1
|
Moazzami M, Bergenkvist E, Boqvist S, Frosth S, Langsrud S, Møretrø T, Vågsholm I, Hansson I. Occurrence of Campylobacter, Listeria monocytogenes, and extended-spectrum beta-lactamase Escherichia coli in slaughterhouses before and after cleaning and disinfection. Food Microbiol 2025; 125:104639. [PMID: 39448150 DOI: 10.1016/j.fm.2024.104639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
To prevent foodborne illness, adequate cleaning and disinfection (C&D) is essential to remove pathogenic bacteria from the slaughter environment. The aim of this study was to determine the presence of Campylobacter spp., Listeria monocytogenes, and extended-spectrum beta-lactamase-producing Escherichia coli (ESBL E. coli) before and after C&D in slaughterhouses. Samples from food- and non-food contact surfaces taken before and after C&D in one red meat and one poultry slaughterhouse were analyzed for the target bacteria. Whole-genome sequencing and antimicrobial susceptibility testing were performed. In total, 484 samples were analyzed. Campylobacter spp. were isolated from 13.0% to 15.5% of samples before C&D in the red meat and poultry slaughterhouse, respectively. Listeria monocytogenes was isolated before C&D in 12.5% and 5.2% of samples in the red meat and poultry slaughterhouse, respectively. It was noted that C. jejuni was detected on multiple surfaces and that L. monocytogenes showed potential persistence in one slaughterhouse. After C&D, L. monocytogenes was found in one sample. ESBL E. coli was not detected either before or after C&D. These findings show the possibility to remove pathogenic bacteria from slaughter and meat processing facilities, but also indicate that deficiencies in slaughter hygiene pose a risk of cross-contamination of meat.
Collapse
Affiliation(s)
- Madeleine Moazzami
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Emma Bergenkvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Sofia Boqvist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Sara Frosth
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Solveig Langsrud
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430, Ås, Norway.
| | - Trond Møretrø
- Norwegian Institute of Food, Fishery and Aquaculture Research, N 1430, Ås, Norway.
| | - Ivar Vågsholm
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Ingrid Hansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
2
|
Pyz-Łukasik R, Piróg-Komorowska A, Policht A. Occurrence, Molecular Serogroups, Antimicrobial Susceptibility and Identification by MALDI-TOF MS of Listeria monocytogenes Isolated from RTE Meat Products in Southern Poland. Foods 2024; 13:2950. [PMID: 39335879 PMCID: PMC11431779 DOI: 10.3390/foods13182950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
L. monocytogenes is considered one of the most dangerous foodborne pathogens. This study aimed to determine the occurrence of L. monocytogenes in RTE meat products from southern Poland, including serogroups and antimicrobial susceptibility, and to assess the usefulness of MALDI-TOF MS as a tool for identifying L. monocytogenes. A total of 848 production batches of RTE meat products were analyzed for L. monocytogenes. All L. monocytogenes isolates were serotyped using the multiplex PCR method, tested for antimicrobial susceptibility using the disk diffusion method and identified using the MALDI-TOF MS method. L. monocytogenes was detected in 52/848 batches of RTE meat products (6.13%). The isolates belonged to four serogroups: 17/52 (33%) isolates to IVb; 15/52 (29%) isolates to IIa; 10/52 (19%) isolates to IIc and 10/52 (19%) isolates to IIb. All isolates (52/52) showed susceptibility to the tested antimicrobials. Using MALDI-TOF MS, 10/52 isolates (19.2%) were identified at the level of secure genus identification, probable species identification; 37/52 isolates (71.2%) were identified at the level of probable genus identification; 3/52 isolates (5.8%) were incorrectly identified as L. innocua; and 2/52 isolates (3.8%) were not identified. The occurrence of L. monocytogenes in RTE meat products was low. Almost half of the analyzed isolates were L. monocytogenes of serogroups, which are most often associated with listeriosis in humans in Poland. All isolates showed susceptibility to five commonly used antimicrobials for treating listeriosis. The use of MALDI-TOF MS as a tool for the identification of L. monocytogenes indicated its limitations related to the insufficient representation of the pathogen in the reference database.
Collapse
Affiliation(s)
- Renata Pyz-Łukasik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka, 12, 20-033 Lublin, Poland
| | - Anna Piróg-Komorowska
- Department of Veterinary Hygiene, Provincial Veterinary Inspectorate in Krakow, Brodowicza, 13b, 30-965 Kraków 69, Poland
| | - Agata Policht
- Department of Veterinary Hygiene, Provincial Veterinary Inspectorate in Krakow, Brodowicza, 13b, 30-965 Kraków 69, Poland
| |
Collapse
|
3
|
Belias A, Bolten S, Orsi RH, Wiedmann M. Application of Environmental Monitoring Programs and Root Cause Analysis to Identify and Implement Interventions to Reduce or Eliminate Listeria Populations in Apple Packinghouses. J Food Prot 2024; 87:100324. [PMID: 38960322 DOI: 10.1016/j.jfp.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Controlling Listeria in produce packinghouses can be challenging due to the large number of potential contamination routes. For example, repeated isolation of the same Listeria subtype in a packinghouse could indicate persistence in the packinghouse or reintroduction of the same Listeria from an upstream source. To improve understanding of Listeria transmission patterns in packinghouses, we performed a longitudinal study in four apple packinghouses, including testing of 1,339 environmental sponges and whole genome sequencing (WGS)-based characterization of 280 isolates. Root cause analysis and subsequent intervention implementation were also performed and assessed for effectiveness. Listeria prevalence among environmental sponges collected from the four packinghouses was 20% (range of 5-31% for individual packinghouses). Sites that showed high Listeria prevalence included drains, forklift tires and forks, forklift stops, and waxing area equipment frames. A total of 240/280 WGS-characterized isolates were represented in 41 clusters, each containing two or more isolates that differed by ≤50 high-quality single nucleotide polymorphisms (hqSNPs); 21 clusters were isolated from one packinghouse over ≥2 samplings (suggesting persistence or possibly reintroduction), while 11 clusters included isolates from >2 packinghouses, suggesting common upstream sources. Some interventions successfully (i) reduced Listeria detection on forklift tires and forks (across packinghouses) and (ii) mitigated packinghouse-specific Listeria issues (e.g., in catch pans). However, interventions that lacked enhanced equipment disassembly when persistence was suspected typically appeared to be unsuccessful. Overall, while our data suggest a combination of intensive environmental sampling with subtyping and root cause analysis can help identify effective interventions, implementation of effective interventions continues to be a challenge in packinghouses.
