fermentation with T. delbrueckii and S. cerevisiae altered glycosidase activity, enhancing the varietal aroma intensity and complexity of the eight wines by releasing C6 compounds, terpenes and esters, and reducing higher alcohols and fatty acids. (4) The aroma contribution of T. delbrueckii R12 was variety-dependent, with isobutyl alcohol, isopentyl alcohol, 1-pentanol, and 1-propanol prevalent in red wines, and (Z)-2-hexen-1-ol more associated with white wines. Additionally, T. delbrueckii R12 consistently enhanced aromas in all eight experimental wines by increasing levels of 1-hexanol, farnesyl alcohol, linalool, citronellol, ethyl acetate, isobutyric acid and decanoic acid, while decreasing 1-pentanol, octanoic acid, isoamyl acetate, and ethyl laurate. Seven of the increased compounds were identified as signature aromas of T. delbrueckii R12, potentially contributing grass, floral, muscat, rose, fruit, caramel and buttery notes to the wines. This study confirms the significant role of T. delbrueckii in winemaking and wine aroma, resolving previous discrepancies in the literature. It provides new knowledge for innovating and diversifying wine production across various grape varieties.
Collapse
Affiliation(s)
- Yichao Cheng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shijin Geng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Yangling Vocational & Technical College, Yangling, Shaanxi 712100, China
| | - Jin Zhang
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Xixi Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Jiao Jiang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Yanying Liang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Mu
- Administrative Committee of Wine Industry Zone of Ningxia Helan Mountains' East Foothill, Yinchuan, Ningxia, 750000, China
| | - Wenchao Li
- Administrative Committee of Wine Industry Zone of Ningxia Helan Mountains' East Foothill, Yinchuan, Ningxia, 750000, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| |
Collapse
|
3
|
Wang J, Zhang Y, Zhang B, Han Y, Li J, Zhang B, Jiang Y. Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence. Food Chem 2024; 470:142623. [PMID: 39736178 DOI: 10.1016/j.foodchem.2024.142623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S. pombe) was inoculated after pectinase digestion of the pulp, while sequential inoculation with Saccharomyces cerevisiae and S. pombe produced the most favorable flavor profile. S. pombe effectively promoted the degradation of malic and quinic acids during fermentation, improving color, antioxidant activity, and flavor characteristics. These findings highlight the critical role of pectinase digestion and inoculation sequence, offering practical guidance for optimizing large-scale fermentation processes and strain selection to develop innovative sea buckthorn beverages and enhance their market potential.
Collapse
Affiliation(s)
- Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Zhang
- International Sea buckthorn Association, Beijing 100038, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Yang W, Lv Z, Liu H, Zhang Q, Qiao C, Nawaz M, Jiao Z, Liu J. Effect of Organic Acid Addition Before Fermentation on the Physicochemical and Sensory Properties of Cherry Wine. Foods 2024; 13:3902. [PMID: 39682974 DOI: 10.3390/foods13233902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Lack of acidity is the main reason for the spoilage of cherry wine, and for insufficient aroma and mouthfeel. In this study, the initial acidity of cherry purees was adjusted to 3.50, 4.15, 4.80 and 5.45 g/kg by using malic acid, lactic acid and a mixture of the two before fermentation. And the effects of different organic acid additions on the physicochemical profiles and sensory properties of cherry wines were investigated. Our findings suggest that organic acid addition can inhibit the formation of volatile acid and enhance ethanol production, while having a negative effect on their polyphenol contents. These additions can be utilized as carbon sources during cherry wine fermentation and affect its metabolism. Among them, the application of malic acid with lactic acid was shown to have more metabolically active effects on non-volatile compounds, and enhanced the total volatile organic compounds by 14.04%-66.92%. MC-4.80 and MLC-4.80 had the highest total VOC content and odor score in the sensory evaluation. However, the addition of large amounts of acids reduced the acidity score and overall acceptability of cherry wine. In conclusion, adjusting the initial acid content to 4.15 g/kg before fermentation significantly improved the quality of cherry wines, and the combination of malic acid and lactic acid was more effective for cherry winemaking. This finding evidenced that organic acid addition could be an effective strategy for improving the quality of cherry wines.
