1
|
Sevim S, Macit A, Kizil M. Ochratoxin a levels in Turkish coffee: a probabilistic health risk assessment via Monte Carlo simulation. Mycotoxin Res 2024; 40:651-658. [PMID: 39162959 DOI: 10.1007/s12550-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Throughout history, Turkish coffee has been the most widely consumed type of coffee in Turkey. Therefore, the goal of this study was to determine the amount of ochratoxin A (OTA) present in Turkish coffee and to analyze any potential health hazards. A total of 41 Turkish coffees were collected and analyzed for OTA activity using a competitive enzyme immunoassay (ELISA). Furthermore, dietary exposure and health risk assessments for the Turkish population were calculated based on analytical results and coffee consumption data from the Turkish Nutrition and Health Survey 2019 (TNHS-2019) in three age categories (15-18, 19-64, and 65 + years). Nine of the samples contained more than 2.5 μg/kg OTA, with an average of 5.24 μg/kg. The OTA concentration in 3 samples exceeded the permissible maximum limit (5 μg/kg) established by Turkish legislation, and the mean concentration was 8.41 μg/kg. A margin of exposure (MOE) approach was used for risk characterization, considering both non-neoplastic and neoplastic consequences. There were no concerns about health risks because MOEs were more than 10,000 for all categories. Although the levels of OTA analyzed in Turkish coffee did not pose a risk to individuals in the three age categories, emphasis should be placed on minimizing and controlling OTA concentrations in Turkish coffee. Additionally, it is also necessary to consider other food sources that could contribute to OTA exposure.
Collapse
Affiliation(s)
- Sumeyra Sevim
- Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| | - Arife Macit
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
- Department of Nutrition and Dietetics, Munzur University, Tunceli, Turkey
| | - Mevlude Kizil
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Massahi T, Kiani A, Moradi M, Soleimani H, Omer AK, Habibollahi MH, Mansouri B, Sharafi K. A worldwide systematic review of ochratoxin A in various coffee products - human exposure and health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024:1-17. [PMID: 39259858 DOI: 10.1080/19440049.2024.2400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Coffee is one of the most commonly consumed beverages worldwide, so assessing its quality for potential health risks is essential. Therefore, this review aimed to determine the levels of ochratoxin A (OTA) in coffee worldwide and then estimate its human intake and health risks. The systematic search took place from June 1997 to April 2024 and 40 of 254 articles were selected based on the selection criteria. The results showed significant differences in average levels of OTA between countries, continents and coffee types (p < 0.001). Of 3256 samples, OTA was detected in 1778, accounting for 54.6% of the total, with the percentage of positive results varying between 7.5% and 100%. Only two studies reported OTA average levels in roasted coffee exceeding the maximum limit (ML) set by the European Commission (ML-EC = 5 μg/kg). The average OTA in soluble coffee was lower than ML-EC (10 μg/kg) in all studies, and in instant coffee, the level of OTA was higher than ML-EC (10 μg/kg) only in one study. The estimated daily intake (EDI) of OTA in all coffee types was lower than the provisional tolerable daily intake (PTDI) values set by joint FAO/WHO Expert Committee on Food Additives (JECFA) (14 ng/kg bw/day) and proposed by the European Food Safety Authority (EFSA) (17 ng/kg bw/day). Non-carcinogenic risk assessment through coffee consumption indicated that the hazard quotient (HQ) was below the acceptable level, HQ = 1. The Margin of Exposure (MoE) for neoplastic effects was acceptable and unacceptable for non-neoplastic effects (NNE) in 4.5% (one of 22 cases) of the roasted and soluble coffees, but acceptable for all instant coffees. In conclusion, the study shows that the OTA content of coffee is not toxic to consumers worldwide. However, preventative measures should be taken, including inhibiting fungal growth and reducing OTA-producing fungal growth.
Collapse
Affiliation(s)
- Tooraj Massahi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars Sharafi
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
López-Rodríguez C, Verheecke-Vaessen C, Strub C, Fontana A, Schorr-Galindo S, Medina A. Reduction in Ochratoxin A Occurrence in Coffee: From Good Practices to Biocontrol Agents. J Fungi (Basel) 2024; 10:590. [PMID: 39194915 DOI: 10.3390/jof10080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin mainly produced by Aspergillus section Circumdati and section Nigri across the coffee chain. OTA is nephrotoxic and is a threat to human health. This review summarizes current knowledge on how to reduce OTA concentration in coffee from farm to cup. After a brief introduction to the OTA occurrence in coffee, current good management practices are introduced. The core of this review focuses on biocontrol and microbial decontamination by lactic acid bacteria, yeasts and fungi, and their associated enzymes currently reported in the literature. Special attention is given to publications closest to in vivo applications of biocontrol agents and microbial OTA adsorption or degradation agents. Finally, this review provides an opinion on which future techniques to promote within the coffee supply chain.
Collapse
Affiliation(s)
- Claudia López-Rodríguez
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | | | - Caroline Strub
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angélique Fontana
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Sabine Schorr-Galindo
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angel Medina
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
4
|
Mangiapelo L, Frangiamone M, Vila-Donat P, Paşca D, Ianni F, Cossignani L, Manyes L. Grape pomace as a novel functional ingredient: Mitigating ochratoxin A bioaccessibility and unraveling cytoprotective mechanisms in vitro. Curr Res Food Sci 2024; 9:100800. [PMID: 39040226 PMCID: PMC11261260 DOI: 10.1016/j.crfs.2024.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Mycotoxins, secondary metabolites produced by molds, pose significant health risk through contamination of globally consumed cereals. Ochratoxin A (OTA), a prevalent mycotoxin in cereals, is associated with various health hazards, including immunotoxicity. This study explores the bioaccessibility of OTA in bread and its impact on the gastrointestinal barrier. A focus is placed on grape pomace (GP), a by-product of the wine industry, as a potential mitigator of OTA toxicity. Results demonstrate that GP reduces OTA bioaccessibility in the human gastrointestinal system from 94% to 81% at intestinal level, showing promise in limiting the absorption of the harmful toxin. Additionally, GP exhibits cytoprotective effects, enhancing cell viability and mitigating OTA-induced toxicity in both Caco-2 and Jurkat T cells. In view of the above, to understand the mechanisms by which OTA exhibits its toxic effects, flow cytometry was chosen as the main technique for the analysis of cell cycle, reactive oxygen species levels and mitochondrial parameters. Cytofluorimetric evaluation indicates GP's potential in limiting OTA-induced damage at cellular level. The study suggests that GP could serve as functional ingredient to reduce mycotoxin bioaccessibility and toxicity in cereal-based foods, offering a novel and promising approach to enhance food safety and protect public health. The finding highlights the potential of utilizing grape pomace in food formulations to mitigate mycotoxin contamination, providing a valuable contribution to the ongoing efforts to ensure the safety of globally consumed cereal products.