Collapse
Affiliation(s)
- Alexandra Belias
- Department of Food Science, Cornell University, 411 Tower Rd, Ithaca, NY 14853, USA
| | - Samantha Bolten
- Department of Food Science, Cornell University, 411 Tower Rd, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, 411 Tower Rd, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, 411 Tower Rd, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Rincón-Gamboa SM, Poutou-Piñales RA, Carrascal-Camacho AK. Distribution ofListeria spp., andListeria monocytogenesin micro- and small-scale meat product processing plants. Heliyon 2024; 10:e28662. [PMID: 38596116 PMCID: PMC11002064 DOI: 10.1016/j.heliyon.2024.e28662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Listeriosis is a disease caused by L. monocytogenes, a relevant microorganism as a causative agent of foodborne diseases - FBD. This study aimed to evaluate the distribution of Listeria spp., and L. monocytogenes in different production areas in two small plants (A and B) and two micro-food processing plants (C and D) producing meat derivatives, located in different cities of Colombia. The methodology implemented was i. The analysis of sampling points is based on a harmonised tool. ii. Four samplings in each production plant between 2019 and 2020. iii. Isolation and identification of microorganisms through conventional microbiology, a semi-automated system, molecular serotyping and clonal characterisation by ERIC-PCR. L. monocytogenes frequency in the production plants belonging to the study ranged between 5.9 and 28.6 %; for Listeria spp., plants A and D had isolated, plant A had the highest proportion, while for L. monocytogenes geno-serotypes found were: 1/2a, 1/2c, 4a-4c, 4b, 4d - 4e, with geno-serotype 4b as the most frequent. Furthermore, possible persistent isolates were detected in plant C as the feasible sources of contamination, based on failures in flow management, raw material contaminated with L. monocytogenes, lack of standardised cooking processes and transfer of the microorganism through equipment and surfaces. Finally, in three of the four production plants assayed, L. monocytogenes or Listeria spp. were present in the packaging area in some of the samples taken during the study, which calls for increased and frequent monitoring, as well as constant technical support for the control of L. monocytogenes in micro and small-scale production plants.
Collapse
Affiliation(s)
- Sandra M. Rincón-Gamboa
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI). Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C. 110-23, Colombia
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI). Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C. 110-23, Colombia
| | - Raúl A. Poutou-Piñales
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI). Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C. 110-23, Colombia
| | - Ana K. Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI). Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C. 110-23, Colombia
| |
Collapse
|
5
|
Bolten S, Lott TT, Ralyea RD, Gianforte A, Trmcic A, Orsi RH, Martin NH, Wiedmann M. Intensive Environmental Sampling and Whole Genome Sequence-based Characterization of Listeria in Small- and Medium-sized Dairy Facilities Reveal Opportunities for Simplified and Size-appropriate Environmental Monitoring Strategies. J Food Prot 2024; 87:100254. [PMID: 38417482 DOI: 10.1016/j.jfp.2024.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Small- and medium-sized dairy processing facilities (SMDFs) may face unique challenges with respect to controlling Listeria in their processing environments, e.g., due to limited resources. The aim of this study was to implement and evaluate environmental monitoring programs (EMPs) for Listeria control in eight SMDFs in a ∼1-year longitudinal study; this included a comparison of pre-operation (i.e., after cleaning and sanitation and prior to production) and mid-operation (i.e., at least 4 h into production) sampling strategies. Among 2,072 environmental sponge samples collected across all facilities, 272 (13%) were positive for Listeria. Listeria prevalence among pre- and mid-operation samples (15% and 17%, respectively), was not significantly different. Whole genome sequencing (WGS) performed on select isolates to characterize Listeria persistence patterns revealed repeated isolation of closely related Listeria isolates (i.e., ≤20 high-quality single nucleotide polymorphism [hqSNP] differences) in 5/8 facilities over >6 months, suggesting Listeria persistence and/or reintroduction was relatively common among the SMDFs evaluated here. WGS furthermore showed that for 41 sites where samples collected pre- and mid-operation were positive for Listeria, Listeria isolates obtained were highly related (i.e., ≤10 hqSNP differences), suggesting that pre-operation sampling alone may be sufficient and more effective for detecting sites of Listeria persistence. Importantly, our data also showed that only 1/8 of facilities showed a significant decrease in Listeria prevalence over 1 year, indicating continued challenges with Listeria control in at least some SMDFs. We conclude that options for simplified Listeria EMPs (e.g., with a focus on pre-operation sampling, which allows for more rapid identification of likely persistence sites) may be valuable for improved Listeria control in SMDFs.
Collapse
Affiliation(s)
- Samantha Bolten
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA; Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Timothy T Lott
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Robert D Ralyea
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Anika Gianforte
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Aljosa Trmcic
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Nicole H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Sukhareva K, Chernetsov V, Burmistrov I. A Review of Antimicrobial Polymer Coatings on Steel for the Food Processing Industry. Polymers (Basel) 2024; 16:809. [PMID: 38543414 PMCID: PMC10975896 DOI: 10.3390/polym16060809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/12/2024] Open
Abstract
This article will focus on the issue of protection against the pathogenic biofilm development on steel surfaces within the food sectors, highlighting steel's prominence as a material choice in these areas. Pathogenic microorganism-based biofilms present significant health hazards in the food industry. Current scientific research offers a variety of solutions to the problem of protecting metal surfaces in contact with food from the growth of pathogenic microorganisms. One promising strategy to prevent bacterial growth involves applying a polymeric layer to metal surfaces, which can function as either an antiadhesive barrier or a bactericidal agent. Thus, the review aims to thoroughly examine the application of antibacterial polymer coatings on steel, a key material in contact with food, summarizing research advancements in this field. The investigation into polymer antibacterial coatings is organized into three primary categories: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, and antifouling coatings. Antibacterial properties of the studied types of coatings are determined not only by their composition, but also by the methods for applying them to metal and coating surfaces. A review of the current literature indicates that coatings based on polymers substantially enhance the antibacterial properties of metallic surfaces. Furthermore, these coatings contribute additional benefits including improved corrosion resistance, enhanced aesthetic appeal, and the provision of unique design elements.
