1
|
Li C, Lu J, Xiang C, Zhang E, Tian X, Zhang L, Li T, Li C. Au@Pt@Pd nanozymes based lateral flow immunoassay for quantitative detection of SARS-CoV-2 nucleocapsid protein in nasal swab samples. Mikrochim Acta 2024; 191:730. [PMID: 39508966 DOI: 10.1007/s00604-024-06819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Three-metal-core-shell nanoparticles (Au@Pt@PdNPs) providing excellent peroxidase-like activity were applied in lateral flow immunoassay (LFIA), designated as Au@Pt@Pd-LFIA, for detecting the nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An Au@Pt@Pd-LFIA was developed for quantitatively testing of SARS-CoV-2 NP with a range 0.12-31.25 ng/mL. The limit of detection (LOD) of Au@Pt@Pd-LFIA strip was 0.06 ng/mL, which was 16-fold or eightfold more sensitive than that of the gold lateral flow immunoassay (Au-LFIA) and the gold flower flow immunoassay (AF-LFIA) strips, respectively. For detection of clinical samples from nasal swabs using test strips, Au@Pt@Pd-LFIA had 84.09% sensitivity, 100% specificity, and 92.55% accuracy. In terms of detection time, the testing of Au@Pt@Pd-LFIA strip was 16 min similar to Au-LFIA (15 min) and AF-LFIA (10 min), but much shorter than ELISA (2 h). In conclusion, Au@Pt@Pd-LFIA is a sensitive, rapid, and simple test for quantitative detection of SARS-CoV-2 NP in nasal swab samples.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Jinhui Lu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Chao Xiang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Enhui Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Xiaofang Tian
- Department of Laboratory Medicine, Guangzhou University of Traditional Chinese Medicine Shenzhen Hospital, Shenzhen, 518034, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Liu Q, Li Z, Zou C, Feng S, Song J, Li X. A novel four-modal nano-sensor based on two-dimensional Mxenes and fully connected artificial neural networks for the highly sensitive and rapid detection of ochratoxin A. Talanta 2024; 283:127157. [PMID: 39520926 DOI: 10.1016/j.talanta.2024.127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Timely and accurate on-site detection of ochratoxin A (OTA) is extremely important for global public health. In this study, a fluorescence/colorimetric biosensor based on Ti3C2 nano-materials (Ti3C2-NMS) and a machine-learning (ML) based fluorescence/colorimetric intelligent learning system for detection of OTA concentration (COTA) were developed. The sensor was fabricated by functionalizing Ti3C2-NMS prepared by physical-exfoliation assisted metal-ion-induction using ssDNA. The Ti3C2-NMS exhibited good fluorescence quenching characteristics (FQC) and peroxidase-like activity (PLA). More surprisingly, the functionalization of Ti3C2-NMS by ssDNA further enhanced the FQC and PLA of the material, which could be used for dual-mode detection of OTA. When different COTA existed, ssDNA competitively bound to OTA, resulting in regular changes in fluorescence and colorimetric signals of the sensor, which realized the accurate and sensitive biosensing detection of OTA in two modalities. Based on a series of fluorescent/colorimetric RGB datasets collected by a self-developed application, a dual-channel ML model had been developed. This model can be integrated into mobile phones, clouds, and PCs to achieve intelligent sensing detection of OTA with the assistance of fully connected artificial neural networks. The method constructed had high specificity, low cost, and fast responsiveness, with a LOD as low as 1.58 pg mL-1, indicating excellent potential for application and promotion.
Collapse
Affiliation(s)
- Qi Liu
- Biological Nanotechnology Research Institute, Ludong University, Yantai, Shandong, 264025, China; School of Food Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Zongyi Li
- School of Management, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Caifeng Zou
- Biological Nanotechnology Research Institute, Ludong University, Yantai, Shandong, 264025, China; School of Food Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Shi Feng
- Biological Nanotechnology Research Institute, Ludong University, Yantai, Shandong, 264025, China; School of Food Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Juncheng Song
- Biological Nanotechnology Research Institute, Ludong University, Yantai, Shandong, 264025, China; School of Food Engineering, Ludong University, Yantai, Shandong, 264025, China
| | - Xiangyang Li
- Biological Nanotechnology Research Institute, Ludong University, Yantai, Shandong, 264025, China; School of Life Sciences, Ludong University, Yantai, Shandong, 264025, China; School of Food Engineering, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
3
|
Huang S, Xiang H, Lv J, Guo Y, Xu L. Propelling gold nanozymes: catalytic activity and biosensing applications. Anal Bioanal Chem 2024; 416:5915-5932. [PMID: 38748246 DOI: 10.1007/s00216-024-05334-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Recently, gold nanomaterials have been rapidly developed owing to their high stability, good biocompatibility, and multifunctionality. The unique catalytic activity of gold nanomaterials has driven the emergence of the concept for a "gold nanozyme." Understanding the characteristics of gold nanozymes is crucial for improving their catalytic performance as well as expanding their applications. In this review, we provide an overview of the intrinsic enzyme-like activities of gold nanozymes, including peroxidase-, catalase-, superoxide dismutase-, and glucose oxidase-like activities, and the catalytic mechanisms involved. In addition, strategies for modulating the catalytic activity of gold nanozymes and their applications in biosensing were discussed in detail. Moreover, we highlight the current challenges of gold nanozymes and look forward to attracting more attention for propelling the developments in this field.