Collapse
Affiliation(s)
- Luciano Mangiapelo
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon, 1005, Lausanne, Switzerland
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| | - Denisia Paşca
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
- Bromatology, Hygiene, Nutrition, Department 3 - Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Federica Ianni
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, 06123, Perugia, Italy
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, 46100, Burjassot, Spain
| |
Collapse
|
5
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
6
|
Guadalupe GA, Grandez-Yoplac DE, Arellanos E, Doménech E. Probabilistic Risk Assessment of Metals, Acrylamide and Ochratoxin A in Instant Coffee from Brazil, Colombia, Mexico and Peru. Foods 2024; 13:726. [PMID: 38472839 DOI: 10.3390/foods13050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This study analysed the probabilistic risk to consumers associated with the presence of iAs, Cd, Cr, Hg, Pb, acrylamide (AA) and ochratoxin A (OTA) in instant coffee from Brazil, Colombia, Mexico and Peru. The results found iAs to be the metal with the highest concentrations (3.50 × 10-2 to 6.00 × 10-2 mg/kg), closely followed by Pb (1.70 × 10-2 to 2.70 × 10-2 mg/kg) and Cr (5.00 × 10-3 to 1.00 × 10-2 mg/kg), although these differences were not significant between countries. Cd and Hg were not detected. Focusing on AA, the concentrations ranged from 1.77 × 10-1 mg/kg (Peru) to 4.77 × 10-1 mg/kg (Brazil), while OTA ranged from 1.32 × 10-3 (Peru) to 1.77 × 10-3 mg/kg (Brazil) with significant differences between countries in both cases. As regards risk, the hazard quotient and hazard index were less than 1, meaning that the consumption of instant coffee represents a low level of concern for non-genotoxic effects. The results of the combination of margin of exposure and probability of exceedance indicated that the non-genotoxic effects of Pb, AA and OTA pose no threat. However, the probability values of suffering cancer from iAs and AA (between 1 × 10-6 and 1 × 10-4) indicated a moderate risk and that management measures should be taken.
Collapse
Affiliation(s)
- Grobert A Guadalupe
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Dorila E Grandez-Yoplac
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Erick Arellanos
- Instituto de Investigación en Ingeniería Ambiental (INAM), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Higos Urco 342, Chachapoyas 01001, Peru
| | - Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
7
|
Prakasham K, Gurrani S, Shiea JT, Wu MT, Wu CF, Ku YJ, Tsai TY, Hua HT, Lin YJ, Huang PC, Andaluri G, Ponnusamy VK. Rapid Identification and Analysis of Ochratoxin-A in Food and Agricultural Soil Samples Using a Novel Semi-Automated In-Syringe Based Fast Mycotoxin Extraction (FaMEx) Technique Coupled with UHPLC-MS/MS. Molecules 2023; 28:molecules28031442. [PMID: 36771116 PMCID: PMC9921652 DOI: 10.3390/molecules28031442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, a fast mycotoxin extraction (FaMEx) technique was developed for the rapid identification and quantification of carcinogenic ochratoxin-A (OTA) in food (coffee and tea) and agricultural soil samples using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection. The FaMEx technique advancement is based on two plastic syringes integrated setup for rapid extraction and its subsequent controlled clean-up process. In the extraction process, a 0.25-g sample and extraction solvent were added to the first syringe barrel for the vortex-based extraction. Then, the extraction syringe was connected to a clean-up syringe (pre-packed with C18, activated carbon, and MgSO4) with a syringe filter. Afterward, the whole set-up was placed in an automated programmable mechanical set-up for controlled elution. To enhance FaMEx technology performance, the various influencing sample pretreatment parameters were optimized. Furthermore, the developed FaMEx method indicated excellent linearity (0.9998 and 0.9996 for coffee/tea and soil) with highly sensitive detection (0.30 and 0.29 ng/mL for coffee/tea and soil) and quantification limits (1.0 and 0.96 for coffee/tea and soil), which is lower than the toxicity limit compliant with the European Union regulation for OTA (5 ng/g). The method showed acceptable relative recovery (84.48 to 100.59%) with <7.34% of relative standard deviation for evaluated real samples, and the matrix effects were calculated as <-13.77% for coffee/tea and -9.7 for soil samples. The obtained results revealed that the developed semi-automated FaMEx/UHPLC-MS/MS technique is easy, fast, low-cost, sensitive, and precise for mycotoxin detection in food and environmental samples.
Collapse
Affiliation(s)
- Karthikeyan Prakasham
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Swapnil Gurrani
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Jen-Taie Shiea
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ming-Tsang Wu
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Chia-Fang Wu
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- International Master Program of Translational Medicine, National United University, Miaoli 36063, Taiwan
| | - Yi-Jia Ku
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Tseng-Yu Tsai
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Hung-Ta Hua
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Yu-Jia Lin
- Research and Development Center, Great Engineering Technology (GETECH) Corporation, No. 392, Yucheng Rd., Zuoying District., Kaohsiung City 813, Taiwan
| | - Po-Chin Huang
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli 35053, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Vinoth Kumar Ponnusamy
- PhD Program in Environmental and Occupational Medicine & Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Heperkan ZD, Gunalan-Inci E, Ceyhan T. Unexpectedly high patulin contamination and co-occurrence of ochratoxin A in homemade vinegar. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
9
|
Oueslati S, Ben Yakhlef S, Vila-Donat P, Pallarés N, Ferrer E, Barba F, Berrada H. Multi-mycotoxin determination in coffee beans marketed in Tunisia and the associated dietary exposure assessment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Portillo OR. El procesamiento del grano de café. Del tueste a la infusión. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El café es una de las bebidas más consumidas en el mundo y su popularidad no está basada en su valor nutricional o sus potenciales beneficios a la salud, si no en su sabor placentero y las propiedades estimulantes de la cafeína. Esto es respaldado por las últimas estadísticas publicadas por la Organización Internacional del Café (ICO, por sus siglas en inglés) según la cual aproximadamente 1.4 billones de tazas de café son consumidas diariamente además del hecho de que la taza de consumo global se ha duplicado en los últimos 50 años por causa de la apertura de nuevos mercados.
La amplia aceptación del café está ligada a sus propiedades sensoriales las cuales a su vez están fuertemente influenciadas por una cadena de eventos que inician desde la cosecha y las practicas postcosecha (i.e., fermentación, lavado, secado, tamizado, eliminación de granos defectuosos y almacenamiento), seguidas por el tueste, molido y empacado del producto para su posterior comercialización. No obstante, existen otros factores que también afectan las propiedades organolépticas de la bebida tales como, pero no limitado a: el pH y temperatura del agua, las mezclas realizadas antes o después del tueste, la especie y/o variedad de café, las adulteraciones, la incorporación de aditivos, el método de preparación de la bebida, el tipo de recipiente en el que se sirve la infusión, entre otros.
El presente artículo presenta una breve descripción de los factores que afectan la calidad de la taza relacionados con el procesamiento del grano oro del café. Sin embargo, aunque los factores ya mencionados son tomados en consideración por los catadores, para fines comerciales, la calidad del café está y siempre estará en manos del consumidor. Después de todo la mejor prueba es cuando la persona lo prueba.
Palabras clave: organoléptica, perfil de tueste, endotérmica, exotérmico, ma-croscópica, microscópica, reacción Maillard, caramelización.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Facultad de Ingeniería, Universidad Nacional Autónoma de Honduras, (UNAH), Tegucigalpa, Honduras
| |
Collapse
|
11
|
Oeung S, Songsermsakul P, Porasuphatana S. Assessment of ochratoxin A exposure risk from the consumption of coffee beans in Phnom Penh, Cambodia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:71-77. [PMID: 35067208 DOI: 10.1080/19393210.2022.2026492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
This survey aimed to determine OTA contamination in roasted coffee samples commercialised in Phnom Penh, Cambodia and to assess the potential health risk from OTA exposure. Forty locally grown and imported coffee samples were collected and analysed. Analytical validation methods were fully performed. In 3 of 40 samples (7.5%), the results showed detectable levels of OTA, ranging from 0.19 to 1.12 µg kg-1, with an overall average of 0.26 µg kg-1 and an average over the LOQ (n = 3) at 0.81 µg kg-1. OTA estimated daily intake (EDI) of both values were 0.05 (overall average) and 0.17 ng/kg bw/day (the worst-case scenario) with the calculated risk of OTA exposure expressed as a Hazard Quotient at 0.003 and 0.01, respectively. This result could imply a low health risk to Cambodian coffee consumers.