Collapse
Affiliation(s)
- Ksenia Sukhareva
- Higher School of Engineering, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia;
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119991 Moscow, Russia
| | - Vasily Chernetsov
- ORELMETALLPOLYMER LLC., 1yu Avtomagistral Street, 303032 Mtsensk, Russia;
| | - Igor Burmistrov
- Higher School of Engineering, Plekhanov Russian University of Economics, 36 Stremyanny Ln, 117997 Moscow, Russia;
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISIS”, 4 Leninsky Pr, 119049 Moscow, Russia
| |
Collapse
|
7
|
Pakdel M, Olsen A, Bar EMS. A Review of Food Contaminants and Their Pathways Within Food Processing Facilities Using Open Food Processing Equipment. J Food Prot 2023; 86:100184. [PMID: 37865163 DOI: 10.1016/j.jfp.2023.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
This study focuses on the chemical, physical, and biological hazards that pose food contamination risks during the processing of food in facilities using open food processing equipment through a review of published literature from 2015 to 2023. Ten main pathways for food contamination were developed and a list of chemical, physical, and biological food hazards, along with descriptions of process parameters and inputs that can contribute to food contamination, and prevention strategies associated with each pathway were compiled. The paper briefly discusses the relation between food contamination and the sustainable development goals (SDGs). The presented overview of contamination pathways and their associated food hazards can provide insights for food safety management plans, food processing equipment design, food processing facility layout, HACCP programs, and further studies on hygienic monitoring methods.
Collapse
Affiliation(s)
- Mahsa Pakdel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Anna Olsen
- Department of Mechanical Engineering and Production, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Eirin Marie Skjøndal Bar
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
8
|
Byun KH, Kim HJ. Survival strategies of Listeria monocytogenes to environmental hostile stress: biofilm formation and stress responses. Food Sci Biotechnol 2023; 32:1631-1651. [PMID: 37780599 PMCID: PMC10533466 DOI: 10.1007/s10068-023-01427-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Listeria monocytogenes is a critical foodborne pathogen that causes listeriosis and threatens public health. This pathogenic microorganism forms a transmission cycle in nature, food industry, and humans, expanding the areas of contamination among them and influencing food safety. L. monocytogenes forms biofilms to protect itself and promotes survival through stress responses to the various stresses (e.g., temperature, pH, and antimicrobial agents) that may be inflicted during food processing. Biofilms and mechanisms of resistance to hostile external or general stresses allow L. monocytogenes to survive despite a variety of efforts to ensure food safety. The current review article focuses on biofilm formation, resistance mechanisms through biofilms, and external specific or general stress responses of L. monocytogenes to help understand the unexpected survival rates of this bacterium; it also proposes the use of obstacle technology to effectively cope with it in the food industry.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
| | - Hyun Jung Kim
- Food Safety and Distribution Research Group, Korea Food Research Institute, Jeollabuk-Do, Wanju, 55365 Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113 Republic of Korea
| |
Collapse
|
9
|
Jung J, Sekercioglu F, Young I. Ready-to-eat Meat Plant Characteristics Associated with Food Safety Deficiencies During Regulatory Compliance Audits, Ontario, Canada. J Food Prot 2023; 86:100135. [PMID: 37500059 DOI: 10.1016/j.jfp.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Food safety deficiencies in ready-to-eat (RTE) meat processing plants can increase foodborne disease risks. The purpose of this study was to identify common deficiencies and factors related to improved food safety performance in RTE meat plants in Ontario. Routine food safety audit records for licensed provincial free-standing meat processing plants (FSMPs) and abattoirs that process RTE meats were obtained and analyzed in Ontario, Canada, from 2015 to 2019. A Bayesian regression analysis was conducted to examine the association between selected plant characteristics and two outcomes: overall audit rating (pass vs. conditional pass or fail) and individual audit item fail rate. The audit rating was examined in a logistic model, while the audit item fail rate was evaluated in a negative binomial model. The majority (87.7%, n = 800/912) of audits resulted in a pass rating (compared to conditional pass or fail). The mean number of employees per plant, among 200/204 plants with employee data available, was 11.6 (SD = 20.6, range = 1-200). For the logistic regression model, FSMPs were predicted to have a much higher probability of passing audits than abattoirs (32.0% on average, with a 95% credible interval [CI] of 13.8-52.8%). The number of plant employees, water source (municipal vs. private), and types of RTE meat products produced had little to no consistent association with this outcome. The negative binomial model predicted a -0.009 points lower fail rate, on average, for audit items among FSMPs than abattoirs (95% CI: -0.001, -0.018). Meat plants producing jerky had a higher audit item fail rate compared to those that did not produce such products. The other investigated variables had little to no association with this outcome. The results found in this study can support and guide future inspection, audit and outreach efforts to reduce foodborne illness risks associated with RTE meats.
Collapse
Affiliation(s)
- Jiin Jung
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Fatih Sekercioglu
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Ian Young
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
10
|
Bonilla-Luque OM, Possas A, Cabo ML, Rodríguez-López P, Valero A. Tracking microbial quality, safety and environmental contamination sources in artisanal goat cheesemaking factories. Food Microbiol 2023; 114:104301. [PMID: 37290877 DOI: 10.1016/j.fm.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A harmonised microbiological survey was performed in two artisanal factories of raw goat milk cheeses (A and B) located in the Andalusian region (Spain). A total of 165 different control points or samples (raw materials, final products, food-contact surfaces [FCS], and air) were examined as microbial and pathogen sources of contamination of artisanal goat raw milk cheeses. For raw milk samples analysed from both producers, the concentrations of aerobic-mesophilic bacteria (AMB), total coliforms, coagulase-positive Staphylococcus spp. (CPS), lactic-acid bacteria (LAB) and moulds and yeasts ranged between 3.48 and 8.59, 2.45-5.48, 3.42-4.81, 4.99-8.59 and 3.35-6.85 log cfu/mL respectively. For the same microbial groups, the analysis of raw milk cheeses revealed concentrations ranging from 7.82 to 8.88, 2.00-6.82, 2.00-5.28, 8.11-9.57 and 2.00-5.76 log cfu/g, respectively. Although the raw material analysed from producer A presented higher microbial loads and between-batch variability, it was B the producer with the most loaded final products. Regarding the microbial air quality, the fermentation area, storage room, milk reception and packaging room were the most AMB loaded places, while the ripening chamber was the area with higher fungal loads in bioareosol from both producers. Conveyor belts, cutting machine, storage boxes and brine tank were highlighted as the most contaminated FCS evaluated. Staphylococcus aureus was the only pathogen detected within the set of 51 isolates from samples as revealed by MALDI-TOF and molecular PCR, with a prevalence of 12.5% for samples from the producer B. The public health risk attributed to the consumption of artisanal goat cheese should not be neglected, and may consider the whole cheesemaking processing chain, from microbiological quality of raw milk to the ready-to-eat final product, especially concerning the presence of S. aureus.
