1
|
Zhao K, Zhang B, Cui X, Chao X, Song F, Chen H, He B. An electrochemical aptamer-sensing strategy based on a Ti 3C 2Tx MXene synergistic Ti-MOF amplification signal for highly sensitive detection of zearalenone. Food Chem 2024; 461:140828. [PMID: 39151347 DOI: 10.1016/j.foodchem.2024.140828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
A refined electrochemical aptamer sensing technique using PEI@Ti-MOF@Ti3C2Tx-MXene was developed for the sensitive detection of ZEN in food samples. A titanium-based metal-organic skeleton (NH2-MIL-125) was synthesized in situ using 2-aminoterephthalic acid as the organic ligand and tetrabutyl titanate as the metal center, followed by the simultaneous hybridization of Ti3C2Tx-MXene to synthesize a Ti-MOF@Ti3C2Tx-MXene composite material. These composites were subsequently functionalized with PEI and covalently linked to form a sensing platform on gold electrodes. Integrating a metal-organic framework (MOF) with MXene materials not only improved the electrochemical properties compared to those of individual elements but also decreased the stacking effect and increased the number of binding sites for the aptamer. The limit of detection (LOD) of this sensor was 1.64 fg mL-1. Additionally, the sensor could efficaciously detect ZEN in cornmeal and beer samples, exhibiting outstanding stability, reproducibility, and selectivity. This highlighted its effectiveness in applications in quality supervision and food safety.
Collapse
Affiliation(s)
- Ke Zhao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China.
| | - Xiaoying Cui
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Xipeng Chao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Fangfei Song
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou, 450001, Henan Province, PR China.
| |
Collapse
|
2
|
Zheng W, Yao M, Leng Y, Yu K, Xiao X, Huang H, Yu X, Ma Y, Hou C. Direct detection of ethyl carbamate in baijiu by molecularly imprinted electrochemical sensors based on perovskite and graphene oxide. Food Chem X 2024; 23:101752. [PMID: 39280225 PMCID: PMC11399553 DOI: 10.1016/j.fochx.2024.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Ethyl carbamate (EC), a carcinogen commonly found in Baijiu, requires an efficient detection method for quality control and monitoring. This study introduces a novel molecularly imprinted electrochemical sensor for sensitive and selective EC detection. We proposed a simple sol-gel method for the growth of perovskite-structured lanthanum manganate (LaMnO3) on graphene oxide (GO). A non-enzymatic electrochemical sensor was developed by coating a molecularly imprinted polymer synthesized via precipitation polymerization onto the surface of LaMnO3@GO. LaMnO3, with its superior three-dimensional nanocube structure, demonstrated excellent electrocatalytic activity, while the addition of GO provided a large specific surface area. The results indicate that the developed sensor exhibits exceptional recognition ability and electrochemical activity, which is attributed to the high affinity of LaMnO3@GO@MIP for EC. The sensor displays a broad linear range from 10 to 2000 μM, with a detection limit as low as 2.18 μM and long-term durability of 28 days. Notably, it demonstrates excellent selectivity, reproducibility, and stability even under different interference conditions. The sensor was successfully used to determine EC in real Baijiu samples. Overall, the sensor has broad application prospects for detecting trace contaminants in the field of food safety.
Collapse
Affiliation(s)
- Wanqi Zheng
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Mingcai Yao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yinjiang Leng
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Kangjie Yu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Xiongjun Xiao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Huiling Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Xiao Yu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yi Ma
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
- Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Changjun Hou
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China
| |
Collapse
|
3
|
Wang C, Zhao X, Huang X, Xu F, Gu C, Yu S, Zhang X, Qian J. Simultaneous detection of multiple mycotoxins using MXene-based electrochemical aptasensor array and a self-developed multi-channel portable device. Talanta 2024; 278:126450. [PMID: 38908138 DOI: 10.1016/j.talanta.2024.126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
In response to the pressing need for highly efficient simultaneous detection of multiple mycotoxins, which are often found co-occurring in food raw materials and feed, an MXene-based electrochemical aptasensor array (MBEAA) was developed. This aptasensor array utilizes high-specificity aptamers as recognition elements, enabling the capture of electrical signal changes in the presence of target mycotoxins. Based on this platform, a multi-channel portable electrochemical device, enabling rapid, cost-effective, and simultaneous detection of aflatoxin B1 (AFB1), ochratoxin A (OTA), and zealenone (ZEN) was further developed. The developed system boasts a wide detection range of 1.0 × 10-1 to 10.0 ng mL-1, with remarkable performance characterized by ultra-low detection limits of 41.2 pg mL-1, 27.6 pg mL-1, and 33.0 pg mL-1 for AFB1, OTA, and ZEN, respectively. Successfully applied in corn samples, this method offers a portable, easy-to-operate, and cost-effective solution for simultaneous multi-mycotoxin detection. Moreover, the application of the self-developed detection system could be expanded for simultaneous detection of many different targets when their specific aptamers or antibodies were available.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chengdong Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Zhang Z, Zhang Y, Jayan H, Gao S, Zhou R, Yosri N, Zou X, Guo Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem 2024; 448:139051. [PMID: 38522300 DOI: 10.1016/j.foodchem.2024.139051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Interest in the use of sensors based on metal-organic frameworks (MOFs) to detect food pollutants has been growing recently due to the desirable characteristics of MOFs, including uniform structures, large surface area, ultrahigh porosity and easy-to-functionalize surface. Fundamentally, this review offers an excellent solution using MOFs-based sensors (e.g., fluorescent, electrochemical, electrochemiluminescence, surface-enhanced Raman spectroscopy, and colorimetric sensors) to detect food contaminants such as pesticide residues, mycotoxins, antibiotics, food additives, and other hazardous candidates. More importantly, their application scenarios and advantages in food detection are also introduced in more detail. Therefore, this systematic review analyzes detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles utilized in preparing MOFs-based sensors. Additionally, the main limitations of each sensing type, along with the enhancement mechanisms of MOFs in addressing efficient sensing are discussed. Finally, the limitations and potential trends of MOFs-based materials in food contaminant detection are also highlighted.