Collapse
Affiliation(s)
- Wenbo Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Zhenzhen Lv
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Science, Xinxiang 453000, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Muhammad Nawaz
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Zhonggao Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Jiechao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| |
Collapse
|
5
|
Zhang T, Liao Z, Li Z, Liu Y, Liu Y, Song Y, Qin Y. Dynamic changes in dissolved oxygen concentration, microbial communities, and volatile compounds during industrial oak-barrel fermentation of Sauvignon Blanc wine. Food Res Int 2024; 197:115250. [PMID: 39593332 DOI: 10.1016/j.foodres.2024.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Oak-barrel fermentation is used in white wine production to enhance aroma and flavor complexity. However, the dynamics of microbial communities and their impact on the formation of flavor compounds during barrel fermentation remain unclear. This study investigated the changes in dissolved oxygen concentrations, microbial communities, and volatile compounds during Sauvignon Blanc wine fermentation in various oak barrels (new and two-year-old Francois Freres and new Taransaud) and stainless-steel tanks. We found that oak barrels had higher dissolved oxygen levels than steel tanks, with new barrels exhibiting higher levels than the old ones during fermentation. The dominant bacterial genera across all the vessels during the fermentation included Ralstonia, Pantoea, Gluconobacter, and Mesorhizobium, whereas the dominant fungal genera were Saccharomyces, Aspergillus, Alternaria, and Aureobasidium. The fermentation environment altered the microbial composition as the fermentation progressed in various vessels. Compared with steel tanks, difference in microbial composition between oak barrels was less significant. The new oak barrels increased the levels of esters, alcohols, and acids in the wine, while only minor differences were observed between old barrels and steel tanks. Correlation analysis showed that Ralstonia, Gluconobacter, Mesorhizobium, and Saccharomyces were positively correlated with the production of wine volatiles. Structural equation modeling indicated the interactions between dissolved oxygen, microbial communities, and wine aromas. The impact of dissolved oxygen on fungal communities during fermentation differed significantly between new and old oak barrels, indirectly influencing aroma. Conversely, in stainless-steel tanks, dissolved oxygen weakly influenced the bacterial and fungal communities, with the influence on wine aroma primarily dependent on the fungal communities. These findings provide valuable insights for optimizing the Sauvignon Blanc wine fermentation in oak barrels.
Collapse
Affiliation(s)
- Taoxian Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Zusong Liao
- Ningxia Xige Estate Co., Ltd, Wuzhong 751600, Ningxia, China
| | - Zhaohui Li
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yunqi Liu
- Ningxia Xige Estate Co., Ltd, Wuzhong 751600, Ningxia, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling 712100, China; National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling 712100, China; National Forestry and Grassland Administration Engineering Research Center for Viti-Viniculture, Yangling 712100, China; Shaanxi Key Laboratory for Viti-Viniculture, Yangling 712100, China.
| |
Collapse
|
6
|
Li P, Song W, Wu S, Wang Y, Fan Y, Zhang C. Research on Engineering the Saccharomyces uvarum for Constructing a High Efficiency to Degrade Malic Acid and Low Yield of Diacetyl Biosynthesis Pathway. Foods 2024; 13:3161. [PMID: 39410196 PMCID: PMC11475695 DOI: 10.3390/foods13193161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Diacetyl is a flavor compound in wine with a low threshold (1-2 mg/L). It is produced during alcoholic fermentation (AF) Saccharomyces and malolactic fermentation (MLF) initiated by lactic acid bacteria (LAB). Whereas, the environment after AF suppresses the normal metabolism of LAB after AF. Researchs have shown the influence on diacetyl mechanisms of the genes ILV2, ILV6, ILV3, ILV5, BDH1, BDH2, and gene aldB from Lactobacillus plantarum in Saccharomyce uvarum WY1. While we found that the diacetyl contents produced by mutants after MLF (Co-fermentation and Seq-fermentation) were significantly improved compared to AF alone. Moreover, the genes mae1 and mae2 from S. pombe, and gene mleS from L. lactis exhibited significant effect on deacidification in our previous study, but the diacetyl of the mutants showed obvious improvement in this study. Thus the effects of association mutation of genes (ILV2, ILV6, ILV3, ILV5, BDH1, BDH2, aldB, mae1, and mleS) on deacidification, diacetyl and other flavors (organic acids, higher alcohols and esters) metabolism in S. uvarum after AF were detected in the study. Among all the mutants, strains V6AmS, V635mS, and V6B12mS showed the most favorable results. Specifically, the L-malic acid contents decreased to 1.26 g/L, 1.18 g/L, and 1.19 g/L, respectively. Concurrently, diacetyl levels were reduced by 52.56%, 61.84%, and 65.31%. The production of n-propanol increased by 18.84%, 20.89%, and 28.12%, whereas isobutanol levels decreased by 37.01%, 42.36%, and 44.04%, and isoamyl alcohol levels decreased by 19.28%, 19.79%, and 16.74%, compared to the parental strain WY1. Additionally, the concentration of lactate ester in the wine increased to 13.162 mg/L, 14.729 mg/L, and 14.236 mg/L, respectively.