Collapse
Affiliation(s)
- Olga María Bonilla-Luque
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014, Córdoba, Spain.
| | - Arícia Possas
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014, Córdoba, Spain.
| | - Marta L Cabo
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas, CSIC, Eduardo Cabello, 6, 36208, Vigo, Spain.
| | - Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas, CSIC, Eduardo Cabello, 6, 36208, Vigo, Spain; Department of Animal and Food Science, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Travessera Dels Turons S/n, 08193, Bellaterra, Cerdanyola Del Vallès, Spain.
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014, Córdoba, Spain.
| |
Collapse
|
11
|
Moreira J, Mera E, Singh Chhetri V, King JM, Gentimis T, Adhikari A. Effect of storage temperature and produce type on the survival or growth of Listeria monocytogenes on peeled rinds and fresh-cut produce. Front Microbiol 2023; 14:1151819. [PMID: 37396364 PMCID: PMC10313384 DOI: 10.3389/fmicb.2023.1151819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Whole and fresh-cut produce are minimally processed and susceptible to microbial contamination. This study evaluated the survival or growth of L. monocytogenes on peeled rinds, and fresh-cut produce at different storage temperatures. Fresh-cut fruits and vegetables, including cantaloupe, watermelon, pear, papaya, pineapple, broccoli, cauliflower, lettuce, bell pepper, and kale (25 g pieces) were spot inoculated with 4 log CFU/g of L. monocytogenes and stored at 4 or 13°C for 6 days. Cantaloupe and bell pepper rind disks (20 cm2), mimicking whole produce were inoculated with low inoculum level (4 log CFU/mL) and high inoculum level (6 log CFU/mL) and stored at 24°C up to 8 days and 4°C up to 14 days, respectively. L. monocytogenes counts on fresh-cut pear samples stored at 4°C increased significantly by 0.27 log CFU/g. However, Listeria levels on kale (day 4), cauliflower (day 6), and broccoli (day 2) were significantly reduced by 0.73, 1.18, and 0.80 log CFU/g, respectively, at 4°C. At 13°C, the bacterial counts increased significantly after a day of storage on fresh-cut watermelons (increasing by 1.10 log CFU/g) and cantaloupes (increasing by 1.52 log CFU/g). Similar increases were observed on pears (1.00 log CFU/g), papayas (1.65 log CFU/g), and green bell peppers (1.72 log CFU/g). Pineapple samples did not support the growth of L. monocytogenes at 13°C with a significant reduction of 1.80 log CFU/g by day 6. L. monocytogenes levels significantly increased in fresh-cut lettuce at 13°C but remained stable on kale, cauliflower, and broccoli after 6 days of storage. Stable population was observed also on cantaloupe rinds up to 8 days at 24°C. While on the outer surface of bell peppers, the population level decreased below the detectable limit of the test (10 CFU/20 cm2) after 14 days of storage at 4°C. The results demonstrated variable survival behavior of L. monocytogenes on fresh-cut produce with produce type and storage temperature.
Collapse
Affiliation(s)
- Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Erika Mera
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Vijay Singh Chhetri
- College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Joan M. King
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Thanos Gentimis
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, United States
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
12
|
Characterization and Antibiotic Resistance of Listeria monocytogenes Strains Isolated from Greek Myzithra Soft Whey Cheese and Related Food Processing Surfaces over Two-and-a-Half Years of Safety Monitoring in a Cheese Processing Facility. Foods 2023; 12:foods12061200. [PMID: 36981126 PMCID: PMC10048787 DOI: 10.3390/foods12061200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Listeriosis is a serious infectious disease with one of the highest case fatality rates (ca. 20%) among the diseases manifested from bacterial foodborne pathogens in humans, while dairy products are often implicated as sources of human infection with Listeria monocytogenes. In this study, we characterized phenotypically and genetically by whole-genome sequencing (WGS) 54 L. monocytogenes strains isolated from Myzithra, a traditional Greek soft whey cheese (48 isolates), and swabs collected from surfaces of a cheese processing plant (six isolates) in the Epirus region of Greece. All but one strain of L. monocytogenes belonged to the polymerase chain reaction (PCR) serogroups IIa (16.7%) and IIb (81.5%), corresponding to serotypes 1/2a, 3a and 1/2b, 3b, 7, respectively. The latter was identified as a PCR-serogroup IVb strain (1.8%) of serotypes 4b, 4d, 4e. Bioinformatics analysis revealed the presence of five sequence types (STs) and clonal complexes (CCs); ST1, ST3, ST121, ST 155, ST398 and CC1, CC3, CC121, CC155, CC398 were thus detected in 1.9, 83.3, 11.0, 1.9, and 1.9% of the L. monocytogenes isolates, respectively. Antibiograms of the pathogen against a panel of seven selected antibiotics (erythromycin, tetracycline, benzylpenicillin, trimethoprim-sulfamethoxazole, ampicillin, ciprofloxacin, and meropenem) showed that 50 strains (92.6%), the six surface isolates also included, were intermediately resistant to ciprofloxacin and susceptible to the rest of the six antimicrobial agents tested, whereas strong resistance against the use of a single from three implicated antibiotics was recorded to four strains (7.4%) of the pathogen isolated from Myzithra cheese samples. Thence, the minimum inhibitory concentrations (MICs) were determined for erythromycin (MIC = 0.19 μg/mL), ciprofloxacin (MIC ≥ 0.19 μg/mL), and meropenem (MIC = 0.64 μg/mL), and finally, just one strain was deemed resistant to the latter antibiotic. The phylogenetic positions of the L. monocytogenes strains and their genetic variability were determined through WGS, whilst also stress response and virulence gene analysis for the isolates was conducted. Findings of this work should be useful as they could be utilized for epidemiological investigations of L. monocytogenes in the food processing environment, revealing possible contamination scenarios, and acquired antimicrobial resistance along the food production chain.
