1
|
Lima LS, Müller TN, Ansiliero R, Schuster MB, Silva BL, Jaskulski IB, da Silva WP, Moroni LS. Biofilm formation by Listeria monocytogenes from the meat processing industry environment and the use of different combinations of detergents, sanitizers, and UV-A radiation to control this microorganism in planktonic and sessile forms. Braz J Microbiol 2024; 55:2483-2499. [PMID: 38767749 PMCID: PMC11405597 DOI: 10.1007/s42770-024-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to evaluate the ability of biofilm formation by L. monocytogenes from the meat processing industry environment, as well as the use of different combinations of detergents, sanitizers, and UV-A radiation in the control of this microorganism in the planktonic and sessile forms. Four L. monocytogenes isolates were evaluated and showed moderate ability to form biofilm, as well as carried genes related to biofilm production (agrB, agrD, prfA, actA, cheA, cheY, flaA, sigB), and genes related to tolerance to sanitizers (lde and qacH). The biofilm-forming isolates of L. monocytogenes were susceptible to quaternary ammonium compound (QAC) and peracetic acid (PA) in planktonic form, with minimum inhibitory concentrations of 125 and 75 ppm, respectively, for contact times of 10 and 5 min. These concentrations are lower than those recommended by the manufacturers, which are at least 200 and 300 ppm for QAC and PA, respectively. Biofilms of L. monocytogenes formed from a pool of isolates on stainless steel and polyurethane coupons were subjected to 14 treatments involving acid and enzymatic detergents, QAC and PA sanitizers, and UV-A radiation at varying concentrations and contact times. All treatments reduced L. monocytogenes counts in the biofilm, indicating that the tested detergents, sanitizers, and UV-A radiation exhibited antimicrobial activity against biofilms on both surface types. Notably, the biofilm formed on polyurethane showed greater tolerance to the evaluated compounds than the biofilm on stainless steel, likely due to the material's surface facilitating faster microbial colonization and the development of a more complex structure, as observed by scanning electron microscopy. Listeria monocytogenes isolates from the meat processing industry carry genes associated with biofilm production and can form biofilms on both stainless steel and polyurethane surfaces, which may contribute to their persistence within meat processing lines. Despite carrying sanitizer tolerance genes, QAC and PA effectively controlled these microorganisms in their planktonic form. However, combinations of detergent (AC and ENZ) with sanitizers (QAC and PA) at minimum concentrations of 125 ppm and 300 ppm, respectively, were the most effective.
Collapse
Affiliation(s)
- Larissa Siqueira Lima
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Taís Nunzio Müller
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Rafaela Ansiliero
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Marcia Bär Schuster
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil
| | - Bruna Louise Silva
- Centro Multiusuário, Centro de Ciências Tecnológicas, Universidade do Estado de Santa Catarina, Joinville, SC, 89219-710, Brazil
| | - Itiane Barcellos Jaskulski
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia, Universidade Federal de Pelotas, Capão do Leão, RS, 96001-970, Brazil
- Centro de Desenvolvimento Tecnológico, Departamento de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 960110-610, Brazil
| | - Liziane Schittler Moroni
- Departamento de Engenharia de Alimentos e Engenharia Química, Universidade do Estado de Santa Catarina, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
2
|
Kim J, Kim JW, Lee KK, Lee K, Ku BK, Kim HY. Laboratory investigation of causes of bovine abortion and stillbirth in the Republic of Korea, 2014-2020. J Vet Diagn Invest 2024; 36:428-437. [PMID: 38711295 PMCID: PMC11110765 DOI: 10.1177/10406387241239919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Bovine abortion is a critical problem in the cattle industry. Identifying causes of abortion is key to establishing appropriate herd management and prevention strategies. We used pathology examinations, detection of etiologic agents, and serology to determine the cause of bovine abortions in Korea. We analyzed 360 abortion and stillbirth cases submitted to the Animal and Plant Quarantine Agency from December 2014 to January 2020. The putative cause of abortion was identified in 140 of 360 (38.9%) cases; 124 of the 140 (88.6%) cases were attributed to infections. The most common etiologic agents detected were bovine viral diarrhea virus (65 of 360; 18.1%), Coxiella burnetii (19 of 360; 5.3%), Leptospira spp. (13 of 360; 3.6%), Listeria monocytogenes (9 of 360; 2.5%), and Neospora caninum (8 of 360; 2.2%). Minor abortifacient pathogens included Brucella abortus (2 of 360; 0.6%), bovine alphaherpesvirus 1 (2 of 360; 0.6%), Akabane virus (2 of 360, 0.6%), and bovine ephemeral fever virus (1 of 360; 0.3%). Non-infectious conditions included congenital anomalies (7 of 360; 1.9%), goiter (7 of 360; 1.9%), and vitamin A deficiency (2 of 360; 0.6%). Our diagnostic rate in cases with placenta submitted (42 of 86; 48.8%) was significantly higher than in cases without placenta (98 of 274; 35.8%), which highlights the value of submitting placentas. Our results confirm the status of the large variety of causative agents associated with abortions in cattle in Korea.
Collapse
Affiliation(s)
- Jongho Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Jong Wan Kim
- Research Planning Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Kyunghyun Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division , Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ha-Young Kim
- Bacterial Disease Division , Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
3
|
Centorotola G, Ziba MW, Cornacchia A, Chiaverini A, Torresi M, Guidi F, Cammà C, Bowa B, Mtonga S, Magambwa P, D’Alterio N, Scacchia M, Pomilio F, Muuka G. Listeria monocytogenes in ready to eat meat products from Zambia: phenotypical and genomic characterization of isolates. Front Microbiol 2023; 14:1228726. [PMID: 37711697 PMCID: PMC10498467 DOI: 10.3389/fmicb.2023.1228726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The contamination of ready to eat foods (RTE) products due to Listeria monocytogenes could compromise the products safety becoming a great risk for the consumers. The high presence of L. monocytogenes in RTE products has been described worldwide, but few data are available about these products from African countries. The aims of this study were to report the presence of L. monocytogenes in Zambian RTE products, providing genomic characterization and data on similarity with African circulating strains using whole genome sequencing (WGS). A total of 304 RTE products, produced by different Zambian manufacturers, were purchased at retail, from major supermarkets located in Lusaka, Zambia, comprising 130 dairy and 174 meat products. L. monocytogenes was detected only in 18 (10.3%) RTE meat products of the 174 samples tested. The MLST analysis grouped the 18 L. monocytogenes isolates in 7 clonal complexes (CCs): CC1 (n = 5), CC2 (n = 4), CC9 (n = 4), CC5 (n = 2), CC121 (n = 1), CC155 (n = 1), and CC3 (n = 1). According to the cgMLST results, several clusters were detected, in particular belonging to hyper-virulent clones CC1 and CC2. Regarding the virulence factors, a complete L. monocytogenes Pathogenicity Island 3 (LIPI-3) was present both in the CC1 and CC3, in addition to LIPI-1. Several resistance genes and mobile genetic elements were detected, including Stress Islands, the bcrABC cassette and Tn6188_qac transposon, plasmids and intact prophages. Despite being a first preliminary work with a limited number of samples and isolates, this study helped to increase existing knowledge on contaminated RTE products in Zambia, confirming the presence of hyper-virulent L. monocytogenes CCs, which could play an important role in human diseases, posing a public health concern for consumers.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maureen Wakwamba Ziba
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Benson Bowa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Samson Mtonga
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Phelly Magambwa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Geoffrey Muuka
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| |
Collapse
|
4
|
Nogueira R, Cabo ML, García-Sanmartín L, Sánchez-Ruiloba L, Rodríguez-Herrera JJ. Risk factor-based clustering of Listeria monocytogenes in food processing environments using principal component analysis. Food Res Int 2023; 170:112989. [PMID: 37316020 DOI: 10.1016/j.foodres.2023.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Listeria monocytogenes has a range of strategies that allow it to persist as biofilms in food processing environments (FPE), making it a pathogen of concern to the food industry. The properties of these biofilms are highly variable among strains, and this significantly affects the risk of food contamination. The present study therefore aims to conduct a proof-of-concept study to cluster strains of L. monocytogenes by risk potential using principal component analysis, a multivariate approach. A set of 22 strains, isolated from food processing environments, were typed by serogrouping and pulsed-field gel electrophoresis, showing a relatively high diversity. They were characterized in terms of several biofilm properties that might pose a potential risk of food contamination. The properties studied were tolerance to benzalkonium chloride (BAC), the structural parameters of biofilms (biomass, surface area, maximum and average thickness, surface to biovolume ratio and roughness coefficient) measured by confocal laser scanning microscopy and (3) transfer of biofilm cells to smoked salmon. The PCA correlation circle revealed that the tolerance of biofilms to BAC was positively correlated with roughness, but negatively with biomass parameters. On the contrary, cell transfers were not related to three-dimensional structural parameters, which suggests the role of other variables yet unexplored. Additionally, hierarchical clustering grouped strains into three different clusters. One of them included the strains with high tolerance to BAC and roughness. Another one consisted of strains with enhanced transfer ability, whereas the third cluster contained those that stood out for the thickness of biofilms. The present study represents a novel and effective way to classify L. monocytogenes strains according to biofilm properties that condition the potential risk of reaching the consumer through food contamination. It would thus allow the selection of strains representative of different worst-case scenarios for future studies in support of QMRA and decision-making analysis.