Collapse
Affiliation(s)
- Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Henglong Xiang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Jiachen Lv
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
4
|
Kumar V, Chopada R, Singh A, Kumar N, Misra M, Kim KH. The potential of MXene-based materials in fluorescence-based sensing/biosensing of ionic and organic contaminants in environment and food samples: Recent advancements and challenges. Adv Colloid Interface Sci 2024; 332:103264. [PMID: 39116585 DOI: 10.1016/j.cis.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
MXenes belong to one of the recently developed advanced materials with tremendous potential for diverse sensing applications. To date, various types of MXene-based materials have been developed to generate direct/indirect ultrasensitive sensing signals against various forms of analytes via fluorescence quenching or enhancement. In this work, the fluorescence sensing/biosensing capabilities of the MXene-based materials have been explored and evaluated against a list of ionic/emerging pollutants in environment and food matrices. The suitability of an MXene-based sensing approach is also validated through the assessment of the performance based on the basic quality assurance parameters, e.g., limit of detection (LOD), sensing range, and response time. Accordingly, the best performing MXene-based materials are selected and recommended for the given target(s) to help facilitate their scalable applications under real-world conditions.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| | - Rinkal Chopada
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Ashwani Singh
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Nitin Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, India
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
5
|
Li T, Li Z, Wang L, Yu B, Xiao M, Zhang Z. Reproducible, Accurate, and Sensitive Food Toxin On-Site Detection with Carbon Nanotube Transistor Biosensors. ACS NANO 2024; 18:26891-26901. [PMID: 39288204 DOI: 10.1021/acsnano.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Field-effect transistor (FET) biosensors based on nanomaterials are promising in the areas of food safety and early disease diagnosis due to their ultrahigh sensitivity and rapid response. However, most academically developed FET biosensors lack real-world reproducibility and comprehensive methodological validation to meet the standards of regulatory bodies. Here, highly uniform and well-packaged semiconducting carbon nanotube (CNT) FET biosensor chips were developed and assessed for the plug-and-play sensing for the rapid and highly sensitive detection of aflatoxin B1 (AFB1) in real food samples to meet international standards. In order to meet the requirements for reproducibility and stability, a scalable residual-free passivation and packaging process was developed for CNT FET biosensors. Portable detection systems were then constructed for on-site detection. The resulting packaged chips were functionalized with nucleic aptamers to enable highly selective detection of AFB1 in food samples with a detection limit (LOD) of 0.55 fg/mL (standard) for AFB1 and cross-reactivity coefficients to interferences as low as 1.8 × 10-7 in simulated solutions. Utilizing the portable detection system, on-site real food detection was achieved with a rapid response time less than 60 s, and LOD of 0.25 pg/kg (standard) in complex corn sample matrices. Single-blind tests demonstrated the ability of the chips to detect AFB1-positive food with 100% accuracy, using a set of 30 peanut samples. Validation experiments confirmed that the detection range, stability, and repeatability met international standards. This study showcased the accuracy, reliability, and potential practical applications of CNT FET biosensor chips in areas such as food safety and rapid biomedical testing.
Collapse
Affiliation(s)
- Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics School of Electronics, Peking University, Beijing 100871, China
| | - Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bolun Yu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics School of Electronics, Peking University, Beijing 100871, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Du A, Lu Z, Hua L. Decentralized food safety and authentication on cellulose paper-based analytical platform: A review. Compr Rev Food Sci Food Saf 2024; 23:e13421. [PMID: 39136976 DOI: 10.1111/1541-4337.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.
