1
|
Dikmetas DN, Yenipazar H, Can Karaca A. Recent advances in encapsulation of resveratrol for enhanced delivery. Food Chem 2024; 460:140475. [PMID: 39047495 DOI: 10.1016/j.foodchem.2024.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| |
Collapse
|
2
|
Lin H, Chen H, Wang S, He J, Zhang W. Improvement of NaCas/DGMO complex emulsion on resveratrol stability, in vitro bioaccessibility, in vivo bioavailability and gut microbiota. Food Chem X 2024; 23:101724. [PMID: 39246692 PMCID: PMC11379596 DOI: 10.1016/j.fochx.2024.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Evaluation for biological impact of food emulsions is fundamental for their application. In present study, we utilized a NaCas-DGMO (sodium caseinate-decylglycerol monooleate) stabilized emulsion to improve resveratrol's (Res) stability, and bioavailability. The in vivo interaction between complex emulsion and gut microbiota was further explored. Results indicated NaCas-DGMO emulsion achieved a loading rate of 92 % for Res and significantly enhanced storage and photo stability of Res. In vitro gastrointestinal digestion highlighted a significant improvement in Res's bioaccessibility. In vivo pharmacokinetic tests showed a notable 3.1-fold increase in oral bioavailability, with a prolonged Tmax of 6 h post-administration. Gut microbiota analysis revealed that the emulsion promoted beneficial bacteria, like Blautia, which produce short-chain fatty acids. Consequently, the findings proved potential of NaCas-DGMO stabled emulsion as carriers for bioactive substances in the food industry. The innovative methodology employed in assessing biological effects provides valuable insights for future research in related field.
Collapse
Affiliation(s)
- Hong Lin
- Wuhan Polytechnic University, School of Food Science and Engineering, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
- MOE Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), China
| | - Huan Chen
- Wuhan Polytechnic University, School of Food Science and Engineering, China
| | - Siqi Wang
- Wuhan Polytechnic University, School of Food Science and Engineering, China
| | - Junbo He
- Wuhan Polytechnic University, School of Food Science and Engineering, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
- MOE Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), China
| | - Weinong Zhang
- Wuhan Polytechnic University, School of Food Science and Engineering, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
- MOE Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), China
| |
Collapse
|
3
|
Huang J, Zhang S, Liu D, Wang Q, Feng X, Chu L. Coenzyme Q10-loaded microcapsules stabilized by glyceryl monostearate and soy protein isolates-flaxseed gum: Characterization, in vitro release and digestive behavior. Int J Biol Macromol 2024; 278:134680. [PMID: 39142479 DOI: 10.1016/j.ijbiomac.2024.134680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
This study aimed to stabilize microcapsules with core materials of glyceryl monostearate (GMS) and octyl and decyl glycerate, and wall materials of soy protein isolates (SPI) and flaxseed gum (FG) by complex coacervation method to overcome the drawbacks of coenzyme Q10 (CoQ10). It was demonstrated by the study that the obtained microcapsules were irregular aggregates. Differential scanning calorimetry and x-ray diffraction patterns indicated that CoQ10 was entrapped inside the disordered semisolid cores of microcapsules. The CoQ10 loading and encapsulation efficiency analysis revealed that GMS and FG helped CoQ10 better encapsulated inside the microcapsules. The in vitro release curve showed a "burst" release of CoQ10 absorbed on the surface of microcapsules for the first 180 min, followed by a sustained release of the encapsulated CoQ10. GMS and FG contributed to the sustained release and the release mechanism of the microcapsules was Fickian diffusion. The in vitro simulated digestion demonstrated that the constructed microcapsules improved the bio-accessibility of CoQ10. Finally, due to the protection of GMS and FG, microcapsules had good storage stability. In conclusion, this study emphasized the potential of using new microcapsules to deliver and protect lipophilic ingredients, providing valuable information for developing functional foods with higher bioavailability.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; The East China Science and Technology Research Institute of Changshu Company Limited, Changshu 215500, China.