Collapse
Affiliation(s)
- Sokunvary Oeung
- Graduate Program in Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Piyada Songsermsakul
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Supatra Porasuphatana
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Li X, Ma W, Ma Z, Zhang Q, Li H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021; 26:6928. [PMID: 34834020 PMCID: PMC8623125 DOI: 10.3390/molecules26226928] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| |
Collapse
|
13
|
Pakshir K, Dehghani A, Nouraei H, Zareshahrabadi Z, Zomorodian K. Evaluation of fungal contamination and ochratoxin A detection in different types of coffee by HPLC-based method. J Clin Lab Anal 2021; 35:e24001. [PMID: 34528313 PMCID: PMC8605134 DOI: 10.1002/jcla.24001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background Mycotoxins are secondary fungal metabolites that are produced by some toxigenic fungi on foodstuffs which are poisoning and potentiate for human's health hazards. In coffee samples, ochratoxin A and fungal contamination were examined. Methods Immunoaffinity columns were used for treating of all 50 samples from four types of coffee, after that high‐performance liquid chromatography was used for determining the amount of ochratoxin. For the identification of fungi, all coffee samples were cultured in appropriated media. Results The results showed that all samples were contaminated by ochratoxin A but only up to 50% of them had toxins higher than acceptable level as detected in black beans (47%), green beans (33.3%), torch (33.3%), and espresso (25%). Black coffee had a higher mean concentration of ochratoxin A than green coffee. Conclusion Predominant fungi isolated from coffee samples were Aspergillus species. Finally, careful monitoring of mycotoxins in coffee samples is essential to improve the quality of this favorable beverage in future.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Andishe Dehghani
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Nouraei
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Costa da Silva M, da Silva G de Castro E, do N Barreto J, Vitor de Oliveira Martins P, Lopes da Silva G, Ferreira da Silva R, Gomes Dos Santo D, Freitas-Silva O, Batista Pavesi Simão J, Iris da Silva Junior A, Duarte Pereira Netto A. Ochratoxin a levels in fermented specialty coffees from Caparaó, Brazil: Is it a cause of concern for coffee drinkers? Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1948-1957. [PMID: 34372751 DOI: 10.1080/19440049.2021.1943542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Although postharvest coffee fruit fermentation can improve coffee flavour and quality, the mycotoxin ochratoxin A (OTA) can also be a result of microbiological activity, albeit in the later drying step of coffee processing. To evaluate the possible occurrence of OTA contamination in postharvest fruit fermentation, fourteen coffees that entailed two different postharvest fruit fermentation times were evaluated. These coffees originated in the surroundings of the village of Pedra Menina in the qualified Denomination of Origin and coffee producer region of Caparaó on the border between Minas Gerais and Espírito Santo states in Brazil. All coffees were classified according to the Specialty Coffee Association (SCA) protocol and 12 achieved specialty level. OTA was determined in all 14 coffees using immunoaffinity for sample clean-up and high-performance liquid chromatography with fluorescence detection for quantification. One sample presented an OTA concentration of 0.75 µg kg-1 and two samples showed OTA concentrations of 0.87 µg kg-1. The other samples had concentrations of OTA below the limit of quantification obtained in this work (0.64 µg kg-1). Thus, all samples showed OTA concentrations far below the most stringent maximum residue limit (MRL) of 5 µg kg-1 established for roasted coffees by European legislation. These low levels were similar to most of the previous results for Brazilian coffees listed and tabled in this work. This comparison showed that OTA contamination due to this kind of postharvest process - fruit fermentation - should not be a concern for producers and consumers of these fermented coffees.
Collapse
Affiliation(s)
- Michelle Costa da Silva
- Graduate Program in Chemistry (PPGQ - UFF) - Institute of Chemistry, Federal Fluminense University, Niterói, Brazil.,Federal Institute of Education, Science and Technology of Rio de Janeiro, Nilópolis, Brazil
| | | | - Juliana do N Barreto
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gustavo Lopes da Silva
- Federal Institute of Education, Science and Technology of Espírito Santo, Alegre, Brazil
| | | | - Deiziani Gomes Dos Santo
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (PPGAN - UNIRIO), Rio de Janeiro, Brazil
| | - Otniel Freitas-Silva
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (PPGAN - UNIRIO), Rio de Janeiro, Brazil.,Brazilian Agricultural Research Corporation, EMBRAPA Food Agroindustry, Rio de Janeiro, Brazil
| | | | | | - Annibal Duarte Pereira Netto
- Graduate Program in Chemistry (PPGQ - UFF) - Institute of Chemistry, Federal Fluminense University, Niterói, Brazil.,Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro (PPGAN - UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Aguilar-Alvarez ME, Saucedo-Castañeda G, Durand N, Perraud-Gaime I, González-Robles RO, Rodríguez-Serrano GM. The variety, roasting, processing, and type of cultivation determine the low OTA levels of commercialized coffee in Chiapas State, Mexico. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Pereira RHA, Keijok WJ, Prado AR, de Oliveira JP, Guimarães MCC. Rapid and sensitive detection of ochratoxin A using antibody-conjugated gold nanoparticles based on Localized Surface Plasmon Resonance. Toxicon 2021; 199:139-144. [PMID: 34153309 DOI: 10.1016/j.toxicon.2021.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
The regulation of tolerable levels of ochratoxin A in food for human and animal consumption has been defined in some countries. To meet these levels, simpler, more efficient, and faster analytical methods are being developed to facilitate the identification of this dangerous contaminant in food. Here, we combined gold nanoparticles (AuNPs) with anti-ochratoxin A (OTA) IgG to detect elementary levels of OTA based on Localized Surface Plasmon Resonance. AuNPs were prepared with trisodium citrate and characterized by UV-visible spectroscopy, X-ray, dynamic light scattering, and transmission electron microscopy. The conjugation of AuNPs to IgG anti-OTA was confirmed by bathochromic shift (UV-vis) and RAMAN spectroscopy. The sensitivity of the nanosensor was investigated by measuring LSPR band λmax shifts. Our results suggest this assay is highly sensitive, with a lower detection limit of about 0.001 pg mL-1. The LSPR nanosensor reduced detection limits by roughly 10 times compared to other methods. We demonstrated that the approach investigated here is a rapid and sensitive method for OTA detection.