Collapse
Affiliation(s)
- Zhepeng Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Jamalizadeh Bahaabadi Z, Tavakoly Sany SB, Gheybi F, Gholoobi A, Meshkat Z, Rezayi M, Hatamluyi B. Electrochemical biosensor for rapid and sensitive monitoring of sulfadimethoxine based on nanoporous carbon and aptamer system. Food Chem 2024; 445:138787. [PMID: 38382254 DOI: 10.1016/j.foodchem.2024.138787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
In this study, a straightforward electrochemical aptasensor was developed to detect sulfadimethoxine (SDM). It included a glassy carbon electrode decorated by boron nitride quantum dots (BNQDs) and aptamer-functionalized nanoporous carbon (APT/CZ). CZ was first synthesized by calcinating a zeolitic imidazolate framework (ZIF-8). Then, the electroactive dye methylene blue (MB) was entrapped inside its pores. By attaching aptamer to the CZ surface, APT/CZ acted as a bioguard, which prevented the MB release. Therefore, the electrochemical signal of the entrapped MB was high in the absence of SDM. Introducing SDM caused the conformation of aptamers to change, and a large number of MB was released, which was removed by washing. Therefore, the detection strategy was done based on the change in the electrochemical signal intensity of MB. The aptasensor was applied to detect SDM at a concentration range of 10-17 to 10-7 M with a detection limit of 3.6 × 10-18 M.
Collapse
Affiliation(s)
- Zahra Jamalizadeh Bahaabadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health, Safety, and Environment Management, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnaz Hatamluyi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhao J, Li X, Yin Y, Xiong R, Ling G, Zhang P. Applications of cerium-based materials in food monitoring. Food Chem 2024; 444:138639. [PMID: 38330609 DOI: 10.1016/j.foodchem.2024.138639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of society, food safety to public health has been a topic that cannot be ignored. In recent years, lanthanide-based materials are studied to be potential candidates in the detection of food samples. Cerium (Ce)-based materials (such as Ce ions, CeO2, Ce-metal organic framework (Ce-MOF), etc.) have also attracted more attention in food detection by virtue of colorimetric, fluorescence, sensing, and other methods. This is because the mixed valence of Ce (Ce3+ and Ce4+), the formation of oxygen vacancies, and their optical and electrochemical properties. In this review, Ce-based materials will be introduced and discussed in the field of food detection, including biogenesis, construction, catalytic mechanisms, combination, and applications. In addition, the current challenges and future development trend of these Ce-based materials in food safety detection are also proposed and discussed. Therefore, it is meaningful to explore the Ce-based materials for detection of biomarkers in food samples.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Li X, Wang MY, Wang Y, Yang WZ, Yang CX. Fabrication of amino- and hydroxyl dual-functionalized magnetic microporous organic network for extraction of zearalenone from traditional Chinese medicine prior to the HPLC determination. J Chromatogr A 2024; 1724:464915. [PMID: 38663319 DOI: 10.1016/j.chroma.2024.464915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 μg L-1), low limits of detection (1.4-35 μg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.
Collapse
Affiliation(s)
- Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meng-Yao Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
8
|
Guo W, Hu Y, Zhang X, Wang Y, Li Y, Wang Y, Ning G. An electrochemical aptasensor for zearalenone detection based on the Co 3O 4/MoS 2/Au nanocomposites and hybrid chain reaction. Mikrochim Acta 2024; 191:367. [PMID: 38832980 DOI: 10.1007/s00604-024-06439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.