Collapse
Affiliation(s)
- Ping Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenjun Song
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Shankai Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yumeng Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yicong Fan
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Ge YL, Xia NY, Wang YC, Zhang HL, Yang WM, Duan CQ, Pan QH. Evolution of Aroma Profiles in Vitis vinifera L. Marselan and Merlot from Grapes to Wines and Difference between Varieties. Molecules 2024; 29:3250. [PMID: 39064829 PMCID: PMC11279373 DOI: 10.3390/molecules29143250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The fermentation process has a significant impact on the aromatic profile of wines, particularly in relation to the difference in fermentation matrix caused by grape varieties. This study investigates the leaching and evolution patterns of aroma compounds in Vitis vinifera L. Marselan and Merlot during an industrial-scale vinification process, including the stages of cold soak, alcohol fermentation, malolactic fermentation, and one-year bottle storage. The emphasis is on the differences between the two varieties. The results indicated that most alcohols were rapidly leached during the cold soak stage. Certain C6 alcohols, terpenes, and norisoprenoids showed faster leaching rates in 'Marselan', compared to 'Merlot'. Some branched chain fatty-acid esters, such as ethyl 3-methylbutyrate, ethyl 2-methylbutyrate, and ethyl lactate, consistently increased during the fermentation and bottling stages, with faster accumulation observed in 'Marselan'. The study combines the Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) model based on odor activity values to elucidate the accumulation of these ethyl esters during bottle storage, compensating for the reduction in fruity aroma resulting from decreased levels of (E)-β-damascenone. The 'Marselan' wine exhibited a more pronounced floral aroma due to its higher level of linalool, compared to the 'Merlot' wine. The study unveils the distinctive variation patterns of aroma compounds from grapes to wine across grape varieties. This provides a theoretical framework for the precise regulation of wine aroma and flavor, and holds significant production value.
Collapse
Affiliation(s)
- Yi-Lin Ge
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Nong-Yu Xia
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ya-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hua-Lin Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | | | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
8
|
Xu C, Yin Z. Unraveling the flavor profiles of chicken meat: Classes, biosynthesis, influencing factors in flavor development, and sensory evaluation. Compr Rev Food Sci Food Saf 2024; 23:e13391. [PMID: 39042376 DOI: 10.1111/1541-4337.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024]
Abstract
Chicken is renowned as the most affordable meat option, prized by consumers worldwide for its unique flavor, and universally recognized for its essential savory flavor. Current research endeavors are increasingly dedicated to exploring the flavor profile of chicken meat. However, there is a noticeable gap in comprehensive reviews dedicated specifically to the flavor quality of chicken meat, although existing reviews cover meat flavor profiles of various animal species. This review aims to fill this gap by synthesizing knowledge from published literature to describe the compounds, chemistry reaction, influencing factors, and sensory evaluation associated with chicken meat flavor. The flavor compounds in chicken meat mainly included water-soluble low-molecular-weight substances and lipids, as well as volatile compounds such as aldehydes, ketones, alcohols, acids, esters, hydrocarbons, furans, nitrogen, and sulfur-containing compounds. The significant synthesis pathways of flavor components were Maillard reaction, Strecker degradation, lipid oxidation, lipid-Maillard interaction, and thiamine degradation. Preslaughter factors, including age, breed/strain, rearing management, muscle type, and sex of chicken, as well as postmortem conditions such as aging, cooking conditions, and low-temperature storage, were closely linked to flavor development and accounted for the significant differences observed in flavor components. Moreover, the sensory methods used to evaluate the chicken meat flavor were elaborated. This review contributes to a more comprehensive understanding of the flavor profile of chicken meat. It can serve as a guide for enhancing chicken meat flavor quality and provide a foundation for developing customized chicken products.
Collapse
Affiliation(s)
- Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Yan T, Liu Z, Zhao M, Tang X, Tan H, Xu Z, Shen Y, Ho CT. Chemical characterization and sensory properties of apple brandies aged with different toasted oak chips and ultra-high-pressure treatments. Food Chem 2024; 442:138390. [PMID: 38241995 DOI: 10.1016/j.foodchem.2024.138390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Aging is an important processing step of producing high quality apple brandy. In this study, apple brandies aged by traditional method and using three different toasted oak chips combined with or without ultra-high-pressure (UHP) treatment were prepared to compare their differences in chemical characterization and sensory properties. The results indicated that the brandies aged with toasted oak chip increased the levels of total acidity, volatile acidity and phenolic compounds. It also had the desirable color and taste. The brandy aged with toasted oak chip combined with UHP reached the highest levels of total acidity (1.06 g/L), total phenolic content (284.92 mg/L) and aromatic esters (49.37 %). Therefore, the aging with high toasted oak chip combined with UHP treatment could cut the traditional aging time to meet the same quality as traditional aging method. The results are very useful to develop a fast and efficient aging technique for brandy production.