Collapse
Affiliation(s)
| | | | | | - Jairo Pinto de Oliveira
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitoria, ES, 29.040-090, Brazil
| | | |
Collapse
|
17
|
Ouakhssase A, Fatini N, Ait Addi E. A facile extraction method followed by UPLC-MS/MS for the analysis of aflatoxins and ochratoxin A in raw coffee beans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1551-1560. [PMID: 34047680 DOI: 10.1080/19440049.2021.1925165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A UPLC-MS/MS method was developed and validated for the determination of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and ochratoxin A (OTA) in raw coffee samples. Mycotoxins were extracted using a modified QuEChERS method with little sample preparation excluding clean-up and enrichment procedures. Linearity was demonstrated for the five mycotoxins in the range 0.125-20 µg/kg. This method shows negligible matrix effect for individual concentrations, thus allowing the use of an external standard procedure. Limits of quantification (LOQ) ranged from 0.45 to 1 μg/kg. Recoveries between 63% and 89% were achieved. The intra- and inter-day precisions were lower than 15%. The applicability of the method was demonstrated, taking into account fitness for purpose, with simplicity, reliability, low costs and environmental friendliness. The results show that 3 out of 4 samples were contaminated with OTA.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Ecole Supérieure de Technologie d'Agadir, Research Group: Génie des Procédés et Ingénierie Chimique, Université Ibn Zohr, Agadir, Morocco
| | - Noureddine Fatini
- Département de Contaminants Organiques, Laboratoire Marocain de l'Agriculture (LABOMAG), Casablanca, Morocco
| | - Elhabib Ait Addi
- Ecole Supérieure de Technologie d'Agadir, Research Group: Génie des Procédés et Ingénierie Chimique, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
18
|
Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03679-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Li X, Ma W, Ma Z, Zhang Q, Li H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit Rev Food Sci Nutr 2021; 62:5444-5461. [PMID: 33583259 DOI: 10.1080/10408398.2021.1885340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ochratoxin A is a highly toxic mycotoxin and has posed great threat to human health. Due to its serious toxicity and wide contamination, great efforts have been made to develop reliable determination methods. In this review, analytical methods are comprehensively summarized in terms of sample preparation strategy and instrumental analysis. Detailed method is described according to the food commodities in the order of cereal, wine, coffee, beer, cocoa, dried fruit and spice. This review mainly focuses on the recent advances, especially reported in the last decade. At last, challenges and perspectives are also discussed to achieve better advancement and promote practical application in this field.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| |
Collapse
|
20
|
Gonzalez AL, Lozano VA, Escandar GM, Bravo MA. Determination of ochratoxin A in coffee and tea samples by coupling second-order multivariate calibration and fluorescence spectroscopy. Talanta 2020; 219:121288. [PMID: 32887030 DOI: 10.1016/j.talanta.2020.121288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
A new method to quantify the mycotoxin ochratoxin A (OTA) in coffee and tea samples is proposed based on second-order multivariate calibration and excitation-emission fluorescence matrix (EEFM) data. Experimental conditions were optimized by studying the effect of pH and various organized media on the fluorescence signal of OTA. For each analysed matrix (coffee grains and tea leaves), several sample pretreatments and calibration methods (external or standard addition) and data processing by chemometric models (e.g., parallel factor analysis/PARAFAC and multivariate curve resolution-alternating least squares/MCR-ALS) were evaluated and discussed. The MCR-ALS algorithm provided an adequate fit to the data for both samples, while PARAFAC was satisfactory only for the tea samples. Regarding the figures of merit, the limits of detection were in the range of 0.2-0.3 ng mL-1; furthermore, low relative prediction errors, between 2% and 4%, were achieved in both the fortified and real samples. Accordingly, the proposed methodology was applied to analyse fortified roasted and green coffee and real tea leaf samples. Satisfactory recoveries were achieved (ranging from 92 to 110%), and the obtained concentrations were in agreement with the values obtained by the reference method (based on high-performance liquid chromatography with fluorescence detection/HPLC-FLD). In addition, all samples contained OTA levels lower than the maximum permissible levels. Finally, the proposed strategy allows the use of green analytical chemistry principles; for instance, the use of organic solvents and the generation of waste products were significantly lower than for similar analytical methods reported in the literature.
Collapse
Affiliation(s)
- Albani L Gonzalez
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2950, Valparaíso, Chile
| | - Valeria A Lozano
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Graciela M Escandar
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Manuel A Bravo
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, 2950, Valparaíso, Chile.
| |
Collapse
|
21
|
dePaula J, Cunha SC, Revi I, Batista AM, Sá SVMD, Calado V, Fernandes JO, Cruz A, Farah A. Contents of key bioactive and detrimental compounds in health performance coffees compared to conventional types of coffees sold in the United States market. Food Funct 2020; 11:7561-7575. [PMID: 32820768 DOI: 10.1039/d0fo01674h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The United States is the largest coffee consuming country worldwide. Recently, in addition to cup quality, the focus on health promotion has increased significantly in the country, with launching of many brands with health claims, mainly highlighting the antioxidative and stimulating properties of the beverage. On the other hand, mycotoxins and, to a lesser extent, acrylamide, have raised concerns among consumers and health authorities. This study investigated the contents of the main bioactive compounds (caffeine, chlorogenic acids and their 1,5-γ-quinolactones, and trigonelline) in health performance coffees and compared them to those of conventional roasted coffees available on the U.S. market. The following categories were compared by ANOVA at p ≤ 0.05, followed by Fisher's test: 1 - health performance, 2 - gourmet and 3 - traditional, totaling 127 samples. As complementary results, the contents of acrylamide and ochratoxin A were evaluated in part of the samples (n = 58). The mean contents (g per 100 g) of bioactive compounds for categories 1 to 3, respectively, were 1.09, 1.11 and 1.07 for caffeine; 1.75, 1.88 and 1.34 for chlorogenic acids/lactones, and 0.63, 0.64 and 0.56 for trigonelline. The mean contents (μg kg-1) of acrylamide for categories 1 to 3, respectively, were 82, 71 and 85. Only about 7% of the evaluated samples presented quantifiable amounts of OTA and all of them were within the maximum limits established by health authorities. In general, the contents of bioactive and potentially harmful compounds were not consistently different among categories, with high and low individual amounts in all of them. Most health claims on labels related to the amount of bioactive compounds in health performance coffees were unjustified, suggesting the need for improvement in coffee labeling regulation in the U.S.
Collapse
Affiliation(s)
- Juliana dePaula
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core - NUPECAFÉ, NutritionInstitute, Federal University of Rio de Janeiro, Ilha do Fundão, CCS bloco J, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Sara C Cunha
- Laboratory of Bromatology and Hydrology LAQV-REQUIMTE-Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Ildi Revi
- Purity Coffee and Ally Coffee - Greenville, South Carolina EUA.
| | - Alessandro M Batista
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core - NUPECAFÉ, NutritionInstitute, Federal University of Rio de Janeiro, Ilha do Fundão, CCS bloco J, 21941-902, Rio de Janeiro, RJ, Brazil.
| | - Soraia V M D Sá
- Laboratory of Bromatology and Hydrology LAQV-REQUIMTE-Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Veronica Calado
- Chemistry School, Federal University of Rio de Janeiro, Brazil.
| | - José O Fernandes
- Laboratory of Bromatology and Hydrology LAQV-REQUIMTE-Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Adriano Cruz
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ), Brazil.
| | - Adriana Farah
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core - NUPECAFÉ, NutritionInstitute, Federal University of Rio de Janeiro, Ilha do Fundão, CCS bloco J, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
El-Moghazy AY, Amaly N, Istamboulie G, Nitin N, Sun G. A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A. Mikrochim Acta 2020; 187:535. [PMID: 32870397 DOI: 10.1007/s00604-020-04509-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
An innovative ultrasensitive electrochemical aptamer-based sensor was developed for ochratoxin A (OTA) detection in cold brew coffee through revolutionary combination of nanofibers, electrochemical method, and aptamer technologies. The assembly of the aptasensor was based on the activation of silanized cellulose nanofibrous membranes as a supporting matrix for methylene blue (MB) redox probe-labeled aptamer tethering. Cellulose nanofibrous membranes were regenerated by deacetylating electrospun cellulose acetate nanofibrous membranes with deacetylation efficacy of 97%, followed by silanization of the nanofiber surfaces by using (3-aminopropyl)triethoxysilane (APTES). A replacement of conventionally casted membranes by the nanofibrous membranes increased the active surface area on the working electrode of a screen-printed three-electrode sensor by more than two times, consequently enhancing the fabricated aptasensor performance. The developed aptasensor demonstrated high sensitivity and specificity toward OTA in a range 0.002-2 ng mL-1, with a detection limit of 0.81 pg mL-1. Moreover, the assembled aptamer-based sensor successfully detected OTA in cold brew coffee samples without any pretreatment. The aptasensor exhibited good reusability and stability over long storage time. Graphical abstract.