Collapse
Affiliation(s)
- An Du
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, P. R. China
| |
Collapse
|
7
|
Yang Q, Liu Z, Xu X, Wang J, Du B, Zhang P, Liu B, Mu X, Tong Z. Virtual Screening and Validation of Affinity DNA Functional Ligands for IgG Fc Segment. Int J Mol Sci 2024; 25:8681. [PMID: 39201368 PMCID: PMC11354668 DOI: 10.3390/ijms25168681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The effective attachment of antibodies to the immune sensing interface is a crucial factor that determines the detection performance of immunosensors. Therefore, this study aims to investigate a novel antibody immobilization material with low molecular weight, high stability, and excellent directional immobilization effect. In this study, we employed molecular docking technology based on the ZDOCK algorithm to virtually screen DNA functional ligands (DNAFL) for the Fc segment of antibodies. Through a comprehensive analysis of the key binding sites and contact propensities at the interface between DNAFL and IgG antibody, we have gained valuable insights into the affinity relationship, as well as the principles governing amino acid and nucleotide interactions at this interface. Furthermore, molecular affinity experiments and competitive binding experiments were conducted to validate both the binding ability of DNAFL to IgG antibody and its actual binding site. Through affinity experiments using multi-base sequences, we identified bases that significantly influence antibody-DNAFL binding and successfully obtained DNAFL with an enhanced affinity towards the IgG Fc segment. These findings provide a theoretical foundation for the targeted design of higher-affinity DNAFLs while also presenting a new technical approach for immunosensor preparation with potential applications in biodetection.
Collapse
Affiliation(s)
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Q.Y.); (X.X.); (J.W.); (B.D.); (P.Z.); (B.L.); (X.M.)
| | | | | | | | | | | | | | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Q.Y.); (X.X.); (J.W.); (B.D.); (P.Z.); (B.L.); (X.M.)
| |
Collapse
|
8
|
Liao S, Gui L, Yang Y, Liu Y, Hu X. Fluorescence/visual aptasensor based on Au/MOF nanocomposite for accurate and convenient aflatoxin B1 detection. Mikrochim Acta 2024; 191:497. [PMID: 39085726 DOI: 10.1007/s00604-024-06579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
A dual-mode fluorescence/visual aptasensor was developed for straightforward and accurate determination of aflatoxin B1 (AFB1) based on an Au/metal-organic framework (Au/MOF) composite. Aptamer-modified Au/Fe3O4 (Apt/Au/Fe3O4) served as the recognition element, and Au/MOF modified with complementary chains and 3,3',5,5'-tetramethylbenzidine (cDNA/TMB/Au/MOF) acted as the fluorescence and visual probes. These components are integrated to form conjugates (Apt/Au/Fe3O4-cDNA/TMB/Au/MOF). Upon the introduction of AFB1, some cDNA/TMB/Au/MOF dissociated from Apt/Au/Fe3O4, enabling the use of detached probes for visual detection. The undecomposed conjugates were isolated magnetically for use in fluorescence detection. As the AFB1 concentration increases, the visual signal intensifies and fluorescence intensity diminishes. Thus, the proposed aptasensor achieves the simultaneous fluorescence and visual determination of AFB1, obviating the need for material and reagent substitutions. The detection limits were established at 0.07 ng mL-1 for the fluorescence mode and 0.08 ng mL-1 for the visual mode. The effectiveness of the aptasensor was further validated by quantifying AFB1 in real samples.