Collapse
|
13
|
Prevalence of Antibiotic-Resistant E. coli Strains in a Local Farm and Packing Facilities of Honeydew Melon in Hermosillo, Sonora, Mexico. Antibiotics (Basel) 2022; 11:antibiotics11121789. [PMID: 36551446 PMCID: PMC9774811 DOI: 10.3390/antibiotics11121789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pathogenic strains of Escherichia coli threaten public health due to their virulence factors and antibiotic resistance. Additionally, the virulence of this bacterium varies by region depending on environmental conditions, agricultural practices, and the use of antibiotics and disinfectants. However, there is limited research on the prevalence of antibiotic-resistant E. coli in agriculture. Therefore, this research aimed to determine the antibiotic resistance of E. coli isolated from the Honeydew melon production system in Hermosillo, Sonora, Mexico. Thirty-two E. coli strains were isolated from 445 samples obtained from irrigation water, harvested melons, the hands of packaging workers, boxes, and discarded melons. The resistance profile of the E. coli strains was carried out to 12 antibiotics used in antimicrobial therapeutics against this bacterium; a high level of resistance to ertapenem (100%) was detected, followed by meropenem (97%), and ampicillin (94%); 47% of the strains were classified as multidrug-resistant. It was possible to identify the prevalence of the extended-spectrum β-lactamase (ESBLs) gene blaTEM (15.6%), as well as the non-ESBL genes qepA (3.1%) and aac(6')lb-cr (3.1%). The E. coli strains isolated from irrigation water were significantly associated with resistance to aztreonam, cefuroxime, amikacin, and sulfamethoxazole/trimethoprim. Irrigation water, packing workers' hands, and discarded melons showed a higher prevalence of antibiotic-resistant, ESBL, and non-ESBL genes of E. coli strains in a farm and packing facility of Honeydew melon in Hermosillo, Sonora.
Collapse
|
14
|
Barnett-Neefs C, Wiedmann M, Ivanek R. Examining Patterns of Persistent Listeria Contamination in Packinghouses Using Agent-Based Models. J Food Prot 2022; 85:1824-1841. [PMID: 36041081 DOI: 10.4315/jfp-22-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Persistent Listeria monocytogenes contamination may occur in a packinghouse if the pathogen successfully infiltrates the facility and reaches a harborage site, where it may be difficult to remove and may contaminate produce within the facility. There is a need for simulation-based decision support tools that can predict which equipment sites are more likely to undergo persistent contamination and simulate potential corrective actions to prevent this contamination. Thus, we adapted for longer term simulation two existing applications of an agent-based model of Listeria spp. hourly contamination dynamics in produce packinghouses. Next, we developed a novel approach to identify and analyze persistent and transient Listeria contamination patterns on simulated agents representing equipment sites and employees. Testing of corrective actions showed that methods that involved targeted, facility-specific, risk-based sanitation were the most effective in reducing both the likelihood and duration of persistent contamination. Generic approaches to controlling Listeria (e.g., more concentrated sanitizers) are unlikely to be successful and suggest that use of sanitation schedules produced through facility-specific root cause analysis and hygienic design are key in reducing persistence. Hourly Listeria contamination patterns also suggest that transient contamination may be mistaken for persistent contamination, depending on the frequency of environmental sampling. Likewise, as concentrations of Listeria on most contaminated agents were predicted to be very low, there is also a possibility to mistake persistence for transient contamination of sites, or even miss it outright, due to false-negative environmental Listeria monitoring results. These findings support that agent-based models may be valuable decision support tools, aiding in the identification of contamination patterns within packinghouses and assessing the viability of specific corrective actions. HIGHLIGHTS
Collapse
Affiliation(s)
- Cecil Barnett-Neefs
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
Zaitsev SS, Khizhnyakova MA, Feodorova VA. Retrospective Investigation of the Whole Genome of the Hypovirulent Listeria monocytogenes Strain of ST201, CC69, Lineage III, Isolated from a Piglet with Fatal Neurolisteriosis. Microorganisms 2022; 10:microorganisms10071442. [PMID: 35889161 PMCID: PMC9324732 DOI: 10.3390/microorganisms10071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes (Lm), the causative agent for both human and animal listeriosis, is considered to be a rare but potentially fatal foodborne pathogen. While Lm strains associated with current cases of human listeriosis are now being intensely investigated, our knowledge of this microorganism which has caused listerial infection in the past is still extremely limited. The objective of this study was a retrospective whole-genome sequence analysis of the Lm collection strain, 4/52-1953, isolated in the middle of the 20th century from a piglet with listerial neuroinfection. The multi-locus sequence typing (MLST) analysis based on seven housekeeping genes (abcZ, bglA, cat, dapE, dat, ldh, and lhkA) showed that the Lm strain 4/52-1953 was assigned to the sequence type 201 (ST201), clonal complex 69 (CC69), and phylogenetic lineage III. The strain 4/52-1953, similarly to other ST201 strains, probably originated from the ST9, CC69 via ST157. At least eight different STs, ST69, ST72, ST130, ST136, ST148, ST469, ST769, and ST202, were identified as the descendants of the first generation and a single one, ST2290, was proved to be the descendant of the second generation. Among them there were strains either associated with some sporadic cases of human and animal listerial infection in the course of more than 60 years worldwide or isolated from food samples, fish and dairy products, or migratory birds. Phylogenetic analysis based on whole genomes of all the Lm strains available in the NCBI GenBank (n = 256) demonstrated that the strain 4/52-1953 belonged to minor Cluster I, represented by lineage III only, while two other major Clusters, II and III, were formed by lineages I and II. In the genome of the strain 4/52-1953, 41 virulence-associated genes, including the Listeria pathogenicity island 1 (LIPI-1), and LIPI-2 represented by two internalin genes, the inlA and inlB genes, and five genes related to antibiotic resistance, were found. These findings can help to make the emergence of both hyper- and hypovirulent variants, including those bearing antibiotic resistance genes, more visible and aid the aims of molecular epidemiology as well.