Collapse
Affiliation(s)
- Ahmed Y El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA. .,Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.,Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Georges Istamboulie
- Biocapteurs-Analyses-Environnement, University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.,Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
A preliminary assessment of dietary exposure of ochratoxin A in Central Anatolia Region, Turkey. Mycotoxin Res 2020; 36:327-337. [PMID: 32621108 DOI: 10.1007/s12550-020-00397-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/17/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine dietary exposure to ochratoxin A (OTA) in Turkish adults. In this study, 500 food samples (50 rice, 50 wheat bread, 50 pasta, 50 raisins, 50 dried figs, 50 pistachios, 50 hazelnuts, 50 almonds, 50 chilli, 25 coffee, and 25 cocoa) collected from Turkey were analysed with a high-performance liquid chromatography (HPLC) method. Moreover, a total of 370 analytical results (110 cereal-based snacks, 95 wine, 35 beer, and 130 chocolate) collected from our previous observations were also used in the evaluation of exposure estimates. OTA was found in 52% of cocoa, 42% of raisins, 40% of coffee, 34% of chilli, 14% of dried figs, 10% of pasta, 8% of pistachios, 6% of wheat bread, 4% of rice, and 4% of hazelnuts. The chronic dietary exposure to OTA for Turkish adults, using lower bound (LB) and upper bound (UB) concentrations, varied from 0.683 to 4.487 ng/kg body weight (b.w.) per week for mean estimate and from 3.976 to 5.760 ng/kg b.w. per week for the 95th percentile (P95) estimate. Cereals and cereal-based products made the largest contribution (75.3-85.7%) to OTA exposure. Both mean and P95 chronic exposure to OTA were greatly below the tolerable weekly intake of 120 ng/kg b.w. per week and thus not a health concern for Turkish adults.
Collapse
|
24
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
25
|
Jonatova P, Dzuman Z, Prusova N, Hajslova J, Stranska-Zachariasova M. Occurrence of ochratoxin A and its stereoisomeric degradation product in various types of coffee available in the Czech market. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ochratoxin A (OTA) belongs among the most frequently occurring mycotoxins in coffee. In order to investigate its contamination levels in products currently available in the market, a broad set of coffee samples (103 in total) collected between 2016 and 2018 in the Czech Republic was investigated. Aqueous-methanolic extracts purified by using immunoaffinity columns were analysed by ultra-performance liquid chromatography coupled with tandem mass spectrometry (U-HPLC-MS/MS). The undertaken study revealed a relatively low OTA contamination of roasted coffee (in the range 0.2-2.5 μg/kg with the mean concentration of 0.6 μg/kg, and 71% of positive samples). The roasted coffee samples did not exceed the maximum limit of 5 μg/kg set by 1881/2006/EC. With regard to instant coffee samples, OTA concentrations were considerably higher. All the samples were positive, with a mean concentration of 2.9 μg/kg (ranging from 0.6 to 12.8 μg/kg, with 100% of positive samples). One of the analysed samples of instant coffee even exceeded the maximum limit of 10 μg/kg (1881/2006/EC). The study further revealed a relatively high incidence of 14-(R)-OTA, stereoisomer of OTA (14-(S)-OTA), originating as its main degradation product. Its identity was confirmed by high resolution mass spectrometry (HRMS/MS). Most of the samples positive for OTA were also positive for this diastereoisomer, with signal intensities of approx. one-third to one half of the signal of 14-(S)-OTA.
Collapse
Affiliation(s)
- P. Jonatova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Z. Dzuman
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - N. Prusova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - J. Hajslova
- University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | | |
Collapse
|
26
|
Khaneghah AM, Fakhri Y, Abdi L, Coppa CFSC, Franco LT, de Oliveira CAF. The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol 2019; 123:611-617. [DOI: 10.1016/j.funbio.2019.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]
|
27
|
Abstract
Ochratoxin A (OTA) is a widespread bioactive extrolite from secondary metabolism of fungi which presence in foods like coffee is of public health concern, particularly for heavy drinkers. Coffee is one of the most consumed and appreciated non-alcoholic beverage in the world. Its production from the plantation to the coffee cup involves several steps that would determine the final concentration of OTA in the beverage. This review gives an overview of OTA contamination in roasted coffee beans in different countries and mitigation strategies for OTA reduction.
Collapse
|
28
|
Huang CH, Wang FT, Chan WH. Prevention of ochratoxin A-induced oxidative stress-mediated apoptotic processes and impairment of embryonic development in mouse blastocysts by liquiritigenin. ENVIRONMENTAL TOXICOLOGY 2019; 34:573-584. [PMID: 30698892 DOI: 10.1002/tox.22724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin constituent of a range of food commodities, including coffee, wine, beer, grains, and spices, exerts toxicological and pathological effects in vivo, such as nephrotoxicity, hepatotoxicity, and immunotoxicity. In a previous report, we highlighted the potential of OTA to induce apoptosis via reactive oxygen species (ROS) generation in mouse blastocysts that led to impaired preimplantation and postimplantation embryo development in vitro and in vivo. Here, we have shown that liquiritigenin (LQ), a type of flavonoid isolated from Glycyrrhiza radix, effectively protects against OTA-mediated apoptosis and inhibition of cell proliferation in mouse blastocysts. Preincubation of blastocysts with LQ clearly prevented OTA-triggered impairment of preimplantation and postimplantation embryonic development and fetal weight loss, both in vitro and in vivo. Detailed investigation of regulatory mechanisms revealed that OTA mediated apoptosis and embryotoxicity through ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-9 and caspase-3, which were effectively prevented by LQ. The embryotoxic effects of OTA were further validated in an animal model in vivo. Intravenous injection of dams with OTA (3 mg/kg/day) led to apoptosis of blastocysts, impairment of embryonic development from zygote to blastocyst stage and decrease in day 18 fetal weight. Notably, preinjection of dams with LQ (5 mg/kg/day) effectively prevented OTA-induced apoptosis and toxic effects on embryo development. Our collective results clearly demonstrate that OTA exposure via injection has the potential to damage preimplantation and postimplantation embryonic development against which LQ has a protective effect.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
29
|
Gbashi S, Madala NE, De Saeger S, De Boevre M, Njobeh PB. Numerical optimization of temperature-time degradation of multiple mycotoxins. Food Chem Toxicol 2019; 125:289-304. [DOI: 10.1016/j.fct.2019.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
|
30
|
Gizachew D, Hsu YC, Szonyi B, Ting WTE. Effect of water activity, temperature, and incubation period on fungal growth and ochratoxin A production on Nyjer seeds. Mycotoxin Res 2018; 35:1-8. [PMID: 30105736 DOI: 10.1007/s12550-018-0325-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/14/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
Aspergillus fresenii and Aspergillus sulphureus produce ochratoxin A (OTA), which is a secondary metabolite of Aspergillus and Penicillium species, with nephrotoxic effects and potential carcinogenic activity. The aim of this study was to determine the effects of temperature (20, 30, and 37 °C), water activity (0.82, 0.86, 0.90, 0.94, and 0.98 aw), incubation period (5, 10, 15, and 30 days) on fungal growth, and OTA production by A. fresenii and A. sulphureus on Nyjer oil seeds. There was no fungal growth at 0.82 aw. The two fungal species were able to produce OTA from the fifth day of incubation from 0.86 to 0.98 aw and temperature 20 to 37 °C. Aspergillus fresenii produced the highest concentration of OTA (643 μg/kg) at 0.90 aw and 37 °C within 15 days, while A. sulphureus produced the highest level of OTA (724 μg/kg) at 0.98 aw and 20 °C within 10 days. The optimum water activity and temperature for the growth of both fungi were similar at 0.94 aw and at 30 °C. There was statistically significant difference between the levels of OTA production among the two fungi. Overall, A. sulphureus produced significantly higher levels of OTA (p < 0.05). Higher temperature (37 °C) and 0.90-0.94 aw were optimal for OTA production by A. fresenii. Our results show that Nyjer seeds can support the growth of A. fresenii and A. sulphureus and OTA production, and the two species had similar temperature and water activity requirements for growth but different requirements for OTA production on Nyjer seeds.