Collapse
Affiliation(s)
- Raquel Nogueira
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Marta López Cabo
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Lucía García-Sanmartín
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Lucía Sánchez-Ruiloba
- Optical Microscopy and Image Analysis Facility, Scientific-Technical Support Unit, Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Juan José Rodríguez-Herrera
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
5
|
Kim J, Kim JW, Kim HY. Phenotypic and genotypic characterization of Listeria monocytogenes in clinical ruminant cases in Korea. Vet Microbiol 2023; 280:109694. [PMID: 36871522 DOI: 10.1016/j.vetmic.2023.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Listeria monocytogenes, a foodborne human and veterinary pathogen, is associated with high mortality rates in ruminants. However, no studies have investigated the antimicrobial resistance of L. monocytogenes isolates from clinical ruminant cases. This study aimed to determine the phenotypic and genotypic characteristics of L. monocytogenes isolates from clinical cases of Korean ruminants. We collected 24 L. monocytogenes isolates from aborted bovine fetuses and goats presenting with listeriosis-related symptoms. The isolates were subjected to PCR serogrouping, conventional serotyping, virulence gene detection, and antimicrobial susceptibility testing. Furthermore, pulsed-field gel electrophoresis and multilocus sequence typing were used to classify and compare genetic diversity among the isolates, including human L. monocytogenes isolates. The most prevalent L. monocytogenes serotypes were 4b (Ⅳb), 1/2a (Ⅱa; Ⅱc), and 1/2b (Ⅱb). All isolates harbored the virulence genes; however, llsX-encoding listeriolysin were identified only in serotypes 4b and 1/2b. All isolates, including two found in humans, formed three genetically diverse pulsed-field gel electrophoresis clusters according to serotype, lineage, and sequence type. The most prevalent sequence type was ST1, followed by ST365 and ST91. The isolates from ruminants with listeriosis were resistant to oxacillin and ceftriaxone and showed diverse lineage, serotype (serogroup), and sequence type characteristics. Considering that the atypical sequence types exhibited clinical manifestations and histopathological lesions, further study is needed to elucidate the pathogenicity of genetically diverse ruminant L. monocytogenes isolates. Furthermore, continuous monitoring of antimicrobial resistance is required to prevent the emergence of L. monocytogenes strains resistant to common antimicrobials.
Collapse
Affiliation(s)
- Jongho Kim
- Animal and Plant Quarantine Agency, Gyeongbuk, Republic of Korea; Jeonbuk National University, Iksan, Republic of Korea
| | - Jong Wan Kim
- Animal and Plant Quarantine Agency, Gyeongbuk, Republic of Korea
| | - Ha-Young Kim
- Animal and Plant Quarantine Agency, Gyeongbuk, Republic of Korea.
| |
Collapse
|
6
|
He R, Zhong Q, Chen W, Zhang M, Pei J, Chen H, Chen W. Transcriptomic and proteomic investigation of metabolic disruption in Listeria monocytogenes triggered by linalool and its application in chicken breast preservation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Persistence of Listeria monocytogenes ST5 in Ready-to-Eat Food Processing Environment. Foods 2022; 11:foods11172561. [PMID: 36076746 PMCID: PMC9454991 DOI: 10.3390/foods11172561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Most human listeriosis is foodborne, and ready-to-eat (RET) foods contaminated by Listeria monocytogenes during processing are found to be common vehicles. In this study, a total of four L. monocytogens STs (ST5, ST121, ST120, and ST2) have been identified in two RTE food plants from 2019 to 2020 in Shanghai, China. The L. monocytogenes ST5 was predominant in one RTE food processing plant, and it persists in the RTE meat processing plant with continued clone transmission. The genetic features of the four STs isolates were different. ST5 and ST121 had the three genes clpL, mdrL, and lde; however, ST120 and ST2 had two genes except for clpL. SSI-1was present in ST5, ST121, and ST120. Additionally, SSI-2 was present only in the ST121 isolates. ST120 had all six biofilm-forming associated genes (actA, prfA, lmo0673, recO, lmo2504 and luxS). The ST2 isolate had only three biofilm-forming associated genes, which were prfA, lmo0673, and recO. The four ST isolates had different biofilm formation abilities at different stages. The biofilm formation ability of ST120 was significantly higher when grown for one day. However, the biofilm formation ability of ST120 reduced significantly after growing for four days. In contrast, the biofilm formation ability of ST5 and ST121 increased significantly. These results suggested that ST5 and ST121 had stronger ability to adapt to stressful environments. Biofilms formed by all four STs grown over four days can be sanitized entirely by a disinfectant concentration of 500 mg/L. Additionally, only ST5 and ST121 biofilm cells survived in sub-lethal concentrations of chlorine-containing disinfectant. These results suggested that ST5 and ST121 were more resistant to chlorine-containing disinfectants. These results indicated that the biofilm formation ability of L. monocytogenes isolates changed at different stages. Additionally, the persistence in food processing environments might be verified by the biofilm formation, stress resistance, etc. Alternatively, these results underlined that disinfectants should be used at lethal concentrations. More attention should be paid to ST5 and ST121, and stronger surveillance should be taken to prevent and control the clonal spread of L. monocytogenes isolates in food processing plants in Shanghai.
Collapse
|
8
|
Parra-Flores J, Holý O, Bustamante F, Lepuschitz S, Pietzka A, Contreras-Fernández A, Castillo C, Ovalle C, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated From Ready-to-Eat Foods in Chile. Front Microbiol 2022; 12:796040. [PMID: 35299835 PMCID: PMC8921925 DOI: 10.3389/fmicb.2021.796040] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Fernanda Bustamante
- Environmental and Public Health Laboratory, Regional Secretariat of the Ministry of Health in Maule, Talca, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Claudia Castillo
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | - Catalina Ovalle
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| |
Collapse
|
9
|
Modelling the Potential Risk of Infection Associated with Listeria monocytogenes in Irrigation Water and Agricultural Soil in Two District Municipalities in South Africa. Microorganisms 2022; 10:microorganisms10010181. [PMID: 35056626 PMCID: PMC8777899 DOI: 10.3390/microorganisms10010181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is the etiologic agent of listeriosis which significantly affects immunocompromised individuals. The potential risk of infection attributed to L. monocytogenes in irrigation water and agricultural soil, which are key transmission pathways of microbial hazards to the human population, was evaluated using the quantitative microbial risk assessment modelling. A Monte Carlo simulation with 10,000 iterations was used to characterize the risks. High counts of L. monocytogenes in irrigation water (mean: 11.96 × 102 CFU/100 mL; range: 0.00 to 56.67 × 102 CFU/100 mL) and agricultural soil samples (mean: 19.64 × 102 CFU/g; range: 1.33 × 102 to 62.33 × 102 CFU/g) were documented. Consequently, a high annual infection risk of 5.50 × 10−2 (0.00 to 48.30 × 10−2), 54.50 × 10−2 (9.10 × 10−3 to 1.00) and 70.50 × 10−2 (3.60 × 10−2 to 1.00) was observed for adults exposed to contaminated irrigation water, adults exposed to contaminated agricultural soil and children exposed to agricultural soil, respectively. This study, therefore, documents a huge public health threat attributed to the high probability of infection in humans exposed to L. monocytogenes in irrigation water and agricultural soil in Amathole and Chris Hani District Municipalities in the Eastern Cape province of South Africa.
Collapse
|
10
|
Tîrziu E, Herman V, Nichita I, Morar A, Imre M, Ban-Cucerzan A, Bucur I, Tîrziu A, Mateiu-Petrec OC, Imre K. Diversity and Antibiotic Resistance Profiles of Listeria monocytogenes Serogroups in Different Food Products from the Transylvania Region of Central Romania. J Food Prot 2022; 85:54-59. [PMID: 34525194 DOI: 10.4315/jfp-21-172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/12/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study used molecular serogrouping to assess the presence and antimicrobial susceptibility profile of Listeria monocytogenes isolates from food products of different animal origin, collected from a county situated in the historical region of Transylvania in central Romania. Seventeen (7.7%) of 221 screened samples were positive for L. monocytogenes; these included 8 (6.2%) of 130 ready-to-eat products (i.e., sausages, ham, and smoked specialties), 6 (12.8%) of 47 raw meat samples (i.e., minced pork, pork organs, and snails), and 3 (6.8%) of 44 dairy samples (i.e., assortment of cheeses). The identified L. monocytogenes serogroups were 1/2a-3a (47.1%), 4b-4d-4e (29.4%), 1/2c-3c (11.8%), and 4a-4c (11.8%). All isolates were resistant to benzylpenicillin and fusidic acid. Resistance was also detected toward oxacillin (88.2%), fosfomycin (82.4%), clindamycin (76.5%), imipenem (52.9%), ciprofloxacin (41.2%), rifampin (41.2%), trimethoprim-sulfamethoxazole (29.4%), and tetracycline (29.4%). On the other hand, all isolates proved susceptible to gentamicin, moxifloxacin, teicoplanin, vancomycin, tigecycline, erythromycin, and linezolid. All tested strains exhibited multidrug resistance, resulting in the expression of a total of 12 resistance profiles. These findings extend the understanding of the spread of an important pathogen in Romanian food products, highlighting a substantial public health issue and medical concern, especially for consumers with a compromised health status. HIGHLIGHTS
Collapse
Affiliation(s)
- Emil Tîrziu
- Department of Animal Production and Veterinary Public Health, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Ileana Nichita
- Department of Animal Production and Veterinary Public Health, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Mirela Imre
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Alexandra Ban-Cucerzan
- Department of Animal Production and Veterinary Public Health, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Iulia Bucur
- Department of Animal Production and Veterinary Public Health, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Andreea Tîrziu
- Department of Ophthalmology, Municipal Emergency Clinical Hospital, Timişoara, 300011, Romania
| | - Oana Cătălina Mateiu-Petrec
- Department of Infectious Diseases and Preventive Medicine, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" Timişoara, 300645, Romania
| |
Collapse
|
11
|
Lanni L, Morena V, Scattareggia Marchese A, Destro G, Ferioli M, Catellani P, Giaccone V. Challenge Test as Special Tool to Estimate the Dynamic of Listeria monocytogenes and Other Foodborne Pathogens. Foods 2021; 11:foods11010032. [PMID: 35010159 PMCID: PMC8750539 DOI: 10.3390/foods11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/24/2023] Open
Abstract
Over 23 million cases of foodborne disease (FBD) occur in Europe each year, with over 4700 deaths. Outbreaks of FBD have a significant impact on our society due to the high economic losses they cause (hospital treatment of affected patients and destruction of contaminated food). Among its health objectives, the European Union has set itself the goal of reducing the incidence of the main FBDs, approving various regulations that codify requirements in order to produce food that is “safe” for human consumption. Among these rules, Regulation 2005/2073 establishes precise food safety criteria for foods that are judged to be most at risk of causing episodes of FBD. The food business operator (FBO) must know their food better and know how to estimate whether a food can support the growth of food pathogens or if they are able to hinder it during the food’s shelf life. It is becoming crucial for each FBO to schedule specific laboratory tests (challenge tests) to establish the growth potential of individual pathogens and their maximum growth rate. In 2008 the European Union published the guidelines for programming the challenge tests for Listeria monocytogenes in RTE foods. These guidelines were further implemented in 2014 and again in 2019. In June 2019 the UNI EN ISO 20976-1 was published, which contains indications for setting up and carrying out challenge tests for all foodborne pathogens in all foods. In this article, we compare the three official documents to highlight their common aspects and differences, highlighting the advantages and disadvantages that each of them offers for those who have to set up a challenge test for the various foodborne pathogens. Our conclusion is that the challenge test is today the most effective tool to estimate the dynamics and growth potential of pathogenic microorganisms in food, if it is designed and implemented in a scrupulous way. It is important to develop a rational experimental design for each challenge test, and for each food, and this requires professionals who are experts in this specific field of study and who must be properly trained.