Collapse
Affiliation(s)
- Sergey S Zaitsev
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Mariya A Khizhnyakova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Valentina A Feodorova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| |
Collapse
|
16
|
Detection by real-time PCR and conventional culture of Salmonella Typhimurium and Listeria monocytogenes adhered to stainless steel surfaces under dry conditions. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zhang Y, Zhou C, Bassey A, Bai L, Wang Y, Ye K. Quantitative exposure assessment of Listeria monocytogenes cross-contamination from raw to ready-to-eat meat under different food-handling scenarios. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Listeria monocytogenes post-outbreak management - When could a food production be considered under control again? Int J Food Microbiol 2022; 379:109844. [DOI: 10.1016/j.ijfoodmicro.2022.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
|
19
|
Macleod J, Beeton ML, Blaxland J. An Exploration of Listeria monocytogenes, Its Influence on the UK Food Industry and Future Public Health Strategies. Foods 2022; 11:1456. [PMID: 35627026 PMCID: PMC9141670 DOI: 10.3390/foods11101456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that can cause listeriosis, an invasive disease affecting pregnant women, neonates, the elderly, and immunocompromised individuals. Principally foodborne, the pathogen is transmitted typically through contaminated foods. As a result, food manufacturers exert considerable efforts to eliminate L. monocytogenes from foodstuffs and the environment through food processing and disinfection. However, L. monocytogenes demonstrates a range of environmental stress tolerances, resulting in persistent colonies that act as reservoirs for the reintroduction of L. monocytogenes to food contact surfaces and food. Novel technologies for the rapid detection of L. monocytogenes and disinfection of food manufacturing industries have been developed to overcome these obstacles to minimise the risk of outbreaks and sporadic cases of listeriosis. This review is aimed at exploring L. monocytogenes in the UK, providing a summary of outbreaks, current routine microbiological testing and the increasing awareness of biocide tolerances. Recommendations for future research in the UK are made, pertaining to expanding the understanding of L. monocytogenes dissemination in the UK food industry and the continuation of novel technological developments for disinfection of food and the food manufacturing environment.
Collapse
Affiliation(s)
- Joshua Macleod
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
- ZERO2FIVE Food Industry Centre, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Michael L. Beeton
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
| | - James Blaxland
- Microbiology and Infection Research Group, School of Sport and Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK; (J.M.); (M.L.B.)
- ZERO2FIVE Food Industry Centre, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
20
|
Barnett-Neefs C, Sullivan G, Zoellner C, Wiedmann M, Ivanek R. Using agent-based modeling to compare corrective actions for Listeria contamination in produce packinghouses. PLoS One 2022; 17:e0265251. [PMID: 35320292 PMCID: PMC8942247 DOI: 10.1371/journal.pone.0265251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
The complex environment of a produce packinghouse can facilitate the spread of pathogens such as Listeria monocytogenes in unexpected ways. This can lead to finished product contamination and potential foodborne disease cases. There is a need for simulation-based decision support tools that can test different corrective actions and are able to account for a facility’s interior cross-contamination dynamics. Thus, we developed agent-based models of Listeria contamination dynamics for two produce packinghouse facilities; agents in the models represented equipment surfaces and employees, and models were parameterized using observations, values from published literature and expert opinion. Once validated with historical data from Listeria environmental sampling, each model’s baseline conditions were investigated and used to determine the effectiveness of corrective actions in reducing prevalence of agents contaminated with Listeria and concentration of Listeria on contaminated agents. Evaluated corrective actions included reducing incoming Listeria, modifying cleaning and sanitation strategies, and reducing transmission pathways, and combinations thereof. Analysis of Listeria contamination predictions revealed differences between the facilities despite their functional similarities, highlighting that one-size-fits-all approaches may not always be the most effective means for selection of corrective actions in fresh produce packinghouses. Corrective actions targeting Listeria introduced in the facility on raw materials, implementing risk-based cleaning and sanitation, and modifying equipment connectivity were shown to be most effective in reducing Listeria contamination prevalence. Overall, our results suggest that a well-designed cleaning and sanitation schedule, coupled with good manufacturing practices can be effective in controlling contamination, even if incoming Listeria spp. on raw materials cannot be reduced. The presence of water within specific areas was also shown to influence corrective action performance. Our findings support that agent-based models can serve as effective decision support tools in identifying Listeria-specific vulnerabilities within individual packinghouses and hence may help reduce risks of food contamination and potential human exposure.
Collapse
Affiliation(s)
- Cecil Barnett-Neefs
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Genevieve Sullivan
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America.,Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Claire Zoellner
- iFoodDecisionSciences, Seattle, Washington, United States of America
| | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
21
|
Analyzing aggregate environmental monitoring data for Listeria spp. in frozen food manufacturing environments. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Fuller RS, Hettiarachchy N, O'Bryan CA, Owens CM, Morawicki RO. Efficacy of Selected Powdered Floor Treatments Against Salmonella, E. coli, and L. monocytogenes on Polyurethane-Concrete Flooring Material Carriers. J Food Prot 2022; 85:871-878. [PMID: 35146514 DOI: 10.4315/jfp-21-413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Food processing environment flooring can become contaminated with pathogens in many ways including foot and equipment traffic, incoming materials, and floor drain backups. Natural antimicrobial turmeric and commercially available powdered floor treatments may reduce the levels of pathogens on flooring thereby reducing the risk of cross contamination from the floor to food contact surfaces. These chemicals were evaluated to determine their effectiveness against cocktails of Salmonella , Escherichia coli , and Listeria monocytogenes dried onto the surfaces of carriers made from polyurethane-concrete commercial flooring material. Aqueous test solutions were prepared from the minimum treatment required per m 2 from the manufacturer's instructions diluted in sterile water. Potential synergy between turmeric and a percarbonate based commercial floor treatment was explored with a mixture of turmeric and sodium percarbonate, each at approximately 37g/m 2 application rate. Each inoculated carrier was exposed to the treatment solutions or a sterile water control for 10 minutes at room temperature, neutralized with Hi-Cap neutralizing broth, the bacteria suspended, enumerated, and log 10 reductions calculated for each treatment and inoculum combination. Mean log 10 CFU/carrier reductions with standard deviations ranged between 4.29±0.34 for the sodium percarbonate (SPC) based treatment and 0.004±0.23 for turmeric for Salmonella , 4.81±0.16 for SPC based treatment and -0.16±0.62 for turmeric for E. coli , and 4.88±0.6 for SPC based treatment and -0.16±0.15 for turmeric for L. monocytogenes .