Collapse
Affiliation(s)
- Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ziqing Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Menghan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xiaoguang Tang
- College of Foreign Language Teaching, Shenyang Agricultural University, Shenyang, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, USA
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, USA
| |
Collapse
|
10
|
Wang G, Kumar Y. Mechanisms of the initial stage of non-enzymatic oxidation of wine: A mini review. J Food Sci 2024; 89:2530-2545. [PMID: 38563093 DOI: 10.1111/1750-3841.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Non-enzymatic oxidation is a primary factor affecting wine quality during bottling or aging. Although red and white wines exhibit distinct responses to oxidation over time, the fundamental mechanisms driving this transformation remain remarkably uniform. Non-enzymatic oxidation of wine commences with the intricate interplay between polyphenols and oxygen, orchestrating a delicate redox dance with iron and copper. Notably, copper emerges as an accelerant in this process. To safeguard wine integrity, sulfur dioxide (SO2) is routinely introduced to counteract the pernicious effects of oxidation by neutralizing hydrogen peroxide and quinone. In this comprehensive review, the initial stages of non-enzymatic wine oxidation are examined. The pivotal roles played by polyphenols, oxygen, iron, copper, and SO2 in this complex oxidative process are systematically explored. Additionally, the effect of quinone formation on wine characteristics and the intricate dynamics governing oxygen availability are elucidated. The potential synergistic or additive effects of iron and copper are probed, and the precise balance between SO2 and oxygen is scrutinized. This review summarizes the mechanisms involved in the initial stages of non-enzymatic oxidation of wine and anticipates the potential for further research.
Collapse
Affiliation(s)
- Guanghao Wang
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Yogesh Kumar
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| |
Collapse
|
11
|
Tian MB, Hu RQ, Liu ZL, Shi N, Lu HC, Duan CQ, Wang J, Sun YF, Kong QS, He F. The pH adjustment of Vitis amurensis dry red wine revealed the evolution of organic acids, volatomics, and sensory quality during winemaking. Food Chem 2024; 436:137730. [PMID: 37862992 DOI: 10.1016/j.foodchem.2023.137730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
To produce quality dry red wines with high-acidity grapes of Vitis amurensis, an experiment was designed to adjust pH during winemaking by adding KHCO3 at two time points and two pH levels in conjunction with malolactic fermentation (MLF). The organic acids and volatiles were detected by HPLC and GC-MS separately, combing with the color characteristic and sensory evaluation, we investigated the quality of V.amurensis wines under pH adjustment. Results showed that the pH adjustment weakened the wine color slightly but helped to initiate MLF. The low pH value of alcoholic fermentation favored the development of esters and higher alcohols. Higher pH levels promoted a sufficient MLF and enhanced the global aroma levels by 1.14-1.25 times, which led to higher sensory scores. In conclusion, KHCO3 addition and MLF improved the quality of V. amurensis dry red wines, chemical addition after alcoholic fermentation was more effective for cold regions.
Collapse
Affiliation(s)
- Meng-Bo Tian
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Rui-Qi Hu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Zhao-Long Liu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yan-Feng Sun
- Ji'an Ginseng Featuer Industry Development Center, Ji'an 134200, China
| | - Qing-Sen Kong
- Ji'an Yajiang Valley Winery Co., Ltd., Ji'an 134202, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
12
|
Boban A, Milanović V, Veršić Bratinčević M, Botta C, Ferrocino I, Cardinali F, Ivić S, Rampanti G, Budić-Leto I. Spontaneous fermentation of Maraština wines: The correlation between autochthonous mycobiota and phenolic compounds. Food Res Int 2024; 180:114072. [PMID: 38395560 DOI: 10.1016/j.foodres.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Understanding fungal community dynamics during fermentation is important for assessing their influence on wine's phenolic content. The present study represents the first effort to explore the correlation between the autochthonous mycobiota of Maraština grapes collected from Dalmatian winegrowing sub-regions in Croatia and the phenolic composition, as well as the physicochemical parameters of wines produced through spontaneous fermentation. The metataxonomic approach revealed Metschnikowia pulcherrima, Metschnikowia fructicola and Hanseniaspora uvarum as the core mycobiota detected at the initial phase of fermentation. By contrast, Saccharomyces cerevisiae took over the dominance starting from the middle stage of fermentation. The wine's phenolic compounds were revealed by high-performance liquid chromatography, with tyrosol being the most abundant. Rhodotorula babjevae and Botrytis cinerea showed a positive correlation with p-hydroxybenzoic acid, gentisic acid, caffeic acid and cinnamic acid, while demonstrating a negative correlation with protocatechuic acid and chlorogenic acid. Heterophoma novae-verbascicola exhibited the opposite behaviour regarding the same phenolic compounds. The concentration of lactic acid was positively correlated with B. cinerea and negatively correlated with Het. novae-verbascicola. These findings serve as a foundation for in-depth investigations into the role of autochthonous grape mycobiota in phenolic transformation during spontaneous fermentation, potentially leading to the production of high-quality wines with unique terroir characteristics. Future studies should aim to explore the specific role played by individual yeast isolates in the formation of phenolic compounds.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy.