Collapse
Affiliation(s)
- Luigi Lanni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Sede di Roma, Via Appia Nuova 1411, 00178 Rome, Italy; (L.L.); (V.M.); (A.S.M.)
| | - Valeria Morena
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Sede di Roma, Via Appia Nuova 1411, 00178 Rome, Italy; (L.L.); (V.M.); (A.S.M.)
| | - Adriana Scattareggia Marchese
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Sede di Roma, Via Appia Nuova 1411, 00178 Rome, Italy; (L.L.); (V.M.); (A.S.M.)
| | - Gessica Destro
- EPTA NORD Food Analysis & Consulting, 35026 Conselve, Italy; (G.D.); (M.F.)
| | - Marcello Ferioli
- EPTA NORD Food Analysis & Consulting, 35026 Conselve, Italy; (G.D.); (M.F.)
| | - Paolo Catellani
- Department of Animal Medicine, Productions and Health, School of Agricultural Sciences and Veterinary Medicine, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Valerio Giaccone
- Department of Animal Medicine, Productions and Health, School of Agricultural Sciences and Veterinary Medicine, Viale dell’Università 16, 35020 Legnaro, Italy;
- Correspondence:
| |
Collapse
|
12
|
Chen Q, Li Q, Guo A, Liu L, Gu L, Liu W, Zhang X, Ruan Y. Transcriptome analysis of suspended aggregates formed by Listeria monocytogenes co-cultured with Ralstonia insidiosa. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Wu L, Bao H, Yang Z, He T, Tian Y, Zhou Y, Pang M, Wang R, Zhang H. Antimicrobial susceptibility, multilocus sequence typing, and virulence of listeria isolated from a slaughterhouse in Jiangsu, China. BMC Microbiol 2021; 21:327. [PMID: 34823476 PMCID: PMC8613961 DOI: 10.1186/s12866-021-02335-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Background Listeria monocytogenes is one of the deadliest foodborne pathogens. The bacterium can tolerate severe environments through biofilm formation and antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility, resistance genes, virulence, and molecular epidemiology about Listeria from meat processing environments. Methods This study evaluated the antibiotic resistance and virulence of Listeria isolates from slaughtering and processing plants. All isolates were subjected to antimicrobial susceptibility testing using a standard microbroth dilution method. The harboring of resistant genes was identified by polymerase chain reaction. The multilocus sequence typing was used to determine the subtyping of the isolates and characterize possible routes of contamination from meat processing environments. The virulence of different STs of L. monocytogenes isolates was evaluated using a Caco-2 cell invasion assay. Results A total of 59 Listeria isolates were identified from 320 samples, including 37 L. monocytogenes isolates (62.71%). This study evaluated the virulence of L. monocytogenes and the antibiotic resistance of Listeria isolates from slaughtering and processing plants. The susceptibility of these 59 isolates against 8 antibiotics was analyzed, and the resistance levels to ceftazidime, ciprofloxacin, and lincomycin were as high as 98.31% (L. m 37; L. innocua 7; L. welshimeri 14), 96.61% (L. m 36; L. innocua 7; L. welshimeri 14), and 93.22% (L. m 35; L. innocua 7; L. welshimeri 13), respectively. More than 90% of the isolates were resistant to three to six antibiotics, indicating that Listeria isolated from meat processing environments had high antimicrobial resistance. Up to 60% of the isolates harbored the tetracycline-resistance genes tetA and tetM. The frequency of ermA, ermB, ermC, and aac(6′)-Ib was 16.95, 13.56, 15.25, and 6.78%, respectively. Notably, the resistant phenotype and genotype did not match exactly, suggesting that the mechanisms of antibiotic resistance of these isolates were likely related to the processing environment. Multilocus sequence typing (MLST) revealed that 59 Listeria isolates were grouped into 10 sequence types (STs). The dominant L. monocytogenes STs were ST5, ST9, and ST121 in the slaughtering and processing plant of Jiangsu province. Moreover, ST5 subtypes exhibited high invasion in Caco-2 cells compared with ST9 and ST121 cells. Conclusion The dominant L. monocytogenes ST5 persisted in the slaughtering and processing plant and had high antimicrobial resistance and invasion characteristics, illustrating a potential risk in food safety and human health.
Collapse
Affiliation(s)
- Liting Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hongduo Bao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Zhengquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yuan Tian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University - School of Food and Biological Engineering, Zhenjiang, 212013, China
| | - Yan Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Maoda Pang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
14
|
Kubicová Z, Roussel S, Félix B, Cabanová L. Genomic Diversity of Listeria monocytogenes Isolates From Slovakia (2010 to 2020). Front Microbiol 2021; 12:729050. [PMID: 34795648 PMCID: PMC8593459 DOI: 10.3389/fmicb.2021.729050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past 11 years, the Slovak National Reference Laboratory has collected a panel of 988 Listeria monocytogenes isolates in Slovakia, which were isolated from various food sectors (61%), food-processing environments (13.7%), animals with listeriosis symptoms (21.2%), and human cases (4.1%). We serotyped these isolates by agglutination method, which revealed the highest prevalence (61.1%) of serotype 1/2a and the lowest (4.7%) of serotype 1/2c, although these represented the majority of isolates from the meat sector. The distribution of CCs analyzed on 176 isolates demonstrated that CC11-ST451 (15.3%) was the most prevalent CC, particularly in food (14.8%) and animal isolates (17.5%). CC11-ST451, followed by CC7, CC14, and CC37, were the most prevalent CCs in the milk sector, and CC9 and CC8 in the meat sector. CC11-ST451 is probably widely distributed in Slovakia, mainly in the milk and dairy product sectors, posing a possible threat to public health. Potential persistence indication of CC9 was observed in one meat facility between 2014 and 2018, highlighting its general meat-related distribution and potential for persistence worldwide.
Collapse
Affiliation(s)
- Zuzana Kubicová
- State Veterinary and Food Institute (SVFI), Dolny Kubin, Slovakia
| | - Sophie Roussel
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Lenka Cabanová
- State Veterinary and Food Institute (SVFI), Dolny Kubin, Slovakia
| |
Collapse
|
15
|
Maćkiw E, Korsak D, Kowalska J, Felix B, Stasiak M, Kucharek K, Antoszewska A, Postupolski J. Genetic diversity of Listeria monocytogenes isolated from ready-to-eat food products in retail in Poland. Int J Food Microbiol 2021; 358:109397. [PMID: 34536853 DOI: 10.1016/j.ijfoodmicro.2021.109397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/22/2022]
Abstract
The study describes the characterization of Listeria monocytogenes isolated from the general 2017-2019 national official control and monitoring sampling program. A total of 60,928 of ready-to-eat (RTE) food products were collected in retail in Poland, while the number of L. monocytogenes contaminated samples was 67 (0.1%). The majority of the strains belonged to molecular serotype IVb followed by IIa, frequently associated with human listeriosis. Furthermore, 61.2% of the isolates were resistant at least to one of the tested antimicrobials: penicillin, ampicillin, meropenem, erythromycin, sulfamethoxazole-trimethoprim, amoxicillin-clavulanic acid, ciprofloxacin, chloramphenicol, gentamicin, vancomycin, tetracycline and rifampicin. Virulence genes inlA, inlC, inlJ and lmo2672 were detected in all of the isolates. In our study the llsX gene (encoding LLS) exhibited 11.6% positivity. The 32 strains were grouped into 12 clonal complexes (CCs) which belong to the major clones that are in circulation in Europe. Among them, seven strains with the cgMLST close relatedness (CC2) were isolated from diverse food sectors, underlining a large circulation of this clone in Poland, most likely from multiple introduction sources. Additionally, two RTE strains CC6 and one CC37 were identified as closely related by cgMLST to two publicly available genomes of clinical strains isolated in Poland in 2012-2013. These results indicate the large strain circulation and point to RTE food products as a potential source of human listeriosis. The present study provided data to capture the contamination status of L. monocytogenes in foods at the retail level in Poland and assess the potential risk of this pathogen for human safety.
Collapse
Affiliation(s)
- Elżbieta Maćkiw
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland.
| | - Dorota Korsak
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Joanna Kowalska
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Benjamin Felix
- European Union Reference Laboratory for L. monocytogenes, ANSES, Laboratory for Food Safety, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Monika Stasiak
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Katarzyna Kucharek
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Aleksandra Antoszewska
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| | - Jacek Postupolski
- Department of Food Safety, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| |
Collapse
|
16
|
Review controlling Listeria monocytogenes in ready-to-eat meat and poultry products: An overview of outbreaks, current legislations, challenges, and future prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zhao Q, Hu P, Li Q, Zhang S, Li H, Chang J, Jiang Q, Zheng Y, Li Y, Liu Z, Ren H, Lu S. Prevalence and transmission characteristics of Listeria species from ruminants in farm and slaughtering environments in China. Emerg Microbes Infect 2021; 10:356-364. [PMID: 33560938 PMCID: PMC7928038 DOI: 10.1080/22221751.2021.1888658] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is an important foodborne pathogen, and is ubiquitously distributed in the natural environment. Cattle and sheep, as natural hosts, can transmit L. monocytogenes to related meat and dairy products. In this study, the prevalence, distribution, and transmission characteristics of Listeria were analysed by investigating 5214 samples of cattle and sheep in farm and slaughtering environments in China. A low contamination incidence of L. monocytogenes (0.5%, 20/4430) was observed in farm environment, but there was a high contamination incidence in slaughtering environment (9.4%, 74/784). The incidence of L. innocua in cattle and sheep farm and slaughtering environments is more common and significantly higher (9.7%, 508/5214) than that of L. monocytogenes (1.8%, 94/5214). The distinct molecular and genetic characteristics of Listeria by PFGE and MLST indicated that L. monocytogenes and L. innocua were gradually transmitted from the farm and slaughtering environments to end products, such as beef and mutton along the slaughtering chain. The ST7, ST9, ST91, and ST155 found in our study were associated with the human listeriosis cases in China. In addition, the findings of virulence markers (inlC, inlJ, LIPI-3, LIPI-4, and ECIII) concerned with the pathogenesis of human listeriosis and antibiotics resistance of L. monocytogenes in this study implies a potential public health risk. This study fills the gap in the epidemiology of beef cattle and sheep that carry Listeria in farm and slaughtering environments in major cattle and sheep producing areas in China.