Collapse
Affiliation(s)
| | | | - Yufan Yang
- College of Life Science, Yangtze University, Jingzhou, 434023, Hubei Province, People's Republic of China
| | - Yiwei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xiaopeng Hu
- College of Life Science, Yangtze University, Jingzhou, 434023, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Xu L, Qu W, Hao X, Fang M, Yang Q, Li Y, Gong Z, Li P. Immunochromatographic Strip Based on Tetrahedral DNA Immunoprobe for the Detection of Aflatoxin B 1 in Rice Bran Oil. Foods 2024; 13:2410. [PMID: 39123601 PMCID: PMC11311855 DOI: 10.3390/foods13152410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Aflatoxin B1 (AFB1), a widespread contaminant in food and feeds, poses a threat to the health of animals and humans. Consequently, it is significant to develop a rapid, precise and highly sensitive analytical method for the detection of AFB1. Herein, we developed an immunochromatographic strip (ICS) based on a tetrahedral DNA (TDN) immunoprobe for AFB1 determination in rice bran oil. Three sizes of TDN immunoprobes (AuNP-TDN13bp-mAb, AuNP-TDN17bp-mAb, AuNP-TDN26bp-mAb) were constructed, and the performance of these three immunoprobes, including the effective antibody labeling density and immunoaffinity, was measured and compared with that of the immunoprobe (AuNP-mAb) developed using the physical adsorption method. Subsequently, the optimal TDN immunoprobe, namely AuNP-TDN13bp-mAb, was selected to prepare the immunochromatographic strip (ICS) for the qualitative and quantitative detection of AFB1 in rice bran oil. The visual limits of detection (vLODs) of the ICS based on AuNP-TDN13bp-mAb and AuNP-mAb were 0.2 ng/mL and 2 ng/mL, with scanning quantitative limits (sLOQs) of 0.13 ng/mL and 1.4 ng/mL, respectively. The ICS demonstrated a wide linear range from 0.02 ng/mL to 0.5 ng/mL, with good specificity, accuracy, precision, repeatability, and stability. Moreover, a high consistency was observed between the constructed ICS and ultra-high-performance liquid chromatography (UPLC) in the quantification of AFB1. The results indicated that the introduction of TDN was beneficial for promoting efficient antibody labeling, protecting the bioactivity of immunoprobes, and increasing the sensitivity of detection, which would provide new perspectives for the achievement of the highly sensitive detection of mycotoxins.
Collapse
Affiliation(s)
- Lin Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Wenli Qu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
| | - Xiaotong Hao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
| | - Min Fang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Qing Yang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Yuzhi Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Peiwu Li
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
10
|
Zhang C, Zhao X, Huang Z, Li Z, Hu J, Liu R, Lv Y. Highly sensitive detection of aflatoxin B1 byCRISPR/Cas12a-assisted single nanoparticle counting. Food Chem 2024; 443:138557. [PMID: 38280363 DOI: 10.1016/j.foodchem.2024.138557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) and CRISPR-associated protein (Cas) have gained extensive applications in bioassays. However, CRISPR-based detection platforms are often hampered by limited analytical sensitivity, while nucleic acid-based amplification strategies are usually indispensable for additional signal enhancement with potential risks of amplification leakages. To address these challenges, an amplification-free CRISPR-based bioassay of aflatoxin B1 (AFB1) was proposed by applying single nanoparticle counting. Single-particle mode inductively coupled plasma mass spectrometry (Sp-ICPMS) has been regarded as a sensitive tool for nanoparticle counting since one nanoparticle can generate considerable signals above backgrounds. With AFB1, activator strands were introduced to initiate the trans-cleavage of CRISPR/Cas12a for cutting the nanoparticles-tagged-magnetic beads, which were transduced to nanoparticle count signals after separation. Finally, a pico-mole level limit-of-detections (LODs) with moderate selectivity was achieved. Certified reference materials (CRMs) analysis and recovery tests were conducted with promising results. To our best knowledge, this is the first report of the single particle counting-based CRISPR/Cas12a biosensing study.
Collapse
Affiliation(s)
- Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610041, PR China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| |
Collapse
|
11
|
Xiong J, Sun B, Zhang S, Wang S, Qin L, Jiang H. Highly efficient dual-mode detection of AFB1 based on the inner filter effect: Donor-acceptor selection and application. Anal Chim Acta 2024; 1298:342384. [PMID: 38462339 DOI: 10.1016/j.aca.2024.342384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The utilization of inner filter effect (IFE) brings more opportunities for construction of fluorescence immunoassays but remains a great challenge, especially how to select best donor in the face of extensive fluorescent nanomaterials. Aflatoxin B1 possesses high toxicity among mycotoxins and is frequently found in agricultural products that may significantly threaten to human health. Therefore, with the help of signal transduction mechanism of IFE to develop a convenient and sensitive approach for AFB1 detection is of great significance in ensuring food safety. RESULTS Herein, the classical alkaline phosphatase (ALP) catalyzes hydrolysis of p-nitrophenylphosphate to produce p-nitrophenol (PNP) was employed as a model reaction, which intends to explore tunable multicolor fluorescence of gold nanoclusters (AuNCs) for