Collapse
Affiliation(s)
- Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuda Hu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xuxin Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanjun Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yihao Li
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Yuelushan Laboratory, Changsha, 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
9
|
Kang M, Yao Y, Yuan B, Zhang S, Oderinde O, Zhang Z. A sensitive bimetallic copper/bismuth metal-organic frameworks-based aptasensors for zearalenone detection in foodstuffs. Food Chem 2024; 437:137827. [PMID: 37897827 DOI: 10.1016/j.foodchem.2023.137827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Electrochemical aptasensors have emerged as promising platforms for effectivelydetection of various target analytes. Here, we developed a sensitive and selective electrochemical aptasensor for zearalenone (ZEN) determination based on a bimetallic organic framework (CuBi-BPDC). The results of HR-TEM, FE-SEM, XPS, etc. indicate the CuBi-BPDC possessing mixed nodes of Cu(II) and Bi(III) and multilayered nanosheets bearing nanoparticles. Due to its improved electrochemical activity and strong affinity for aptamers, the CuBi-BPDC-based aptasensor obtains a low limit of detection of 0.19 fg mL-1 (IUPAC S/N = 3) in a wide range of 1 fg mL-1-10 ng mL-1 via EIS and 0.73 fg mL-1 from 0 fg mL-1 to 1 × 107 fg mL-1 via DPV for ZEN detection, respectively. Moreover, the excellent selectivity allows this aptasensor to specifically identify ZEN from other interfering substances in raw milk and rice, indicating the potential applicability of the CuBi-BPDC-based aptasensor in sensitive and selective detection of ZEN.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China.
| | - Yu Yao
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China
| | - Beibei Yuan
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China.
| |
Collapse
|
10
|
Jiang X, Mu Z, Wang J, Zhou J, Bai L. A novel sandwich-type electrochemical immunosensor for sensitive detection of zearalenone using NG/PDDA/HNTs and Ti-MOF-KB composites for signal amplification. Food Chem 2024; 436:137704. [PMID: 37862986 DOI: 10.1016/j.foodchem.2023.137704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
In this work, a novel sandwich-type electrochemical immunosensor based on signal amplification was developed for the ultrasensitive detection of zearalenone (ZEA). The composite consisting of poly(diallyldimethylammonium chloride) functionalized nitrogen doped graphene, halloysite nanotubes and toluidine blue (Tb/NG/PDDA/HNTs), was synthesized for the first time. Then it was modified with gold nanoparticles (AuNPs) to bind the secondary antibody (Ab2, 10 μg mL-1) and form the tracer label. In addition, ketjen black (KB) was doped into titanium-based metal-organic framework (Ti-MOF), which provided large specific surface area and employed as the sensing platform to increase the immobilization of the primary antibody (Ab1, 10 μg mL-1). This immunosensor showed a wide linear range for ZEA from 10 fg mL-1 to 100 ng mL-1 with a limit of detection (LOD) as low as 0.57 fg mL-1, which was below the maximum tolerable levels (50∼100 µg kg-1) set by the United Nations Food and Agriculture Organization (FAO).
Collapse
Affiliation(s)
- Xiaodan Jiang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaode Mu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jie Wang
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
11
|
Selim AA, Abdallah AB, Awad FS, Khalifa ME, Salem Molouk AF. Electrochemical sensor based on amine- and thiol-modified multi-walled carbon nanotubes for sensitive and selective determination of uranyl ions in real water samples. RSC Adv 2023; 13:31141-31150. [PMID: 37881759 PMCID: PMC10594082 DOI: 10.1039/d3ra05374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Novel selective and sensitive electrochemical sensors based on the modification of a carbon paste electrode (CPE) with novel amine- and thiol-functionalized multi-walled carbon nanotubes (MWCNT) have been developed for the detection and monitoring of uranyl ions in different real water samples. Multiwalled carbon nanotubes were grafted with 2-aminothiazole (AT/MWCNT) and melamine thiourea (MT/MWCNT) via an amidation reaction in the presence of dicyclohexyl carbodiimide (DCC) as a coupling agent. This modification for multiwalled carbon nanotubes has never been reported before. The amine and thiol groups were considered to be promising functional groups due to their high affinity toward coordination with uranyl ions. The modified multi-walled carbon nanotubes were characterized using different analytical techniques including FTIR, SEM, XPS, and elemental analysis. Subsequently, 10 wt% MT/MWCNT was mixed with 60 wt% graphite powder in the presence of 30 wt% paraffin oil to obtain a modified carbon paste electrode (MT/MWCNT/CPE). The electrochemical behavior and applications of the prepared sensors were examined using cyclic voltammetry, differential pulse anodic stripping voltammetry, and electrochemical impedance spectroscopy. The MT/MWCNT/CPE sensor exhibited a good linearity for UO22+ in the concentration range of 5.0 × 10-3 to 1.0 × 10-10 mol L-1 with low limits of detection (LOD = 2.1 × 10-11 mol L-1) and quantification (LOQ = 7 × 10-11 mol L-1). In addition, high precision (RSD = 2.7%), good reproducibility (RSD = 2.1%), and high stability (six weeks) were displayed. Finally, MT-MWCNT@CPE was successfully utilized to measure the uranyl ions in an actual water sample with excellent recoveries (97.8-99.3%). These results demonstrate that MT-MWCNT@CPE possesses appropriate accuracy and is appropriate for environmental applications.
Collapse
Affiliation(s)
- Amina A Selim
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - A B Abdallah
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Magdi E Khalifa
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - Ahmed Fathi Salem Molouk
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| |
Collapse
|
12
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
13
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|