Collapse
Affiliation(s)
- Qiang Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Qianqian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Shasha Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Hanxiao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Jiang Chang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Qiujie Jiang
- Jilin Center for Animal Disease Control and Prevention, Changchun, Jilin, People's Republic of China
| | - Yu Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Yansong Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Zengshan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Honglin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| | - Shiying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Double First-class Discipline of Human-animal Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
18
|
Kode D, Nannapaneni R, Chang S. Low-Level Tolerance to Antibiotic Trimethoprim in QAC-Adapted Subpopulations of Listeria monocytogenes. Foods 2021; 10:foods10081800. [PMID: 34441577 PMCID: PMC8393223 DOI: 10.3390/foods10081800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Between January and July 2021, there were as many as 30 recalls in the U.S. due to potential Listeria monocytogenes contamination from a variety of food products including muffins, kimchi, chicken salad, ready-to-eat chicken, smoked fish, mushrooms, queso fresco cheese, ice cream, turkey sandwiches, squash, and other foods. A contaminated food chain can serve as a potential vehicle for transmitting antibiotic resistant bacteria since there is a slow emergence of multi-drug antibiotic resistance in L. monocytogenes. Biocides are essential for safe food processing, but they may also induce unintended selective pressure at sublethal doses for the expression of antibiotic resistance in L. monocytogenes. To better understand the sources of such slow emergence of antibiotic resistance through biocide residues present in the food environments, we are working on the role of sublethal doses of commonly used biocides in defined broth and water models for understanding L. monocytogenes adaptation. We recently published the development of low-level tolerance to fluoroquinolone antibiotic ciprofloxacin in quaternary ammonium compound (QAC) adapted subpopulations of L. monocytogenes (Microorganisms 9, 1052). Of the six different antibiotics tested to determine heterologous stress adaptation in eight strains of L. monocytogenes, trimethoprim was the second one that exhibited low-level tolerance development after continuous exposure (by three approaches) to sublethal concentrations of QAC against actively growing planktonic cells of L. monocytogenes. When adapted to daily cycles of fixed or gradually increasing sublethal concentrations of QAC, we observed three main findings in eight L. monocytogenes strains against trimethoprim: (a) 3 of the 8 strains exhibited significant increase in short-range minimum inhibitory concentration (MIC) of trimethoprim by 1.7 to 2.5 fold in QAC-adapted subpopulations compared to non-adapted cells (p < 0.05); (b) 2 of the 8 strains exhibited significant increase in growth rate in trimethoprim (optical density (OD) by 600 nm at 12 h) by 1.4 to 4.8 fold in QAC-adapted subpopulations compared to non-adapted cells (p < 0.05); and (c) 5 of the 8 strains yielded significantly higher survival by 1.3-to-3.1 log CFU/mL in trimethoprim in QAC-adapted subpopulations compared to the non-adapted control (p < 0.05). However, for 3/8 strains of L. monocytogenes, there was no increase in the survival of QAC-adapted subpopulations compared to non-adapted control in trimethoprim. These findings suggest the potential formation of low-level trimethoprim tolerant subpopulations in some L. monocytogenes strains where QAC may be used widely. These experimental models are useful in developing early detection methods for tracking the slow emergence of antibiotic tolerant strains through food chain. Also, these findings are useful in understanding the predisposing conditions leading to slow emergence of antibiotic resistant strains of L. monocytogenes in various food production and food processing environments.
Collapse
|
19
|
Mafuna T, Matle I, Magwedere K, Pierneef RE, Reva ON. Whole Genome-Based Characterization of Listeria monocytogenes Isolates Recovered From the Food Chain in South Africa. Front Microbiol 2021; 12:669287. [PMID: 34276601 PMCID: PMC8283694 DOI: 10.3389/fmicb.2021.669287] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen which has the ability to adapt and survive in food and food processing facilities where it can persist for years. In this study, a total of 143 L. monocytogenes isolates in South Africa (SA) were characterized for their strain’s genetic relatedness, virulence profiles, stress tolerance and resistance genes associated with L. monocytogenes. The Core Genome Multilocus Sequence Typing (cgMLST) analysis revealed that the most frequent serogroups were IVb and IIa; Sequence Types (ST) were ST204, ST2, and ST1; and Clonal Complexes (CC) were CC204, CC1, and CC2. Examination of genes involved in adaptation and survival of L. monocytogenes in SA showed that ST1, ST2, ST121, ST204, and ST321 are well adapted in food processing environments due to the significant over-representation of Benzalkonium chloride (BC) resistance genes (bcrABC cassette, ermC, mdrL and Ide), stress tolerance genes (SSI-1 and SSI-2), Prophage (φ) profiles (LP_101, vB LmoS 188, vB_LmoS_293, and B054 phage), plasmids profiles (N1-011A, J1776, and pLM5578) and biofilm formation associated genes. Furthermore, the L. monocytogenes strains that showed hyper-virulent potential were ST1, ST2 and ST204, and hypo-virulent were ST121 and ST321 because of the presence and absence of major virulence factors such as LIPI-1, LIPI-3, LIPI-4 and the internalin gene family members including inlABCEFJ. The information provided in this study revealed that hyper-virulent strains ST1, ST2, and ST204 could present a major public health risk due to their association with meat products and food processing environments in SA.
Collapse
Affiliation(s)
- Thendo Mafuna
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa.,Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council: Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Forestry and Fisheries, Private Bag X138, Pretoria, South Africa
| | - Rian E Pierneef
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa
| | - Oleg N Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Gebremedhin EZ, Hirpa G, Borana BM, Sarba EJ, Marami LM, Kelbesa KA, Tadese ND, Ambecha HA. Listeria Species Occurrence and Associated Factors and Antibiogram of Listeria monocytogenes in Beef at Abattoirs, Butchers, and Restaurants in Ambo and Holeta in Ethiopia. Infect Drug Resist 2021; 14:1493-1504. [PMID: 33907427 PMCID: PMC8064612 DOI: 10.2147/idr.s304871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Listeriosis is one of the globally distributed foodborne diseases with the highest fatality rate. The objectives of this study were to isolate and identify Listeria species, assess factors for contamination of beef, and antibiogram of Listeria monocytogenes in Ambo and Holeta towns, Central Ethiopia. MATERIALS AND METHODS A total of 450 meat samples were collected from abattoirs (n=150), butchers (n=150), and restaurants (n=150) for isolation and identification of Listeria species. Logistic regression analysis was used to assess the association between the occurrence of Listeria species in meat and potential risk factors. The antimicrobial susceptibility test was done using the Kirby Bauer test. RESULTS The overall occurrence of Listeria species in Ambo and Holeta towns was 28.4% (128/450; 95% confidence interval [CI]: 24.3-32.9%). The isolation rate of Listeria monocytogenes was 4.4%, Listeria ivanovii 2.2%, Listeria seeligeri 1.8%, Listeria welshimeri 3.8%, Listeria innocua 6.2%, and Listeria grayi 10.2%. The probability of contamination of meat in butchers and restaurants was higher in Holeta than Ambo [OR=3.4; 95%; p=0.001], in dry than wet season [OR=5.2; p=0.009], and where the hygiene of cutting boards was poor (OR=7.7; p=0.008). Of the 20 Listeria monocytogenes isolates, 80%, 70%, 60%, and 55% were resistant to oxacillin, amikacin, and nalidixic acid, chloramphenicol, and tetracycline, respectively. The Listeria monocytogenes isolates were 95%, 90%, and 85% susceptible to amoxicillin, vancomycin, and clindamycin, respectively. About 95% of Listeria monocytogenes isolates were multidrug-resistant. One isolate (5%) had developed resistance to 10 classes of antimicrobial drugs. CONCLUSION Listeria species are widespread and study towns, season, and hygiene of cutting boards are independent predictors of isolation of Listeria species. Multidrug resistance among Listeria monocytogenes was very high. Therefore, adequate cooking of meat, regular training of beef handlers, prudent use of drugs, and further molecular studies on Listeria species are important.
Collapse
Affiliation(s)
- Endrias Zewdu Gebremedhin
- Department of Veterinary Sciences, College of Agriculture and Veterinary Science, Ambo University, Ambo, Ethiopia
| | - Gadisa Hirpa
- Department of Biology, Ambo Preparatory School, Ambo, Ethiopia
| | - Bizunesh Mideksa Borana
- Department of Veterinary Sciences, College of Agriculture and Veterinary Science, Ambo University, Ambo, Ethiopia
| | - Edilu Jorga Sarba
- Department of Veterinary Sciences, College of Agriculture and Veterinary Science, Ambo University, Ambo, Ethiopia
| | - Lencho Megersa Marami
- Department of Veterinary Laboratory Technology, College of Agriculture and Veterinary Science, Ambo University, Ambo, Ethiopia
| | - Kebede Abdisa Kelbesa
- Department of Veterinary Sciences, College of Agriculture and Veterinary Science, Ambo University, Ambo, Ethiopia
| | - Nega Desalegn Tadese
- Department of Veterinary Laboratory Technology, College of Agriculture and Veterinary Science, Ambo University, Ambo, Ethiopia
| | - Hirut Abebe Ambecha
- Department of Veterinary Laboratory Technology, College of Agriculture and Veterinary Science, Ambo University, Ambo, Ethiopia
| |
Collapse
|
21
|
Jing J, Zhang R, Wang Y, Tang S, Yang H, Du L, Lin B, Shao L, Zhang F, Xue P. Less polar ginsenosides have better protective effects on mice infected by Listeria monocytogenes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112065. [PMID: 33636464 DOI: 10.1016/j.ecoenv.2021.112065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Listeria monocytogenes widely exists in the natural environment and does great harm, which can cause worldwide public safety problem. Infection with L. monocytogenes can cause rapid death of Kupffer cell (KCs) in liver tissue and liver damage. American ginseng saponins is a natural compound in plants, which has great potential in inhibiting L. monocytogenes infection. Therefore, American ginseng stem-leaf saponins (AGS) and American ginseng heat-transformed saponins (HTS) were used as raw materials to study their bacteriostatic experiments in vivo and in vitro. In this experiment, female Kunming mice were randomly divided into five groups: control group, negative group, AGS group, HTS group (10 mg/kg/day in an equal volume via gastric administration) and penicillin group, each group containing six mice. Profiles AGS and HTS components were evaluated by high-performance liquid chromatography (HPLC) analysis. The bacteriostatic effect of AGS and HTS on L. monocytogenes was evaluated by inhibition zone test, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The bacteriostatic effect of AGS and HTS pretreatment on mice infected with L. monocytogenes were studies by animal experimental. The results showed that the content of polar saponins in AGS was 0.81 ± 0.003 mg/mg, less polar saponins was 0.08 ± 0.02 mg/mg, the content of polar saponins in HTS was 0.10 ± 0.01 mg/mg, less polar saponins was 0.76 ± 0.02 mg/mg. The in vitro bacteriostatic diameter of HTS (16.6 ± 0.8 mm) is large than that of AGS (10.2 ± 1.2 mm). AGS and HTS pretreatment could reduce the colony numbers in the livers of mice infected with Listeria monocytogenes. The levels of alanine aminotransferase (ALT), IL-1β, IL-6, TNF-α and IFN-γ in the livers of mice in the pretreatment group were significantly lower than those in the negative group. There were obvious leukoplakia, calcification and other liver damage on the liver surface in the negative control group, and obvious inflammatory cell infiltration in HE sections. AGS and HTS pretreatment can reduce liver injury caused by L. monocytogenes and protect the liver. Compared with AGS, HTS has higher content of less polar saponins and better bacteriostatic effect in vitro. The count of bacterial in liver tissue of HTS group was significantly lower, the survival rate was significantly higher than that of AGS group. Less polar saponins had better bacteriostatic effect. Collectively, less polar saponins pretreatment has a protective effect on mice infected with L. monocytogenes, to which alleviated liver damage, improved anti-inflammatory ability and immunity of the body, protected liver may contribute.