Collapse
Affiliation(s)
- Dawit Gizachew
- Department of Chemistry and Physics, Purdue University Northwest, Hammond, IN, 46323, USA.
| | - Yung-Chen Hsu
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN, 46323, USA
| | | | - Wei-Tsyi Evert Ting
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN, 46323, USA
| |
Collapse
|
31
|
Casas-Junco PP, Ragazzo-Sánchez JA, Ascencio-Valle FDJ, Calderón-Santoyo M. Determination of potentially mycotoxigenic fungi in coffee ( Coffea arabica L.) from Nayarit. Food Sci Biotechnol 2018; 27:891-898. [PMID: 30263816 PMCID: PMC6049681 DOI: 10.1007/s10068-017-0288-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 11/24/2022] Open
Abstract
A total of fourteen roasted coffee samples were collected from different local markets in Nayarit, Mexico. Twenty-two fungi isolates were related to the genera Aspergillus (54.54%) and Penicillium (4.5%). The strains R16 (0.33 μg/kg), 6N (1.16 μg/kg) and 11 (0.36 μg/kg) tested positive for OTA (ochratoxin A) production in PDA, the other fungi samples were not toxigenic. According to the sequence analysis of their ITS1-5.8S-ITS2 rDNA region, fungi OTA producers correspond to A. niger, A. versicolor and Byssochlamys spectabilis. These three strains were able to produce OTA when inoculated in roasted coffee in concentrations ranging from 75 to 90 μg/kg, after 21 days. Different production stages of roasted coffee (crop management, postharvest practices and storage) along with environmental conditions do not ensure mycotoxigenic fungi free products. This is the first report of OTA natural occurrence in roasted coffee from Nayarit.
Collapse
Affiliation(s)
- Paloma Patricia Casas-Junco
- Laboratorio Integral de Investigación en Alimentos, Food Science Postgraduate Program, Tecnologico Nacional de Mexico/Instituto Tecnologico de Tepic, Av. Tecnologico #2595, Col. Lagos del Country, C.P. 63175 Tepic, Nayarit Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Food Science Postgraduate Program, Tecnologico Nacional de Mexico/Instituto Tecnologico de Tepic, Av. Tecnologico #2595, Col. Lagos del Country, C.P. 63175 Tepic, Nayarit Mexico
| | - Felipe de Jesus Ascencio-Valle
- Centro de Investigaciones Biológicas del Noroeste, S.C., Mar Bermejo No. 195, Col. Playa Palo de Santa Rita, C.P. 23090 La Paz, BCS Mexico
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Food Science Postgraduate Program, Tecnologico Nacional de Mexico/Instituto Tecnologico de Tepic, Av. Tecnologico #2595, Col. Lagos del Country, C.P. 63175 Tepic, Nayarit Mexico
| |
Collapse
|
32
|
Villalón-López N, Serrano-Contreras JI, Téllez-Medina DI, Gerardo Zepeda L. An 1H NMR-based metabolomic approach to compare the chemical profiling of retail samples of ground roasted and instant coffees. Food Res Int 2018; 106:263-270. [DOI: 10.1016/j.foodres.2017.11.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/25/2017] [Accepted: 11/30/2017] [Indexed: 11/29/2022]
|
33
|
Biosensor-Based Approaches for Detecting Ochratoxin A and 2,4,6-Trichloroanisole in Beverages. BEVERAGES 2018. [DOI: 10.3390/beverages4010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Barcelo JM, Barcelo RC. Post-harvest practices linked with ochratoxin A contamination of coffee in three provinces of Cordillera Administrative Region, Philippines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:328-340. [DOI: 10.1080/19440049.2017.1393109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jonathan M. Barcelo
- Department of Medical Laboratory Science, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| | - Racquel C. Barcelo
- Department of Biology, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| |
Collapse
|
35
|
González-Arias CA, Marín S, Rojas-García AE, Sanchis V, Ramos AJ. UPLC-MS/MS analysis of ochratoxin A metabolites produced by Caco-2 and HepG2 cells in a co-culture system. Food Chem Toxicol 2017; 109:333-340. [PMID: 28888735 DOI: 10.1016/j.fct.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Ochatoxin A (OTA) is one of the most important mycotoxins based on its toxicity. The oral route is the main gateway of entry of OTA into the human body, and specialized epithelial cells constitute the first barrier. The present study investigated the in vitro cytotoxic effect of OTA (5, 15 and 45 μM) and production of OTA metabolities in Caco-2 and HepG2 cells using a co-culture Transwell System to mimic the passage through the intestinal epithelium and hepatic metabolism. The results derived from MTS cell viability assays and transepithelial electrical resistance measurements showed that OTA was slightly cytotoxic at the lowest concentration at 3 h, but significant toxicity was observed at all concentrations at 24 h. OTA metabolites generated in this co-culture were ochratoxin B (OTB), OTA methyl ester, OTA ethyl ester and the OTA glutathione conjugate (OTA-GSH). OTA methyl ester was the major metabolite found in both Caco-2 and HepG2 cells after all treatments. Our results showed that OTA can cause cell damage through several mechanisms and that the OTA exposure time is more important that the dosage in in vitro studies. OTA methyl ester is proposed as an OTA exposure biomarker, although future studies should be conducted.