matching PNP to maximize IFE efficiency. The luminescent green-emitting AuNCs were selected as an optimal donor in terms of excellent spectral overlap, high photoluminescence, and adequate system adaptability, thus achieving a 22-fold increase in sensitivity improvement compared to colorimetric method for ALP detection. The fluorescence quenching mechanism between PNP and AuNCs was validated as IFE by studying ultraviolet absorption, zeta potentials and fluorescence lifetime. In light of this, we integrated a highly specific antibody-antigen recognition system, efficient enzymatic reaction and excellent optical characteristics of AuNCs to develop dual-mode immunoassay for AFB1 monitoring. The sensitivity of fluorometric immunoassay was lower to 0.06 ng/mL, which obtained a 3.5-fold improvement compared to "gold standard" ELISA. Their practicability and applicability were confirmed in the tap water, corn, wheat and peanuts samples. SIGNIFICANCE This work provides an easy-to-understand screening procedure to select optimal donor-acceptor pairs in IFE analysis. Furthermore, we expect that integration of IFE-based signal conversion strategy into mature immunoassay not only extends the signal types, simplifies signal amplification steps, and reduces the false-positive/false-negative rates, but also provides a simple, convenient, and versatile strategy for monitoring of trace other contaminants.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Lee IC, Li YCE, Thomas JL, Lee MH, Lin HY. Recent advances using MXenes in biomedical applications. MATERIALS HORIZONS 2024; 11:876-902. [PMID: 38175543 DOI: 10.1039/d3mh01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An MXene is a novel two-dimensional transition metal carbide or nitride, with a typical formula of Mn+1XnTx (M = transition metals, X = carbon or nitrogen, and T = functional groups). MXenes have found wide application in biomedicine and biosensing, owing to their high biocompatibility, abundant reactive surface groups, good conductivity, and photothermal properties. Applications include photo- and electrochemical sensors, energy storage, and electronics. This review will highlight recent applications of MXene and MXene-derived materials in drug delivery, tissue engineering, antimicrobial activity, and biosensors (optical and electrochemical). We further elaborate on recent developments in utilizing MXenes for photothermal cancer therapy, and we explore multimodal treatments, including the integration of chemotherapeutic agents or magnetic nanoparticles for enhanced therapeutic efficacy. The high surface area and reactivity of MXenes provide an interface to respond to the changes in the environment, allowing MXene-based drug carriers to respond to changes in pH, reactive oxygen species (ROS), and electrical signals for controlled release applications. Furthermore, the conductivity of MXene enables it to provide electrical stimulation for cultured cells and endows it with photocatalytic capabilities that can be used in antibiotic applications. Wearable and in situ sensors incorporating MXenes are also included. Major challenges and future development directions of MXenes in biomedical applications are also discussed. The remarkable properties of MXenes will undoubtedly lead to their increasing use in the applications discussed here, as well as many others.
Collapse
Affiliation(s)
- I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung 81148, Taiwan.
| |
Collapse
|
13
|
Kong Y, Li Z, Liu Q, Song J, Zhu Y, Lin J, Song L, Li X. Artificial neural network-facilitated V 2C MNs-based colorimetric/fluorescence dual-channel biosensor for highly sensitive detection of AFB 1 in peanut. Talanta 2024; 266:125056. [PMID: 37567121 DOI: 10.1016/j.talanta.2023.125056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In this work, V2C Mxene nano-enzyme materials (V2C MNs) with excellent peroxidase-like activity and fluorescence quenching performance were prepared, and it was modified using 6-carboxyfluorescein-labelled aptamers (ssDNA-FAM) to construct a novel dual-mode sensor V2C@ssDNA-FAM, with detection limits of 0.0477 ng mL-1 and 0.2789 ng mL-1 of fluorescence (linear range of 0.1-550 ng mL-1) and colorimetric (linear range of 1-1000 ng mL-1) modes, respectively. Meanwhile, an ANN intelligent detection platform has been constructed, which could automatically track and analyze the fluorescence and colorimetric signal of the detection system through machine learning and immediately obtain the AFB1 concentration, and the detection limits of the fluorescence (linear range of 0.1-500 ng mL-1) and colorimetric (linear range of 1-800 ng mL-1) channels of it were 0.0905 ng mL-1 and 0.6845 ng mL-1, respectively. The recovery rates of fluorescence, colorimetric sensing detection and ANN-assisted fluorescence and colorimetric sensing detection of real samples ranged from 95.40% to 101.76%. The method constructed in this work was superior to most existing literature reports and had great potential for application in the field of food quality testing.
Collapse
Affiliation(s)
- Yiqian Kong
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Zongyi Li
- School of Management, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Qi Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Juncheng Song
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Yinghua Zhu
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Jinping Lin
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Lili Song
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong, 276629, PR China
| | - Xiangyang Li
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China.
| |
Collapse
|