Collapse
Affiliation(s)
- Jinjin Jing
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Yunhai Wang
- Affiliated Hospital of Weifang Medical University, Weifang 261053, People's Republic of China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Hanchao Yang
- Affiliated Hospital of Weifang Medical University, Weifang 261053, People's Republic of China
| | - Lidong Du
- Clinical Medical Colleges, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Bingjie Lin
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Lijun Shao
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Fengxiang Zhang
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
22
|
Lianou A, Raftopoulou O, Spyrelli E, Nychas GJE. Growth of Listeria monocytogenes in Partially Cooked Battered Chicken Nuggets as a Function of Storage Temperature. Foods 2021; 10:foods10030533. [PMID: 33806490 PMCID: PMC8001785 DOI: 10.3390/foods10030533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022] Open
Abstract
Battered poultry products may be wrongly regarded and treated by consumers as ready-to-eat and, as such, be implicated in foodborne disease outbreaks. This study aimed at the quantitative description of the growth behavior of Listeria monocytogenes in fresh, partially cooked (non-ready-to-eat) battered chicken nuggets as function of temperature. Commercially prepared chicken breast nuggets were inoculated with L. monocytogenes and stored at different isothermal conditions (4, 8, 12, and 16 °C). The pathogen’s growth behavior was characterized via a two-step predictive modelling approach: estimation of growth kinetic parameters using a primary model, and description of the effect of temperature on the estimated maximum specific growth rate (μmax) using a secondary model. Model evaluation was undertaken using independent growth data under both constant and dynamic temperature conditions. According to the findings of this study, L. monocytogenes may proliferate in battered chicken nuggets in the course of their shelf life to levels potentially hazardous for susceptible population groups, even under well-controlled refrigerated storage conditions. Model evaluation demonstrated a satisfactory performance, where the estimated bias factor (Bf) was 0.92 and 1.08 under constant and dynamic temperature conditions, respectively, while the accuracy factor (Af) value was 1.08, in both cases. The collected data should be useful in model development and quantitative microbiological risk assessment in battered poultry products.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Correspondence: (A.L.); (G.-J.E.N.)
| | - Ourania Raftopoulou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA
| | - Evgenia Spyrelli
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece; (O.R.); (E.S.)
- Correspondence: (A.L.); (G.-J.E.N.)
| |
Collapse
|
23
|
Arslan S, Özdemir F. Prevalence and antimicrobial resistance of Listeria species and molecular characterization of Listeria monocytogenes isolated from retail ready-to-eat foods. FEMS Microbiol Lett 2021; 367:5700711. [PMID: 31926017 DOI: 10.1093/femsle/fnaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
A wide variety of foods can be contaminated with Listeria species, especially L. monocytogenes. Ready-to-eat (RTE) foods are predominantly associated with human listeriosis caused by L. monocytogenes. Therefore, this study aimed to assess the presence of Listeria species in RTE foods and to characterize L. monocytogenes isolates by means of detection of virulence markers, serotypes and genetic relatedness. Of the 300 RTE food samples, 59 (19.7%) were positive for Listeria species: L. innocua (13.3%), L. monocytogenes (5%), L. welshimerii (2.3%), L. grayi subsp. murrayi (1.3%), L. grayi (1%), L. ivanovii (1%) and L. ivanovi subsp. londoniensis (0.3%). All L. monocytogenes isolates identified were positive for the actA, iap, inlA, inlB, inlC, inlJ, plcA and prfA virulence genes and biofilm. The isolates were serotyped as 1/2c (33.3%), 4b (26.7%), 1/2a (26.7%), 1/2b (6.7%) and 3c (6.7%) by the multiplex-PCR and agglutination methods. PCR-restriction fragment length polymorphism with AluI and MluCI resulted in three and two profiles, respectively. Pulsed-field gel electrophoresis differentiated the L. monocytogenes isolates into 15 ApaI and 12 AscI patterns. Antimicrobial resistance of all Listeria isolates was determined by the disk diffusion method. Most L. monocytogenes isolates were sensitive to antimicrobials used in the treatment of listeriosis. This study shows the presence of potential pathogenic and antimicrobial-resistant L. monocytogenes in RTE foods that may lead to consumer health risks.
Collapse
Affiliation(s)
- Seza Arslan
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Gölköy, Bolu, Turkey
| | - Fatma Özdemir
- Department of Biology, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, 14030 Gölköy, Bolu, Turkey
| |
Collapse
|
24
|
Keet R, Rip D. Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns. AIMS Microbiol 2021; 7:40-58. [PMID: 33659768 PMCID: PMC7921373 DOI: 10.3934/microbiol.2021004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
Food-borne disease outbreaks are common and offer valuable insights into the causes, impacts, and mechanisms underlying food pathogens. This also serves as a good foundation to validate the performance of current best practice control methods, for example antibiotics, that are used in the fight against food pathogens. Listeriosis outbreaks, caused by Listeria monocytogenes, is no exception. In 2018, South Africa experienced the largest global listeriosis outbreak recorded to date. However, despite the scale of this outbreak, information on the bacterium and its resistance towards antibiotics is still severely lacking. Furthermore, until now it remained to be determined whether L. monocytogenes antibiotic resistance patterns in South Africa mirror resistance patterns elsewhere in the world. The aim of this study was therefore to evaluate the efficacy of antibiotics that are currently used against L. monocytogenes. Using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disc diffusion method, L. monocytogenes isolates (n = 177) from diverse origins in the Western Cape, South Africa (clinical, food, and environment) were tested for susceptibility against five different antibiotics, namely ampicillin, erythromycin, chloramphenicol, gentamicin, and tetracycline. Isolates were collected over a period of two years (2017-2019). All isolates were susceptible to ampicillin, the currently recommended antibiotic, while a large number of isolates were resistant to chloramphenicol, erythromycin, and tetracycline. Also, patterns of resistance observed here are different to patterns observed elsewhere. The findings of this study demonstrate that it is imperative to continuously monitor the efficacy of currently recommended antibiotics, since resistance patterns can quickly develop when such antibiotics are overutilized, and secondly, that it is crucial to assess local antibiotic resistance patterns in conjunction with global patterns, since the latter is not necessarily generalizable to local scales.
Collapse
Affiliation(s)
| | - Diane Rip
- Department of Food Science, Centre for Food Safety, Stellenbosch University, South Africa
| |
Collapse
|
25
|
Bustamante F, Maury-Sintjago E, Leal FC, Acuña S, Aguirre J, Troncoso M, Figueroa G, Parra-Flores J. Presence of Listeria monocytogenes in Ready-to-Eat Artisanal Chilean Foods. Microorganisms 2020; 8:microorganisms8111669. [PMID: 33121209 PMCID: PMC7694154 DOI: 10.3390/microorganisms8111669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Ready-to-eat (RTE) artisanal foods are very popular, but they can be contaminated by Listeria monocytogenes. The aim was to determine the presence of L. monocytogenes in artisanal RTE foods and evaluate its food safety risk. We analyzed 400 RTE artisanal food samples requiring minimal (fresh products manufactured by a primary producer) or moderate processing (culinary products for sale from the home, restaurants such as small cafés, or on the street). Listeria monocytogenes was isolated according to the ISO 11290-1:2017 standard, detected with VIDAS equipment, and identified by real-time polymerase chain reaction (PCR). A small subset (n = 8) of the strains were further characterized for evaluation. The antibiotic resistance profile was determined by the CLSI methodology, and the virulence genes hlyA, prfA, and inlA were detected by PCR. Genotyping was performed by pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was detected in 7.5% of RTE artisanal foods. On the basis of food type, positivity in minimally processed artisanal foods was 11.6%, significantly different from moderately processed foods with 6.2% positivity (p > 0.05). All the L. monocytogenes strains (n = 8) amplified the three virulence genes, while six strains exhibited premature stop codons (PMSC) in the inlA gene; two strains were resistant to ampicillin and one strain was resistant to sulfamethoxazole-trimethoprim. Seven strains were 1/2a serotype and one was a 4b strain. The sampled RTE artisanal foods did not meet the microbiological criteria for L. monocytogenes according to the Chilean Food Sanitary Regulations. The presence of virulence factors and antibiotic-resistant strains make the consumption of RTE artisanal foods a risk for the hypersensitive population that consumes them.
Collapse
Affiliation(s)
- Fernanda Bustamante
- Environmental and Public Health Laboratory, Universidad del Bío-Bío, Regional Secreatariat of the Ministry of Health in Maule, Talca 3461637, Chile;
| | - Eduard Maury-Sintjago
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
| | - Fabiola Cerda Leal
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Sergio Acuña
- Department of Food Engineering, Universidad del Bío-Bío, Chillán 3800708, Chile; (F.C.L.); (S.A.)
| | - Juan Aguirre
- Department of Agricultural Industry and Enology, Universidad de Chile, Santiago 8820808, Chile;
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile; (M.T.); (G.F.)