| | | | - Cristian Botta
- Department of Agricultural, Forest and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy
| | - Stipe Ivić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| |
Collapse
|
13
|
Shi N, Li HQ, Lu HC, Tian MB, Han X, He F, Wang J. Adjusting the pomace ratio during red wine fermentation: Effects of adding white grape pomace and juice runoff on wine flavoromics and sensory qualities. Food Chem X 2023; 20:100939. [PMID: 38144755 PMCID: PMC10740085 DOI: 10.1016/j.fochx.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 12/26/2023] Open
Abstract
Adding pomace or juice runoff during maceration is a traditional winemaking process. To mitigate the negative effects of rainfall during harvest and examine the effects of adjusting the pomace ratio during fermentation on the flavor profile of Marselan grape wines, the prefermentation addition of Petit Manseng grape pomace (PAP) and prefermentation juice runoff (PJR) was determined. The phenolic and volatile compounds were investigated using HPLC-MS and GC-MS. PAP enriched the flavanols and PJR enriched the pigment and copigment matrix. Approximate 10% increase in the ratio of pomace promoted the formation of anthocyanin derivatives. The increased pomace ratio reduced the concentration of volatile compounds without impacting the aroma quality. Sensory analysis revealed PAP wines scored higher for acidity and astringency and PJR wines scored higher for color. In conclusion, an appropriate increase in the pomace ratio of approximately 10% can enhance the color and mouthfeel of the wine while having a limited influence on aroma.
Collapse
Affiliation(s)
- Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hui-Qing Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Meng-Bo Tian
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Han
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
14
|
Denchai S, Sasomsin S, Prakitchaiwattana C, Phuenpong T, Homyog K, Mekboonsonglarp W, Settachaimongkon S. Influence of Different Types, Utilization Times, and Volumes of Aging Barrels on the Metabolite Profile of Red Wine Revealed by 1H-NMR Metabolomics Approach. Molecules 2023; 28:6716. [PMID: 37764490 PMCID: PMC10534683 DOI: 10.3390/molecules28186716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
It is well recognized that the aging process is a critical step in winemaking because it induces substantial chemical changes linked to the organoleptic properties and stability of the finished wines. Therefore, this study aimed to investigate the influence of different types, utilization times, and volumes of aging barrels on the metabolite profile of red wines, produced from Thai-grown Shiraz grapes, using a non-targeted proton nuclear magnetic resonance (1H-NMR) metabolomics approach. As a result, 37 non-volatile polar metabolites including alcohols, amino acids, organic acids, carbohydrates and low-molecular-weight phenolics were identified. Chemometric analysis allowed the discrimination of wine metabolite profiles associated with different types of aging containers (oak barrels vs. stainless-steel tanks), as well as the utilization times (2, 6 and >10 years old) and volumes (225, 500 and 2000 L) of the wooden barrels employed. Significant variations in the concentration of formate, fumarate, pyruvate, succinate, citrate, gallate, acetate, tyrosine, phenylalanine, histidine, γ-aminobutyrate, methionine and choline were statistically suggested as indicators accountable for the discrimination of samples aged under different conditions. These feature biomarkers could be applied to manipulate the use of aging containers to achieve the desired wine maturation profiles.
Collapse
Affiliation(s)
- Suwanan Denchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suppached Sasomsin
- Innovation & Winemaking Division, Siam Winery Company Limited, Samut Sakhon 74000, Thailand;
| | | | - Thanitaporn Phuenpong
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|