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Gao Y, Luo D, Li X, Xue B, Xie J, Sun T. Preparation and characterization of bovine serum albumin/chitosan composite nanoparticles for delivery of Antarctic krill peptide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39152639 DOI: 10.1002/jsfa.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Antarctic krill peptide (AKP) has gained considerable interest because of its multiple biological functions. However, its application may be limited by its poor stability and susceptibility to degradation. Encapsulation of AKP using a nanoparticle delivery system is an effective way to overcome these problems. In the present study, bovine serum albumin (BSA) and chitosan (CS) were used as delivery vehicles to encapsulate AKP. RESULTS The results revealed that the particle size (83.3 ± 4.4-222.4 ± 32.7 nm) and zeta-potential (35.1 ± 0.7-45.0 ± 2.7 mV) of nanoparticles (NPs) increased with the increasing content of BSA, but the polydispersity index decreased (1.000 ± 0.002 to 0.306 ± 0.011). Hydrogen bonding, hydrophobic and electrostatic interactions were the main forces to form BSA/CS-AKP NPs. X-ray diffraction revealed that AKP was encapsulated by BSA/CS. Scanning electron microscopy images exhibited that the NPs were spherical in shape, uniform in size and tightly bound. BSA/CS-AKP NPs exhibited excellent stability in the pH range (2-5) and after 15 days of storage, and could hinder the release of AKP in simulated gastric environment and promote the release of AKP in simulated intestinal environment. After simulated digestion, the hypoglycemic activity of encapsulated AKP was better than that of unencapsulated AKP. CONCLUSION Our results revealed that the BSA/CS showed great potential for protecting and delivering AKP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dandan Luo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Ling Y, Li X, Gao H, Liu Y, Liu Y, Zheng J, Zhu J, Zhao C, Shi Y, Lu J, Yi J. Biyang floral mushroom-derived exosome-like nanovesicles: characterization, absorption stability and ionizing radiation protection. Food Funct 2024; 15:6900-6913. [PMID: 38837182 DOI: 10.1039/d4fo00263f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Diet-derived exosome-like nanovesicles are a class of natural active substances that have similar structures and functions to mammalian exosomes. Biyang floral mushrooms and their active extracts have been found to possess radioprotective effects and to deeply explore their novel active substances, the radioprotective effects of Biyang floral mushroom-derived exosome-like nanovesicles (BFMELNs) were investigated in this study. Results showed that these surface-negatively charged vesicles possessed an ideal size and good stability against environmental changes such as temperature and gastrointestinal digestion. Furthermore, BFMELNs could effectively be taken up by HL-7702 cells and Caco-2 cells through cellular phagocytosis mediated by clathrin and dynein. Emphatically, BFMELNs with an exosome-like morphology contained RNA, proteins, lipids, polyphenols and flavonoids to exert good antioxidant and radioprotective effects in vitro. Meanwhile, BFMELNs also exhibited good radioprotective effects by restoring peripheral blood indexes, mitigating damage to organs, and regulating the redox state in mice. Collectively, BFMELNs showed promise as novel and natural radioprotective nano-agents for preventing IR-induced oxidative stress damage.
Collapse
Affiliation(s)
- Yunying Ling
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Xue Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Hang Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yongqi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yingxin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jie Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
7
|
Zhang Z, Ge M, Wu D, Li W, Chen W, Liu P, Zhang H, Yang Y. Resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles: Preparation, characterization and synergistic anti-inflammatory effects. Carbohydr Polym 2024; 332:121916. [PMID: 38431417 DOI: 10.1016/j.carbpol.2024.121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RES) is a natural polyphenol with excellent biological activity. But the poor stability and bioavailability of RES severely limit its application. Thus, the resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles (DS-CS-RES NPs) were prepared using electrostatic self-assembly to solve these problems in this study. The structure of DS-CS-RES NPs was spherical or sub spherical shape with small average particle size (191.07 nm), which was characterized by FT-IR, FS, XRD and TEM. DS-CS-RES NPs exhibited good stability and RES had a sustainable release from the nanoparticles in gastrointestinal digestion. Meanwhile, DS-CS-RES NPs could improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the production of NO, IL-1β, IL-6 and TNF-α. Furthermore, DS-CS-RES NPs had strong anti-inflammatory activity by regulating protein levels of NF-κB p65, STAT1 and TLR4 through NF-κB and JAK-STAT1 signaling pathway in vitro, and sulfated H. erinaceus β-glucan-chitosan nanoparticle (DS-CS NPs) and RES had synergistic anti-inflammatory effect. Overall, DS-CS NPs can serve as a potential green and safe functional carrier for encapsulating resveratrol, which can improve its anti-inflammatory activity. This work may be conducive to the development of functional carrier for encapsulating RES and applications of hydrophobic active molecules in functional foods or medicines.