Collapse
Affiliation(s)
- Robert S Fuller
- Department of Food Science, University of Arkansas, Fayetteville AR 72704
| | - Navam Hettiarachchy
- University of Arkansas Fayetteville University Professor Food Science 2650 Young Ave, Fayetteville, AR 72704 UNITED STATES Fayetteville AR 72704
| | - Corliss A O'Bryan
- Department of Food Science, University of Arkansas, Fayetteville AR 72704
| | - Casey M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Ruben O Morawicki
- Department of Food Science, University of Arkansas, Fayetteville AR 72704
| |
Collapse
|
23
|
De Oliveira Mota J, Boué G, Prévost H, Maillet A, Jaffres E, Maignien T, Arnich N, Sanaa M, Federighi M. Environmental monitoring program to support food microbiological safety and quality in food industries: A scoping review of the research and guidelines. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Non-starter bacterial communities in aged Cheddar cheese: Patterns on two timescales. Appl Environ Microbiol 2021; 88:e0193921. [PMID: 34757819 DOI: 10.1128/aem.01939-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the temporal stability of microbial contamination during Cheddar cheese production by examining patterns of non-starter bacteria in 60-day aged Cheddar collected from the start and end of 30 consecutive production days. Further, we explored the source of these temporal microbial variations by comparing microbial communities in the aged cheese to those on food contact surfaces from a piece of cheesemaking equipment previously identified as a major source of non-starter bacteria in the same processing environment. 16S rRNA metabarcoding and culture-based sequencing methods identified two Streptococcus sequence variants significantly associated with the end of the production day in both the aged cheese and the cheese processing environment. Closer inspection of these sequence variants in the aged cheese over the 40-day sampling period revealed sinusoidal-like fluctuations in their relative ratios, which appeared to coincide with the Lactococcus starter rotation schedule. These results demonstrate that the microbial composition of finished cheese can vary according to the timing of processing within a production day. Further, our results demonstrate that time-of-day microbial differences in cheese can result from bacterial growth on food contact surfaces and that the composition of these microbial differences is subject to change day-to-day and may be linked to routine changes in the Lactococcus starter culture. Importance. Long production schedules used in modern cheese manufacturing can create circumstances which support the growth of microorganisms in the cheese processing environment. This work demonstrates that this growth can lead to significant changes in the microbial quality of aged cheese produced later in the production day. Further, we demonstrate that the dominant bacteria associated with these microbial changes throughout production are subject to change between days and might be influenced by specific cheese manufacturing practices. These findings improve understanding of microbial contamination patterns in modern food manufacturing facilities, therefore improving our ability to develop strategies to minimize quality losses due to microbial spoilage.
Collapse
|
25
|
Shedleur-Bourguignon F, Thériault WP, Longpré J, Thibodeau A, Fravalo P. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of Listeria monocytogenes on Conveyor Belt Surfaces in a Swine Slaughterhouse in the Province of Quebec, Canada. Pathogens 2021; 10:pathogens10111368. [PMID: 34832524 PMCID: PMC8625388 DOI: 10.3390/pathogens10111368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The role of the accompanying microbiota in the presence of Listeria monocytogenes on meat processing surfaces is not yet understood, especially in industrial production conditions. In this study, 300 conveyor belt samples from the cutting room of a swine slaughterhouse were collected during production. The samples were subjected to the detection of L. monocytogenes. Recovered strains were characterized by serogrouping-PCR, InlA Sanger sequencing and for their ability to form biofilm. A selection of isolates was compared with core genome multi-locus sequence typing analysis (cgMLST). The sequencing of the V4 region of the 16S RNA gene of the microorganisms harvested from each sample was carried out in parallel using the Illumina MiSeq platform. Diversity analyses were performed and MaAsLin analysis was used to assess the link between L. monocytogenes detection and the surrounding bacteria. The 72 isolates collected showed a low genetic diversity and important persistence characteristics. L. monocytogenes isolates were not stochastically distributed on the surfaces: the isolates were detected on three out of six production lines, each associated with a specific meat cut: the half carcasses, the bostons and the picnics. MaAsLin biomarker analysis identified the taxa Veillonella (p ≤ 0.0397) as a bacterial determinant of the presence of L. monocytogenes on processing surfaces. The results of this study revealed a heterogenous contamination pattern of the processing surfaces by L. monocytogenes and targeted a bacterial indicator of the presence of the pathogen. These results could lead to a better risk assessment of the contamination of meat products.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (F.S.-B.); (W.P.T.); (A.T.)
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada;
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pôle Agroalimentaire, Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
26
|
Listeria monocytogenes: health risk and a challenge for food processing establishments. Arch Microbiol 2021; 203:5907-5919. [DOI: 10.1007/s00203-021-02590-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
|
27
|
Macieira A, Barbosa J, Teixeira P. Food Safety in Local Farming of Fruits and Vegetables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189733. [PMID: 34574658 PMCID: PMC8469988 DOI: 10.3390/ijerph18189733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The world’s population will be around 9 billion people by 2050. Humans need to feed in order to survive and thus the high demographic growth may impact the sustainability of our food systems. Sustainable food production practices such as local farming have been explored. Consumption of vegetables and fruits has been increasing due to their health benefits, but this increase is also related to a significant number of foodborne outbreaks. Foodborne outbreaks pose a threat to public health and the economy on a local and national scale. Food safety begins on the farm and proceeds over the supply chain. Thus, to provide safe products, food producers must follow specific procedures to avoid food hazards along the supply chain. This work aimed to present the importance of food safety in vegetables and fruits in local farming, as this form of production and consumption has increased in several countries of the northern hemisphere and as these are considered a form of providing more sustainable food products.