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3800708, Chile;
- Correspondence:
| |
Collapse
|
26
|
Bahrami A, Davis S, Mousavi Khaneghah A, Williams L. The efficiency of technologies used for epidemiological characterization of Listeria monocytogenes isolates : an update. Crit Rev Food Sci Nutr 2020; 62:1079-1091. [PMID: 33092402 DOI: 10.1080/10408398.2020.1835816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The characterization of pathogenic bacteria by providing information regarding the identification and source-tracking of the causes of outbreaks is vital for the epidemiological investigations of foodborne diseases. The knowledge of transmission of Listeria monocytogenes (L. monocytogenes) strains from the environment, directly or indirectly (through food processing facilities) to the final food products, due to the complexity of evaluating numerous, affecting parameters is quite limited. The food trade globalization also adds difficulties in tracking the association between the infection occurrence and causative pathogens, aiming to prevent their spread. The occurrence of listeriosis, a notifiable disease throughout the world, can either be sporadic or outbreak-related. Due to the importance of foodborne outbreaks from a public health aspect and its correspondence enormous economic losses, cross-linked surveillance studies regarding the contamination of foods by L. monocytogenes, besides identifying clusters and tracing the sources of infections on an international-scale to prevent and control L. monocytogenes outbreaks sounds very crucial. Contrary to the conventional typing methods, molecular-based techniques, such as whole-genome sequencing, owing to the capacity to discriminate L. monocytogenes strains down to single nucleotide differences, provide an accurate characterization of strains and tracking the causes of outbreaks. However, routinely using molecular-based methods depends on the required improvements in the affordability, proper timing, and preparing reliable, standardized bioinformatics facilities. This work was conducted to critically review the practical potential of diverse typing methods have been used for the characterization of L. monocytogenes and discuss how they might change the future of efforts for control of listeriosis.
Collapse
Affiliation(s)
- Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Shurrita Davis
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural, and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
27
|
Obaidat MM, Kiryluk H, Rivera A, Stringer AP. Molecular serogrouping and virulence of Listeria monocytogenes from local dairy cattle farms and imported beef in Jordan. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Garre A, Espín JF, Huertas JP, Periago PM, Palop A. Limonene nanoemulsified with soya lecithin reduces the intensity of non-isothermal treatments for inactivation of Listeria monocytogenes. Sci Rep 2020; 10:3656. [PMID: 32107438 PMCID: PMC7046608 DOI: 10.1038/s41598-020-60571-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Consumers' demands for ready-to-eat, fresh-like products are on the rise during the last years. This type of products have minimal processing conditions that can enable the survival and replication of pathogenic microorganisms. Among them, Listeria monocytogenes is of special concern, due to its relatively high mortality rate and its ability to replicate under refrigeration conditions. Previous research works have shown that nanoemulsified essential oils in combination with thermal treatments are effective for inactivating L. monocytogenes. However, previous research works were limited to isothermal conditions, whereas actual processing conditions in industry are dynamic. Under dynamic conditions, microorganism can respond unexpectedly to the thermal stress (e.g. adaptation, acclimation or increased sensitivity). In this work, we assess the combination of nanoemulsified D-limonene with thermal treatments under isothermal and dynamic conditions. The nanoemulsion was prepared following an innovative methodology using soya lecithin, a natural compound as well as the essential oil. Under isothermal heating conditions, the addition of the antimicrobial enables a reduction of the treatment time by a factor of 25. For time-varying treatments, dynamic effects were relevant. Treatments with a high heating rate (20 °C/min) are more effective than those with a slow heating rate (1 °C/min). This investigation demonstrates that the addition of nanoemulsified D-limonene can greatly reduce the intensity of the thermal treatments currently applied in the food industry. Hence, it can improve the product quality without impacting its safety.
Collapse
Affiliation(s)
- Alberto Garre
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Jennifer F Espín
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan-Pablo Huertas
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Paula M Periago
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Alfredo Palop
- Dpto. Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain.
| |
Collapse
|
29
|
Iwu CD, Okoh AI. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS One 2020; 15:e0228956. [PMID: 32040533 PMCID: PMC7010277 DOI: 10.1371/journal.pone.0228956] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/26/2020] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen and the etiologic agent of listeriosis, which can be disseminated within the agricultural environment particularly soil and irrigation water, contaminate farm produce and cause high mortality and morbidity among vulnerable individuals. This study assessed the incidence and antibiogram of L. monocytogenes recovered from irrigation water and agricultural soil samples collected from Chris Hani and Amathole District Municipalities (DMs) in Eastern Cape Province, South Africa. The distribution of presumptive L. monocytogenes in irrigation water and agricultural soil samples was done using the standard plate count method, while polymerase chain reaction (PCR) was used to identify the isolates. The confirmed isolates were screened for 9 key virulence markers using PCR after which they were subjected to antibiotic susceptibility testing against 18 antibiotics used for the alleviation of listeriosis using the disk diffusion method. Relevant putative antibiotic resistance genes in the resistant variants were screened for using PCR. The distribution of L. monocytogenes in irrigation water samples was statistically significant (P ≤ 0.05) and ranged from log10 1.00 CFU/100ml to log10 3.75 CFU/100 ml. In agricultural soil samples, the distribution ranged significantly (P ≤ 0.05) from log10 2.10 CFU/g to log10 3.51 CFU/g. Of the 117 presumptive L. monocytogenes recovered from irrigation water samples and 183 presumptive L. monocytogenes isolated from agricultural soil samples, 8 (6.8%) and 12 (6.6%) isolates were confirmed respectively. Nine virulence genes including inlA, inlB, inlC, inlJ, actA, hlyA, plcA, plcB, and iap were detected in all the isolates. The proportion of the isolates exhibiting phenotypic resistance against the test antimicrobials followed the order: tetracycline (90%), doxycycline (85%), cefotaxime (80%), penicillin (80%), chloramphenicol (70%), linezolid (65%), erythromycin (60%) and trimethoprim/sulfamethoxazole (55%). The isolates exhibited multiple antibiotic resistance against 3 or more antibiotics and the MAR indices of all the multidrug isolates were ≥0.2. The isolates harboured antibiotic resistance genes including tetA, tetB, tetC, sulI, sulII, aadA, aac(3)-IIa and ESBLs including blaTEM, blaCTX-M group 9, blaVEBas well as AmpC. None of the isolates harboured the carbapenemases. We conclude that irrigation water and agricultural soil collected from Chris Hani and Amathole District Municipalities (DMs) in Eastern Cape Province of South Africa are reservoirs and potential transmission routes of multidrug-resistant L. monocytogenes to the food web and consequently threat to public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
30
|
Nemati V, Khomeiri M, Sadeghi Mahoonak A, Moayedi A. Prevalence and Antibiotic Susceptibility of Listeria Monocytogenes Isolated from Retail Ready-to-Eat Meat Products in Gorgan, Iran. NUTRITION AND FOOD SCIENCES RESEARCH 2020. [DOI: 10.29252/nfsr.7.1.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
31
|
Wang Y, Luo L, Li Q, Wang H, Wang Y, Sun H, Xu J, Lan R, Ye C. Genomic dissection of the most prevalent Listeria monocytogenes clone, sequence type ST87, in China. BMC Genomics 2019; 20:1014. [PMID: 31870294 PMCID: PMC6929445 DOI: 10.1186/s12864-019-6399-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 12/15/2019] [Indexed: 12/27/2022] Open
Abstract
Background Listeria monocytogenes consists of four lineages that occupy a wide variety of ecological niches. Sequence type (ST) 87 (serotype 1/2b), belonging to lineage I, is one of the most common STs isolated from food products, food associated environments and sporadic listeriosis in China. Here, we performed a comparative genomic analysis of the L. monocytogenes ST87 clone by sequencing 71 strains representing a diverse range of sources, different geographical locations and isolation years. Results The core genome and pan genome of ST87 contained 2667 genes and 3687 genes respectively. Phylogenetic analysis based on core genome SNPs divided the 71 strains into 10 clades. The clinical strains were distributed among multiple clades. Four clades contained strains from multiple geographic regions and showed high genetic diversity. The major gene content variation of ST87 genomes was due to putative prophages, with eleven hotspots of the genome that harbor prophages. All strains carry an intact CRISRP/Cas system. Two major CRISPR spacer profiles were found which were not clustered phylogenetically. A large plasmid of about 90 Kb, which carried heavy metal resistance genes, was found in 32.4% (23/71) of the strains. All ST87 strains harbored the Listeria pathogenicity island (LIPI)-4 and a unique 10-open read frame (ORF) genomic island containing a novel restriction-modification system. Conclusion Whole genome sequence analysis of L. monocytogenes ST87 enabled a clearer understanding of the population structure and the evolutionary history of ST87 L. monocytogenes in China. The novel genetic elements identified may contribute to its virulence and adaptation to different environmental niches. Our findings will be useful for the development of effective strategies for the prevention and treatment of listeriosis caused by this prevalent clone.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, 643000, Sichuan Province, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, 643000, Sichuan Province, China
| | - Yiqian Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
32
|
Yin Y, Doijad S, Wang W, Lian K, Pan X, Koryciński I, Hu Y, Tan W, Ye S, Wang Z, Pan Z, Chakraborty T, Jiao X. Genetic Diversity of Listeria monocytogenes Isolates from Invasive Listeriosis in China. Foodborne Pathog Dis 2019; 17:215-227. [PMID: 32150465 DOI: 10.1089/fpd.2019.2693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Listeria monocytogenes is a deadly foodborne pathogen, and infections can result in meningoencephalitis and sepsis with mortality rates of up to 30%. In this study, we performed comparative whole-genome analysis of 30 clinical isolates sequenced together with 32 previously sequenced clinical and food isolates from China. The data indicate that L. monocytogenes isolates belonging to the clonal complexes (CC) -1, -8, -9, -87, -121, and -155 are present in human clinical cases. The majority of isolates are from CC-87, 9, and 8 and overlap with those CCs previously reported on the basis of multilocus sequence typing for isolates from Chinese food products. Detailed genome analysis of isolates, representative of CCs in clinical and food products, revealed strong similarities both in their core- and accessory genomes indicating that they are highly related. When compared to genome sequences of isolates of a given CC worldwide, clinical isolates of China were distinct and clustered in unified clades. Our data indicate that epidemic clones of L. monocytogenes (CC-87, 9, and 8) with unusually high occurrence of plasmids are unique to China and suggest that common populations of L. monocytogenes clones are present in both clinical and food products in China.