Collapse
Affiliation(s)
- Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Meili Ge
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Haiyun Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
8
|
Tian M, Cheng J, Guo M. Stability, Digestion, and Cellular Transport of Soy Isoflavones Nanoparticles Stabilized by Polymerized Goat Milk Whey Protein. Antioxidants (Basel) 2024; 13:567. [PMID: 38790672 PMCID: PMC11117734 DOI: 10.3390/antiox13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of -35.16 mV. The PGWP-SIF nanoparticles were evaluated for their stability and in vitro digestion properties, and their ability to transport SIF was assessed using a Caco-2 cell monolayer model. The nanoparticles were resistant to aggregation when subjected to pH changes (pH 2.0 to 8.0), sodium chloride addition (0-200 mM), temperature fluctuations (4 °C, 25 °C, and 37 °C), and long-term storage (4 °C, 25 °C, and 37 °C for 30 days), which was mainly attributed to the repulsion generated by steric hindrance effects. During gastric digestion, only 5.93% of encapsulated SIF was released, highlighting the nanoparticles' resistance to enzymatic digestion in the stomach. However, a significant increase in SIF release to 56.61% was observed during intestinal digestion, indicating the efficient transport of SIF into the small intestine for absorption. Cytotoxicity assessments via the MTT assay showed no adverse effects on Caco-2 cell lines after encapsulation. The PGWP-stabilized SIF nanoparticles improved the apparent permeability coefficient (Papp) of Caco-2 cells for SIF by 11.8-fold. The results indicated that using PGWP to encapsulate SIF was an effective approach for delivering SIF, while enhancing its bioavailability and transcellular transport.
Collapse
Affiliation(s)
- Mu Tian
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
9
|
Zhang L, Chen L, Li S, Yu Z, Zhou Y, Wang Y. Fabrication and characterization of novel prolamin nanoparticle-filled starch gels incorporating resveratrol. Int J Biol Macromol 2024; 268:131764. [PMID: 38657935 DOI: 10.1016/j.ijbiomac.2024.131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This study aimed to improve the mechanical properties of wheat starch gels (WSG) and the stability and bioaccessibility of resveratrol (Res) in prolamin nanoparticles. Res-loaded gliadin (Gli), zein, deamidated gliadin (DG) and deamidated zein (DZ) nanoparticles were filled in WSG. The hardness, G' and G'' of WSG were notably increased. It can be attributed to the more ordered and stable structure induced by the interaction of prolamin nanoparticles and starch. The Res retention of nanoparticles and nanoparticle-filled starch gels was at least 24.6 % and 36.0 % higher than free Res upon heating. When exposed to ultraviolet, the Res retention was enhanced by over 6.1 % and 37.5 %. The in-vitro digestion demonstrated that the Res releasing percentage for nanoparticle-filled starch gels was 25.8 %-38.7 % lower than nanoparticles in the simulated stomach, and more Res was released in the simulated intestine. This resulted in a higher bioaccessibility of 82.1 %-93.2 %. The bioaccessibility of Res in Gli/Res/WSG and DG/Res/WSG was greater than that of Zein/Res/WSG and DZ/Res/WSG. More hydrophobic interactions occurred between Res and Gli, DG. The interactions between Res and zein, DZ were mainly hydrogen bonding. The microstructure showed that nanoparticles exhibited dense spherical structures and were uniformly embedded in the pores of starch gels.
Collapse
Affiliation(s)
- Lin Zhang
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Luzhen Chen
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiyi Li
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongquan Wang
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Yang L, Zi C, Li Y, Huang J, Gu Z, Wang C, Hu JM, Jiang Z, Zhang W. An in-depth investigation of molecular interaction in zeaxanthin/corn silk glycan complexes and its positive role in hypoglycemic activity. Food Chem 2024; 438:137986. [PMID: 38000158 DOI: 10.1016/j.foodchem.2023.137986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Glycans in corn silk could interact with co-existing small molecules during its absorption, digestion, and biological process. In order to understand the exact mechanism of action of zeaxanthin, it is critical to investigate the biomolecular interactions, which were necessary to form a glycan-small molecule complex and yet produce the bioactive effect. So far, the in-depth study of these natural interactions has not been fully elucidated. Here, we probed that the molecular interaction between zeaxanthin (ZEA) and glycans from corn silk (CSGs) was driven by enthalpy. More importantly, it was the first time found that CSGs can bind to lipid-soluble ZEA could be binded with CSGs. It was the first report on the thermostability of insulin structure and natural glycans. This study should facilitate our understanding of the interaction between lipid soluble molecules and glycans, and provide a more comprehensive understanding of the nutrient base in food.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau; State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chengting Zi
- College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yanlang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jia Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhijia Gu
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau.
| |
Collapse
|
11
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|