Collapse
Affiliation(s)
- Cyndia A González-Arias
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Tepic, Nayarit C.P. 63155, Mexico
| | - Sonia Marín
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Aurora E Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Tepic, Nayarit C.P. 63155, Mexico
| | - Vicente Sanchis
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Antonio J Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
36
|
Jeszka-Skowron M, Zgoła-Grześkowiak A, Waśkiewicz A, Stępień Ł, Stanisz E. Positive and negative aspects of green coffee consumption - antioxidant activity versus mycotoxins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4022-4028. [PMID: 28195330 DOI: 10.1002/jsfa.8269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/27/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The quality of coffee depends not only on the contents of healthy compounds but also on its contamination with microorganisms that can produce mycotoxins during development, harvesting, preparation, transport and storage. RESULTS The antioxidant activity of green coffee brews measured in this study by ABTS, DPPH and Folin-Ciocalteu assays showed that coffee extracts from Robusta beans possessed higher activity in all assays than extracts from Arabica beans. The occurrence of ochratoxin A and aflatoxins (B1, B2, G1 and G2) in green coffee beans was studied using liquid chromatography/mass spectrometry. Apart from mycotoxins, the content of ergosterol as a marker indicating fungal occurrence was also determined. Among aflatoxins, aflatoxin B1 was the dominant mycotoxin in coffee bean samples, with the highest level at 17.45 ng g-1 . Ochratoxin A was detected in four samples at levels ranging from 1.27 to 4.34 ng g-1 , and fungi potentially producing this toxin, namely Aspergillus oryzae, Alternaria sp., Aspergillus foetidus, Aspergillus tamarii and Penicillium citrinum, were isolated. CONCLUSION Steaming and decaffeination of coffee beans increased antioxidant activities of brews in comparison with those prepared from unprocessed beans. Although toxins can be quantified in green coffee beans and novel fungi were isolated, their concentrations are acceptable according to legal limits. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Jeszka-Skowron
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | | | | | - Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Ewa Stanisz
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| |
Collapse
|
37
|
|
38
|
Viegas C, Pacífico C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Gomes AQ, Viegas S. Fungal contamination in green coffee beans samples: A public health concern. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:719-728. [PMID: 28548622 DOI: 10.1080/15287394.2017.1286927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Studies on the microbiology of coffee cherries and beans have shown that the predominant toxigenic fungal genera (Aspergillus and Penicillium) are natural coffee contaminants. The aim of this study was to investigate the distribution of fungi in Coffea arabica L. (Arabica coffee) and Coffea canephora L. var. robusta (Robusta coffee) green coffee samples obtained from different sources at the pre-roasting stage. Twenty-eight green coffee samples from different countries of origin (Brazil, Timor, Honduras, Angola, Vietnam, Costa Rica, Colombia, Guatemala, Nicaragua, India, and Uganda) were evaluated. The fungal load in the contaminated samples ranged from 0 to 12330 colony forming units (CFU)/g, of which approximately 67% presented contamination levels below 1500 CFU/g, while 11% exhibited intermediate contamination levels between 1500 and 3000 CFU/g. Contamination levels higher than 3000 CFU/g were found in 22% of contaminated coffee samples. Fifteen different fungi were isolated by culture-based methods and Aspergillus species belonging to different sections (complexes). The predominant Aspergillus section detected was Nigri (39%), followed by Aspergillus section Circumdati (29%). Molecular analysis detected the presence of Aspergillus sections Fumigati and Circumdati. The% coffee samples where Aspergillus species were identified by culture-based methods were 96%. Data demonstrated that green coffee beans samples were contaminated with toxigenic fungal species. Since mycotoxins may be resistant to the roasting process, this suggests possible exposure to mycotoxins through consumption of coffee. Further studies need to be conducted to provide information on critical points of coffee processing, such that fungal contamination may be reduced or eliminated and thus exposure to fungi and mycotoxins through coffee handling and consumption be prevented.
Collapse
Affiliation(s)
- Carla Viegas
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- b Centro de Investigação em Saúde Pública Escola Nacional de Saúde Pública , Universidade Nova de Lisboa , Lisbon , Portugal
| | - Cátia Pacífico
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Tiago Faria
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Ana Cebola de Oliveira
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Liliana Aranha Caetano
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- c Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , University of Lisbon , Lisbon , Portugal
| | - Elisabete Carolino
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Anita Quintal Gomes
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- d Instituto de Medicina Molecular , Faculdade de Medicina de Lisboa , Lisboa , Portugal
| | - Susana Viegas
- a Environment and Health Research Group (GIAS) Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL , Instituto Politécnico de Lisboa , Lisbon , Portugal
- b Centro de Investigação em Saúde Pública Escola Nacional de Saúde Pública , Universidade Nova de Lisboa , Lisbon , Portugal
| |
Collapse
|
39
|
Kolakowski B, O'Rourke SM, Bietlot HP, Kurz K, Aweryn B. Ochratoxin A Concentrations in a Variety of Grain-Based and Non-Grain-Based Foods on the Canadian Retail Market from 2009 to 2014. J Food Prot 2016; 79:2143-2159. [PMID: 28221957 DOI: 10.4315/0362-028x.jfp-16-051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extent of ochratoxin A (OTA) contamination of domestically produced foods sold across Canada was determined from 2009 to 2014 with sampling and testing occurring each fiscal year. Cereal-based, fruit-based, and soy-based food samples (n = 6,857) were analyzed. Almost half of the samples (3,200; 47%) did not contain detectable concentrations of OTA. The remaining 3,657 samples contained OTA at 0.040 to 631 ng/g. Wheat, oats, milled products of other grains (such as rye and buckwheat), and to a lesser extent corn products and their derived foods were the most significant potential sources of OTA exposure for the Canadian population. Wine, grape juice, soy products, beer, dairy-based infant formula, and licorice candy were not significant contributors to OTA consumption. Spices had the highest OTA concentrations; but because so little is ingested, these foods are not considered to be a significant source of OTA. In contrast, infant formulas and cereals can be important dietary sources of OTA. Infant cereals containing oats and infant formulas containing soy had detectable concentrations of OTA, some of which exceeded the proposed Canadian guidelines. The prevalence and concentrations of OTA in major crops (wheat, corn, and oats) varied widely across years. Because these foods were purchased at retail stores, no information was available on the OTA concentrations in the raw materials, the storage conditions before purchase of the samples, or the origin of the ingredients (may include blends of raw materials from different years and/or different geographical regions of Canada); therefore, impact of these factors could not be assessed. Overall, 2.3% of the samples exceeded the proposed Canadian OTA regulatory limits and 2.7% exceeded the current European Union (EU) OTA regulatory limits. These results are consistent with a Health Canada exposure assessment published in 2010, despite the inclusion of a wider range of products and confirm the safety of foods widely available across Canada.
Collapse
Affiliation(s)
- Beata Kolakowski
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Sarah M O'Rourke
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Henri P Bietlot
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Karl Kurz
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| | - Barbara Aweryn
- Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
40
|
|
41
|
Ostry V, Malir F, Dofkova M, Skarkova J, Pfohl-Leszkowicz A, Ruprich J. Ochratoxin A Dietary Exposure of Ten Population Groups in the Czech Republic: Comparison with Data over the World. Toxins (Basel) 2015; 7:3608-35. [PMID: 26378578 PMCID: PMC4591665 DOI: 10.3390/toxins7093608] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
Ochratoxin A is a nephrotoxic and renal carcinogenic mycotoxin and is a common contaminant of various food commodities. Eighty six kinds of foodstuffs (1032 food samples) were collected in 2011–2013. High-performance liquid chromatography with fluorescence detection was used for ochratoxin A determination. Limit of quantification of the method varied between 0.01–0.2 μg/kg depending on the food matrices. The most exposed population is children aged 4–6 years old. Globally for this group, the maximum ochratoxin A dietary exposure for “average consumer” was estimated at 3.3 ng/kg bw/day (lower bound, considering the analytical values below the limit of quantification as 0) and 3.9 ng/kg bw/day (middle bound, considering the analytical values below the limit of quantification as 1/2 limit of quantification). Important sources of exposure for this latter group include grain-based products, confectionery, meat products and fruit juice. The dietary intake for “high consumers” in the group 4–6 years old was estimated from grains and grain-based products at 19.8 ng/kg bw/day (middle bound), from tea at 12.0 ng/kg bw/day (middle bound) and from confectionery at 6.5 ng/kg bw/day (middle bound). For men aged 18–59 years old beer was the main contributor with an intake of 2.60 ng/kg bw/day (“high consumers”, middle bound). Tea and grain-based products were identified to be the main contributors for dietary exposure in women aged 18–59 years old. Coffee and wine were identified as a higher contributor of the OTA intake in the population group of women aged 18–59 years old compared to the other population groups.