Collapse
Affiliation(s)
- Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Swapnil Doijad
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Weiping Wang
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China
| | - Kai Lian
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiuzhen Pan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Iwo Koryciński
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany.,Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Yachen Hu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Weijun Tan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Shuyang Ye
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Zegang Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Trinad Chakraborty
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China.,Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Zhang X, Niu Y, Liu Y, Lu Z, Wang D, Cui X, Chen Q, Ma X. Isolation and Characterization of Clinical Listeria monocytogenes in Beijing, China, 2014-2016. Front Microbiol 2019; 10:981. [PMID: 31139159 PMCID: PMC6517826 DOI: 10.3389/fmicb.2019.00981] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen with a significant impact on public health worldwide. A great number of outbreaks caused by L. monocytogenes has been reported, especially in the United States, and European countries. However, listeriosis has not yet been included in notifiable disease in China, and thus information on this infection has been scarce among the Chinese population. In this study, we described a 3-year surveillance of listeriosis in Beijing, China. Fifty-six L. monocytogenes strains isolated from 49 clinical infectious cases (27 pregnancy-associated infections and 22 non-pregnancy-associated infections) were analyzed by serotyping, pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and antimicrobial susceptibility testing between 2014 and 2016 in Beijing. The predominant serogroups were 1/2a,3a and 1/2b,3b,7 which accounted for 92% of the overall isolates. Four strains were serogroup 4b,4d,4e, isolated from patients with pregnancy-associated infections. Based on PFGE, these isolates were divided into 32 pulsotypes (PTs) and 3 clusters associated with serogroups. Ten PTs were represented by more than one isolate with PT09 containing the most number of isolates. MLST differentiated the isolates into 18 STs, without new ST designated. The three most common STs were ST8 (18.4%), ST5 (16.3%), and ST87 (12.2%), accounting for 46.9% of the isolates. STs prevalent in other parts of the world were also present in China such as ST1, ST2, ST5, ST8, and ST9 which caused maternal fetal infections or outbreaks. However, the STs and serogroup distribution of clinical L. monocytogenes in Beijing, China was different from those in other countries. Strains of ST1 and ST2 were isolated from patients with pregnancy-associated infection, whereas none of ST155 isolates caused pregnancy-associated cases. Surveillance of molecular characterization will provide important information for prevention of listeriosis. This study also enhances our understanding of genetic diversity of clinical L. monocytogenes in China.
Collapse
Affiliation(s)
- Xiaoai Zhang
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Yanlin Niu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Yuzhu Liu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Zheng Lu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Di Wang
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Xia Cui
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Qian Chen
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| | - Xiaochen Ma
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing, China
- Research Centre for Preventive Medicine of Beijing, Beijing, China
| |
Collapse
|
34
|
Haubert L, Cruxen CEDS, Fiorentini ÂM, Silva WPD. Tetracycline resistance transfer from foodborne Listeria monocytogenes to Enterococcus faecalis in Minas Frescal cheese. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Arslan S, Baytur S. Prevalence and antimicrobial resistance ofListeriaspecies and subtyping and virulence factors ofListeria monocytogenesfrom retail meat. J Food Saf 2018. [DOI: 10.1111/jfs.12578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seza Arslan
- Department of Biology, Faculty of Arts and SciencesBolu Abant Izzet Baysal University Gölköy/Bolu Turkey
| | - Selin Baytur
- Department of Biology, Faculty of Arts and SciencesBolu Abant Izzet Baysal University Gölköy/Bolu Turkey
| |
Collapse
|
36
|
Fan Q, Zhang Y, Yang H, Wu Q, Shi C, Zhang C, Xia X, Wang X. Effect of Coenzyme Q0 on biofilm formation and attachment-invasion efficiency of Listeria monocytogenes. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Kim SW, Haendiges J, Keller EN, Myers R, Kim A, Lombard JE, Karns JS, Van Kessel JAS, Haley BJ. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014). PLoS One 2018; 13:e0197053. [PMID: 29742151 PMCID: PMC5942804 DOI: 10.1371/journal.pone.0197053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/25/2018] [Indexed: 11/22/2022] Open
Abstract
Unpasteurized dairy products are known to occasionally harbor Listeria monocytogenes and have been implicated in recent listeriosis outbreaks and numerous sporadic cases of listeriosis. However, the diversity and virulence profiles of L. monocytogenes isolates recovered from these products have not been fully described. Here we report a genomic analysis of 121 L. monocytogenes isolates recovered from milk, milk filters, and milking equipment collected from bovine dairy farms in 19 states over a 12-year period. In a multi-virulence-locus sequence typing (MVLST) analysis, 59 Virulence Types (VT) were identified, of which 25% were Epidemic Clones I, II, V, VI, VII, VIII, IX, or X, and 31 were novel VT. In a multi-locus sequence typing (MLST) analysis, 60 Sequence Types (ST) of 56 Clonal Complexes (CC) were identified. Within lineage I, CC5 and CC1 were among the most abundant, and within lineage II, CC7 and CC37 were the most abundant. Multiple CCs previously associated with central nervous system and maternal-neonatal infections were identified. A genomic analysis identified variable distribution of virulence markers, Listeria pathogenicity islands (LIPI) -1, -3, and -4, and stress survival island-1 (SSI-1). Of these, 14 virulence markers, including LIPI-3 and -4 were more frequently detected in one lineage (I or II) than the other. LIPI-3 and LIPI-4 were identified in 68% and 28% of lineage I CCs, respectively. Results of this analysis indicate that there is a high level of genetic diversity among the L. monocytogenes present in bulk tank milk in the United States with some strains being more frequently detected than others, and some being similar to those that have been isolated from previous non-dairy related outbreaks. Results of this study also demonstrate significant number of strains isolated from dairy farms encode virulence markers associated with severe human disease.
Collapse
Affiliation(s)
- Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Julie Haendiges
- Maryland Department of Health and Mental Hygiene, Baltimore, MD, United States of America
| | - Eric N. Keller
- Maryland Department of Health and Mental Hygiene, Baltimore, MD, United States of America
| | - Robert Myers
- Maryland Department of Health and Mental Hygiene, Baltimore, MD, United States of America
| | - Alexander Kim
- Maryland Department of Health and Mental Hygiene, Baltimore, MD, United States of America
| | - Jason E. Lombard
- Center for Epidemiology and Animal Health, USDA-Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, United States of America
| | - Jeffrey S. Karns
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
38
|
Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains. Genes (Basel) 2018; 9:genes9020080. [PMID: 29425131 PMCID: PMC5852576 DOI: 10.3390/genes9020080] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/30/2022] Open
Abstract
The current global crisis of antimicrobial resistance (AMR) among important human bacterial pathogens has been amplified by an increased resistance prevalence. In recent years, a number of studies have reported higher resistance levels among Listeria monocytogenes isolates, which may have implications for treatment of listeriosis infection where resistance to key treatment antimicrobials is noted. This study examined the genotypic and phenotypic AMR patterns of 100 L. monocytogenes isolates originating from food production supplies in Australia and examined this in the context of global population trends. Low levels of resistance were noted to ciprofloxacin (2%) and erythromycin (1%); however, no resistance was observed to penicillin G or tetracycline. Resistance to ciprofloxacin was associated with a mutation in the fepR gene in one isolate; however, no genetic basis for resistance in the other isolate was identified. Resistance to erythromycin was correlated with the presence of the ermB resistance gene. Both resistant isolates belonged to clonal complex 1 (CC1), and analysis of these in the context of global CC1 isolates suggested that they were more similar to isolates from India rather than the other CC1 isolates included in this study. This study provides baseline AMR data for L. monocytogenes isolated in Australia, identifies key genetic markers underlying this resistance, and highlights the need for global molecular surveillance of resistance patterns to maintain control over the potential dissemination of AMR isolates.
Collapse
|
39
|
Horita CN, Baptista RC, Caturla MY, Lorenzo JM, Barba FJ, Sant’Ana AS. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Muhterem-Uyar M, Ciolacu L, Wagner KH, Wagner M, Schmitz-Esser S, Stessl B. New Aspects on Listeria monocytogenes ST5-ECVI Predominance in a Heavily Contaminated Cheese Processing Environment. Front Microbiol 2018; 9:64. [PMID: 29472901 PMCID: PMC5810274 DOI: 10.3389/fmicb.2018.00064] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 01/25/2023] Open
Abstract
The eradication of Listeria monocytogenes from food chains is still a great challenge for the food industry and control authorities since some clonal complexes (CCs) are either better adapted to food processing environments (FPEs) or are globally widespread. In this work, we focus on the in-house evolution of L. monocytogenes genotypes collected from a heavily contaminated FPE whose contamination pattern underwent a massive and yet unexplained change. At the beginning of the sampling in 2010, a high variety of most likely transient L. monocytogenes genotypes was detected belonging to sequence type (ST) 1, ST7, ST21, ST37. After several efforts to intensify the hygiene measures, the variability was reduced to L. monocytogenes ST5 that was dominant in the following years 2011 and 2012. We aimed to elucidate possible genetic mechanisms responsible for the high abundance and persistence of ST5 strains in this FPE. Therefore, we compared the genomes of six L. monocytogenes ST5 strains to the less frequently occurring transient L. monocytogenes ST37 and ST204 from the same FPE as well as the highly abundant ST1 and ST21 isolated in 2010. Whole genome analysis indicated a high degree of conservation among ST5 strains [average nucleotide identity (ANI) 99.93-99.99%; tetranucleotide correlation 0.99998-0.99999]. Slight differences in pulsed field gel electrophoresis (PFGE) patterns of two ST5 isolates could be explained by genetic changes in the tRNA-Arg-TCT prophages. ST5 and ST204 strains harbored virtually identical 91 kbp plasmids related to plasmid group 2 (pLM80 and pLMUCDL175). Interestingly, highly abundant genotypes present in the FPE in 2010 did not harbor any plasmids. The ST5 plasmids harbored an efflux pump system (bcrABC cassette) and heavy metal resistance genes possibly providing a higher tolerance to disinfectants. The pLM80 prototype plasmids most likely provide important genetic determinants for a better survival of L. monocytogenes in the FPE. We reveal short-term evolution of L. monocytogenes strains within the same FPE over a 3 year period and our results suggest that plasmids are important for the persistence of ST5 strains in this FPE.