Collapse
Affiliation(s)
- Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Marcela Dofkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Jarmila Skarkova
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jiri Ruprich
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| |
Collapse
|
42
|
Development of a new method for the simultaneous determination of 21 mycotoxins in coffee beverages by liquid chromatography tandem mass spectrometry. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.02.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Toman J, Bazin I, Roubal T. Transfer of ochratoxin A into tea and coffee beverages. Toxins (Basel) 2014; 6:3438-53. [PMID: 25525684 PMCID: PMC4280543 DOI: 10.3390/toxins6123438] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is nephrotoxic, hepatotoxic, immunotoxic, neurotoxic, reprotoxic, teratogenic, and carcinogenic (group 2B), being characterized by species and sex differences in sensitivity. Despite the fact that OTA is in some aspects a controversial topic, OTA is the most powerful renal carcinogen. The aim of this study was to make a small survey concerning OTA content in black tea, fruit tea, and ground roasted coffee, and to assess OTA transfer into beverages. OTA content was measured using a validated and accredited HPLC-FLD method with a limit of quantification (LOQ) of 0.35 ng/g. The OTA amount ranged from LOQ up to 250 ng/g in black tea and up to 104 ng/g in fruit tea. Black tea and fruit tea, naturally contaminated, were used to prepare tea infusions. The transfer from black tea to the infusion was 34.8% ± 1.3% and from fruit tea 4.1% ± 0.2%. Ground roasted coffee naturally contaminated at 0.92 ng/g was used to prepare seven kinds of coffee beverages. Depending on the type of process used, OTA transfer into coffee ranged from 22.3% to 66.1%. OTA intakes from fruit and black tea or coffee represent a non-negligible human source.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Vladimir Ostry
- National Reference Center for Microfungi and Mycotoxins in Food Chains, Center of Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, 61242 Brno, Czech Republic.
| | - Annie Pfohl-Leszkowicz
- Department Bioprocess & Microbial Systems, Laboratory Chemical Engineering, INP/ENSA Toulouse, University of Toulouse, UMR 5503 CNRS/INPT/UPS, 31320 Auzeville-Tolosane, France.
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic.
| | - Ingrid Bazin
- Ecole des mines d'Ales, 6 av de Clavieres, 30100 Ales Cedex, France.
| | - Tomas Roubal
- National Reference Laboratory for Biomarkers of Mycotoxins and Mycotoxins in Food, Institute of Public Health in Usti nad Labem, Regional Branch Hradec Kralove, 50002 Hradec Kralove, Czech Republic.
| |
Collapse
|
44
|
|
45
|
Toschi TG, Cardenia V, Bonaga G, Mandrioli M, Rodriguez-Estrada MT. Coffee silverskin: characterization, possible uses, and safety aspects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10836-10844. [PMID: 25321090 DOI: 10.1021/jf503200z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The reuse of coffee silverskin (CS), the main waste product of the coffee-roasting industry, could be an alternative to its environmental disposal. However, CS could also contain undesirable compounds, such as ochratoxin A (OTA) and phytosterol oxidation products (POPs). A study on the composition of CS (caffeine, moisture, dietary fibers, carbohydrates, and polyphenol contents) was carried out, with emphasis on OTA and POPs for safety reasons. The lipid fraction showed significant amounts of linoleic acid and phytosterols (7.0 and 12.1% of lipid fraction). Noticeable levels of POPs (114.11 mg/100 g CS) were found, and the phytosterol oxidation rate varied from 27.6 to 48.1%. The OTA content was 18.7-34.4 μg/kg CS, which is about 3 times higher than the European Commission limits for coffee products. The results suggest that CS could be used as a source of cellulose and/or bioactive compounds; however, the contents of POPs and OTA might represent a risk for human safety if intended for human or livestock use.
Collapse
Affiliation(s)
- Tullia Gallina Toschi
- Food Waste Innovation Centre, Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna , Viale Fanin 40, 40127 Bologna, Italy
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Prelle A, Spadaro D, Denca A, Garibaldi A, Gullino ML. Comparison of clean-up methods for ochratoxin A on wine, beer, roasted coffee and chili commercialized in Italy. Toxins (Basel) 2013; 5:1827-44. [PMID: 24152987 PMCID: PMC3813914 DOI: 10.3390/toxins5101827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022] Open
Abstract
The most common technique used to detect ochratoxin A (OTA) in food matrices is based on extraction, clean-up, and chromatography detection. Different clean-up cartridges, such as immunoaffinity columns (IAC), molecular imprinting polymers (MIP), Mycosep™ 229, Mycospin™, and Oasis® HLB (Hydrophilic Lipophilic balance) as solid phase extraction were tested to optimize the purification for red wine, beer, roasted coffee and chili. Recovery, reproducibility, reproducibility, limit of detection (LOD) and limit of quantification (LOQ) were calculated for each clean-up method. IAC demonstrated to be suitable for OTA analysis in wine and beer with recovery rate >90%, as well as Mycosep™ for wine and chili. On the contrary, MIP columns were the most appropriate to clean up coffee. A total of 120 samples (30 wines, 30 beers, 30 roasted coffee, 30 chili) marketed in Italy were analyzed, by applying the developed clean-up methods. Twenty-seven out of 120 samples analyzed (22.7%: two wines, five beers, eight coffees, and 12 chili) resulted positive to OTA. A higher incidence of OTA was found in chili (40.0%) more than wine (6.6%), beers (16.6%) and coffee (26.6%). Moreover, OTA concentration in chili was the highest detected, reaching 47.8 µg/kg. Furthermore, three samples (2.5%), two wines and one chili, exceeded the European threshold.
Collapse
Affiliation(s)
- Ambra Prelle
- Centre of Competence for the Innovation in the Agro-environmental Sector (AGROINNOVA), University of Turin, Grugliasco (TO) 10095, Italy.
| | | | | | | | | |
Collapse
|
48
|
Garrido CE, González HHL, Salas MP, Resnik SL, Pacin AM. Mycoflora and mycotoxin contamination of Roundup Ready soybean harvested in the Pampean Region, Argentina. Mycotoxin Res 2013; 29:147-57. [PMID: 23765598 DOI: 10.1007/s12550-013-0169-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Abstract
A total of 89 freshly harvested soybean seed samples (Roundup Ready [transgenic] soybean cultivars) from the 2010/2011 crop season were collected from five locations in the Northern Pampean Region II, Argentina. These samples were analyzed for internal mycoflora, toxin production of isolated fungi, and for a range of mycotoxins. Mycotoxin analysis of aflatoxins (AFs), zearalenone (ZEA), fumonisins (FBs) and ochratoxin A (OTA) was done by HPLC-FLD (high performance liquid chromatography with postcolumn fluorescence derivatization), alternariol and alternariol monomethyl ether with HPLC-UV (HPLC with UV detection), trichothecenes (deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin, fusarenon X, 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol were analyzed by GC-ECD (gas chromatography with electron capture detector). Fungal colonization was more frequently found for samples from América, Saladillo and Trenque Lauquen than for samples from General Villegas and Trenel; a total of 1,401 fungal isolates were obtained from the soybean seeds. The most commonly identified fungal genera were Alternaria, Sclerotinia, Chaetomium, Cladosporium, Aspergillus, Penicillium, Phomopsis and Fusarium. Alternaria alternata, A.tenuissima, Aspergillus flavus, Penicillium citrinum, Fusarium verticillioides and F.semitectum were the predominant toxigenic fungal species. Mycotoxin production was confirmed for several isolates of toxigenic species, including Aspergillus flavus, A. parasiticus, Alternaria alternata, A.tenuissima, Fusarium graminearum, F semitectum and F. verticillioides. In particular, the percentage of mycotoxigenic Alternaria alternata (100%), A.tenuissima (95%) and aflatoxigenic strains of A. flavus (57%) were remarkably high. Although none of the mycotoxins, AFs, ZEA, FBs, trichothecenes and OTA, were directly detected in samples of soybean seeds, the frequent presence of toxigenic fungal species indicates the risk of multiple mycotoxin contamination.
Collapse
Affiliation(s)
- Carolina E Garrido
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|