Collapse
Affiliation(s)
- Meryem Muhterem-Uyar
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Luminita Ciolacu
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Stephan Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Beatrix Stessl
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
41
|
Prevalence and molecular characteristics of Listeria monocytogenes in cooked products and its comparison with isolates from listeriosis cases. Front Med 2018; 12:104-112. [PMID: 29372499 DOI: 10.1007/s11684-017-0593-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the prevalence and molecular characteristics of Listeria monocytogenes in cooked products in Zigong City, China. The overall occurrence of the L. monocytogenes in the ready-to-eat (RTE) shops and mutton restaurants surveyed was 16.2% (141/873). An occurrence of 13.5% was observed in RTE pork, 6.5% in RTE vegetables, and more than 24.0% in either cooked mutton or cooked haggis. Serotype 1/2b (45.4%), 1/2a (33.3%), and 1/2c (14.2%) were the predominant types. By comparing the clonal complexes (CCs) based on multilocus sequence typing (MLST) of the L. monocytogenes from cooked foods in Zigong City and 33 listeriosis cases from different districts of China, CC87, CC9, CC8, and CC3 were showed to be prevalent in cooked products and CC87 and CC3 were the first two frequent types in the 33 clinic-source strains. All CC87 stains harbored the newly reported Listeria pathogenicity island 4 (LIPI-4) gene fragment ptsA, and all CC3 strains possessed the Listeria pathogenicity island 3 (LIPI-3) gene fragment llsX. These may increase the occurrence of the strains belonging to CC87 and CC3 in listeriosis cases in China and also underline the risk of infection owing to the consumption of the cooked products from Zigong. ST619 (serotype 1/2b) harbored both llsX and ptsA, indicating a potential hypervirulent sequence type in Zigong.
Collapse
|
42
|
Wang Y, Lu L, Lan R, Salazar JK, Liu J, Xu J, Ye C. Isolation and characterization of Listeria species from rodents in natural environments in China. Emerg Microbes Infect 2017; 6:e44. [PMID: 28588285 PMCID: PMC5520306 DOI: 10.1038/emi.2017.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 11/09/2022]
Abstract
Listeria is ubiquitous in a variety of environments and can be isolated from a wide range of animal hosts. Rodents are capable of carrying pathogenic bacteria in their intestines, such as Listeria, and can disseminate those pathogens into the natural environment and to where human activity occurs. In this study, we investigated the occurrence and antimicrobial susceptibility of Listeria spp. isolated from wild rodents found in natural environments in China. We collected 341 intestinal fecal samples of rodents from five different regions of China, all representing different rodent habitats. The antimicrobial susceptibility of the Listeria spp. isolates obtained were firstly assessed using the Kirby-Bauer disk diffusion method. Thirty-one samples were positive for Listeria spp., of which 11 were positive for Listeria monocytogenes and seven were positive for Listeria ivanovii. Other species identified include Listeria innocua, Listeria fleischmannii and Listeria floridensis. All Listeria spp. isolates were sensitive to the majority of the antimicrobials tested, but largely resistant to oxacillin (94.1%) and cefuroxime (70.6%). All L. monocytogenes isolates were further characterized by serotyping, multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). L. monocytogenes strains were grouped into three serotypes, five sequence types and five pulsotypes (PTs) by serotyping, MLST and PFGE, respectively. Almost half of the isolates (five of 11) belonged to serotype 1/2b, ST87 and PT1. This study determined that Listeria is carried in the intestinal tracts of wild rodents from multiple regions at a low rate, filling an epidemiological data gap on Listeria in natural environments in China.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joelle K Salazar
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Jingli Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
43
|
Du XJ, Zhang X, Wang XY, Su YL, Li P, Wang S. Isolation and characterization of Listeria monocytogenes in Chinese food obtained from the central area of China. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Henriques AR, Cristino JM, Fraqueza MJ. Genetic Characterization of Listeria monocytogenes Isolates from Industrial and Retail Ready-to-Eat Meat-Based Foods and Their Relationship with Clinical Strains from Human Listeriosis in Portugal. J Food Prot 2017; 80:551-560. [PMID: 28272920 DOI: 10.4315/0362-028x.jfp-16-310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes isolates (n = 81) recovered from ready-to-eat meat-based food products (RTEMP) collected in industrial processing plants and retail establishments were genetically characterized for comparison with those from human clinical cases of listeriosis (n = 49). The aim was to assess RTEMP as a possible food source for human infection. L. monocytogenes was detected in 12.5% of the RTEMP samples, and in some cases, counts were above the European food safety criteria. All isolates were assessed by multiplex PCR for serogroup determination and detection of virulence-associated genes inlA, inlB, inlC, inlJ, plcA, hlyA, actA, and iap. Serogroups IIb and IVb dominated in RTEMP and human isolates, and all were positive for the assessed virulence genes. Antibiotic susceptibility testing by the disk diffusion method revealed a low level of resistance among the isolates. Pulsed-field gel electrophoresis (PFGE) of L. monocytogenes isolates, using restriction enzymes ApaI and AscI, revealed genetic variability and differentiated the isolates in five clusters. Although some pulsed-field gel electrophoresis profiles of particular RTEMP and human isolates seemed to be highly related, exhibiting more than 90% similarity, which suggests a possible common source, in most cases the strains were not genetically or temporally matched. The close genetic relatedness of RTEMP and human listeriosis strains stressed the importance of preventive measure implementation throughout the food chain.
Collapse
Affiliation(s)
- A R Henriques
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - J Melo Cristino
- Instituto de Medicina Molecular, Centro Hospitalar de Lisboa Norte, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - M J Fraqueza
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
45
|
Prevalence, serotype diversity, biofilm-forming ability and eradication of Listeria monocytogenes isolated from diverse foods in Shanghai, China. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Haubert L, Mendonça M, Lopes GV, de Itapema Cardoso MR, da Silva WP. Listeria monocytogenes isolates from food and food environment harbouring tetM and ermB resistance genes. Lett Appl Microbiol 2016; 62:23-9. [PMID: 26518475 DOI: 10.1111/lam.12516] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Listeria monocytogenes is a foodborne pathogen that has become an important cause of human and animal diseases worldwide. The purpose of this study was to evaluate the serotypes, virulence potential, antimicrobial resistance profile, and genetic relationships of 50 L. monocytogenes isolates from food and food environment in southern Brazil. In this study, the majority of L. monocytogenes isolates belonged to the serotypes 1/2b (42%) and 4b (26%), which are the main serotypes associated with human listeriosis. In addition, all isolates harboured internalin genes (inlA, inlC, inlJ), indicating a virulence potential. The isolates were sensitive to most of the antimicrobial compounds analysed, and five isolates (10%) were multi-resistant. Two isolates harboured antimicrobial resistance genes (tetM and ermB) and in one of them, the gene was present in the plasmid. Moreover, according to the pulsed field gel electrophoresis assay, two multi-resistant isolates were a single clone isolated from food and the processing plant. The isolates were susceptible to the most frequently used antibiotics for listeriosis treatment. However, the presence of multidrug-resistant isolates and antimicrobial resistance genes including in the plasmid could even be transferred between bacterial species, suggesting a potential health risk to consumers and a potential risk of spreading multi-resistance genes to other bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY Listeria monocytogenes is an important agent of foodborne diseases. The results of this study suggest a potential capacity of L. monocytogenes isolates from food and food environment to cause human infections. Antimicrobial multi-resistance profiles were detected in 10%, and two isolates harboured tetM and ermB resistance genes. Moreover, the present research can help to build up a better knowledge about antimicrobial resistance of L. monocytogenes. Additionally, we found one isolate carrying tetM resistance gene in a plasmid, that suggests a possible transmission between commensal and/or other pathogenic bacteria of food environment, thereby raising up concerns regarding bacterial resistance.
Collapse
Affiliation(s)
- L Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - M Mendonça
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - G V Lopes
- Departamento de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - M R de Itapema Cardoso
- Departamento de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - W P da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
47
|
Véghová A, Minarovičová J, Koreňová J, Drahovská H, Kaclíková E. Prevalence and tracing of persistentListeria monocytogenesstrains in meat processing facility production chain. J Food Saf 2016. [DOI: 10.1111/jfs.12315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Adriana Véghová
- National Agricultural and Food Centre - Food Research Institute; Priemyselná 4 Bratislava 82475, Slovakia
| | - Jana Minarovičová
- National Agricultural and Food Centre - Food Research Institute; Priemyselná 4 Bratislava 82475, Slovakia
| | - Janka Koreňová
- National Agricultural and Food Centre - Food Research Institute; Priemyselná 4 Bratislava 82475, Slovakia
| | - Hana Drahovská
- Faculty of Natural Sciences; Comenius University; Mlynská dolina B-2 Bratislava 84215, Slovakia
| | - Eva Kaclíková
- National Agricultural and Food Centre - Food Research Institute; Priemyselná 4 Bratislava 82475, Slovakia
| |
Collapse
|
48
|
Xu YG, Sun B, Zhao HY, Liu ZM, Jiang YP, Wang L, Qiao XY, Li YJ, Tang LJ. Development and evaluation of a dual priming oligonucleotide system-based multiplex PCR assay for simultaneous detection of six foodborne pathogens. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2765-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Characterization of a plasmid carrying cat, ermB and tetS genes in a foodborne Listeria monocytogenes strain and uptake of the plasmid by cariogenic Streptococcus mutans. Int J Food Microbiol 2016; 238:68-71. [PMID: 27592072 DOI: 10.1016/j.ijfoodmicro.2016.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 08/28/2016] [Indexed: 01/09/2023]
Abstract
A multi-drug resistant (MDR) Listeria monocytogenes isolate (serotype 1/2c) was recovered from a quick-frozen rice flour product collected from Langfang city in northern China. PCR screening identified the presence of cat, ermB and tetS genes. The plasmid profile of the strain showed the presence of an approximately 22.4-kb plasmid. Curing of this plasmid resulted in the loss of cat, ermB and tetS genes and increased susceptibility to several antibiotics, suggesting the involvement of the plasmid in multiple antibiotic resistances. Moreover, the plasmid was able to be uptaken by human oral pathogen Streptococcus mutans by natural transformation and resulted in the acquiring of multiple resistances in the transconjugants. This study contributes to our knowledge on acquired multi-drug resistance in foodborne pathogenic L.monocytogenes, which will add to a better understanding of effective clinical management of listeriosis.
Collapse
|
50
|
Maté J, Periago PM, Palop A. When nanoemulsified, d-limonene reduces Listeria monocytogenes heat resistance about one hundred times. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|