Collapse
|
28
|
Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X. Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai. Front Microbiol 2021; 12:729114. [PMID: 34512606 PMCID: PMC8427505 DOI: 10.3389/fmicb.2021.729114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous foodborne pathogen that causes listeriosis and is mostly linked to consumption of ready-to-eat (RTE) foods. Lack of hygiene in food processing environments may be a primary reason for contamination by L. monocytogenes isolates. In this study, L. monocytogenes strains isolated from two RTE meat processing plants in the Shanghai municipality, China, were characterized during 2019–2020 using pulsed-field gel electrophoresis and whole-genome sequencing. Results showed that 29 samples (12.2%) out of 239 were positive for L. monocytogenes, with 21 (18.9%) and 8 (6.25%) isolates from plants A and B, respectively. The packaging room at plant A had the most contamination (14, 48.3%; p < 0.05), with a peak occurrence of 76.5% in processing environments. Nineteen L. monocytogenes isolates belonging to the pulsotype (PT) 7 group were indistinguishable (≥ 95.7%). Furthermore, core-genome multiple loci sequencing typing identified up to nine allelic differences, and the closet pairwise differences among these ST5 isolates included 0–16 small nucleotide polymorphisms. Therefore, L. monocytogenes likely persisted at plant A during 2019–2020 with ongoing clone transmission. In contrast, no L. monocytogenes isolates were identified from processing environments at plant B. Most L. monocytogenes isolates were sampled from raw materials (62.5%). Several isolates (ST378, ST8, and ST120) were detected only once in 2020 and were considered as transient isolates. However, three ST121 isolates with the same PT (PT2) were detected in 2020 and should be noted for their stronger survival ability in harsh environments. These results suggest that continuous monitoring, stringent surveillance, and source tracking are crucial to guaranteeing food safety in RTE food plants.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jing Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Zhaoyu Chang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Liu
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Ying Yu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xiaoguang Wang
- The Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Qingli Dong
- Institute of Food Quality and Safety, University of Shanghai for Science and Technology, Shanghai, China
| | - Yulong Ye
- The Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
29
|
Monitoring by a Sensitive Liquid-Based Sampling Strategy Reveals a Considerable Reduction of Listeria monocytogenes in Smeared Cheese Production over 10 Years of Testing in Austria. Foods 2021; 10:foods10091977. [PMID: 34574086 PMCID: PMC8471813 DOI: 10.3390/foods10091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Most Austrian dairies and cheese manufacturers participated in a Listeria monitoring program, which was established after the first reports of dairy product-associated listeriosis outbreaks more than thirty years ago. Within the Listeria monitoring program, up to 800 mL of product-associated liquids such as cheese smear or brine are processed in a semi-quantitative approach to increase epidemiological sensitivity. A sampling strategy within cheese production, which detects environmental contamination before it results in problematic food contamination, has benefits for food safety management. The liquid-based sampling strategy was implemented by both industrial cheese makers and small-scale dairies located in the mountainous region of Western Austria. This report considers more than 12,000 Listeria spp. examinations of liquid-based samples in the 2009 to 2018 timeframe. Overall, the occurrence of L. monocytogenes in smear liquid samples was 1.29% and 1.55% (n = 5043 and n = 7194 tested samples) for small and industrial cheese enterprises, respectively. The liquid-based sampling strategy for Listeria monitoring at the plant level appears to be superior to solid surface monitoring. Cheese smear liquids seem to have good utility as an index of the contamination of cheese up to that point in production. A modelling or validation process should be performed for the new semi-quantitative approach to estimate the true impact of the method in terms of reducing Listeria contamination at the cheese plant level.
Collapse
|
30
|
Al S, Disli HB, Hizlisoy H, Ertas Onmaz N, Yildirim Y, Gonulalan Z. Prevalence and molecular characterization of Listeria monocytogenes isolated from wastewater of cattle slaughterhouses in Turkey. J Appl Microbiol 2021; 132:1518-1525. [PMID: 34415644 DOI: 10.1111/jam.15261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
AIM The study aimed to investigate the role of cattle slaughterhouse wastewater as a possible source for the environmental distribution of Listeria monocytogenes. METHODS AND RESULTS Listeria spp. isolation was performed by collecting 117 wastewater samples from four different cattle slaughterhouses in Turkey. Species-specific identification was performed biochemically, and L. monocytogenes isolates were confirmed with polymerase chain reaction (PCR). In all, 71 (62.2%) of the wastewater samples were found to be positive for Listeria spp., and 17 (14.9%) of these samples were contaminated with L. monocytogenes. Pulsed field gel electrophoresis (PFGE) analysis revealed that all L. monocytogenes isolates were of different pulsotypes and isolates belonged to seven different phylogenetic clusters. Multiplex PCR analysis for genoserotypes and lineage determination showed that the isolates were divided into genoserotypes IVb and IIc in Lineages I and II. Also, it has been investigated with SYBR-Green Real-time PCR whether the L. monocytogenes isolates harboured virulence genes (hly, sigB, plcA, plcB, inlA, inlB, inlC and inlJ), and it was found that all isolates were substantially positive. Antibiotic resistance profiles and MIC values of the isolates were determined, and all L. monocytogenes isolates were found susceptible to ampicillin. In contrast, two isolates were resistant to meropenem and erythromycin, and three isolates were resistant to trimethoprim/sulfamethoxazole. CONCLUSION L. monocytogenes, which pose a threat to public health and resists to antibiotics effectively used in treatments, can environmentally spread via wastewater of cattle slaughterhouses. The wastewater of the food industry, which has rich microbiota, should be treated carefully, and possible environmental contamination should be prevented. SIGNIFICANCE AND IMPACT OF STUDY This is the first study that investigates the molecular characterization of L. monocytogenes isolated from cattle slaughterhouse wastewater and the findings represent the importance of cattle wastewater in the epidemiology of L. monocytogenes in Turkey.
Collapse
Affiliation(s)
- Serhat Al
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Hüseyin Burak Disli
- Veterinary Faculty, Food Hygiene and Technology Department, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Harun Hizlisoy
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Nurhan Ertas Onmaz
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Yeliz Yildirim
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Zafer Gonulalan
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| |
Collapse
|
31
|
Papadopoulou OS, Argyri AA, Kounani V, Tassou CC, Chorianopoulos N. Use of Fourier Transform Infrared Spectroscopy for Monitoring the Shelf Life and Safety of Yogurts Supplemented With a Lactobacillus plantarum Strain With Probiotic Potential. Front Microbiol 2021; 12:678356. [PMID: 34262543 PMCID: PMC8273496 DOI: 10.3389/fmicb.2021.678356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/27/2021] [Indexed: 11/15/2022] Open
Abstract
The current study aimed to explore the performance of a probiotic Lactobacillus strain as an adjunct culture in yogurt production and to assess Fourier transform infrared spectroscopy as a rapid, noninvasive analytical technique to evaluate the quality and the shelf life of yogurt during storage. In this respect, bovine milk (full-fat) was inoculated with the typical yogurt starter culture without (control case) or with the further addition of Lactobacillus plantarum T571 as an adjunct (probiotic case). The milk was also inoculated with a cocktail mixture of three strains of Listeria monocytogenes in two different initial levels of inoculum, and the fermentation process was followed. Accordingly, yogurt samples were stored at 4 and 12°C, and microbiological, physicochemical, molecular, and sensory analyses were performed during storage. Results showed that the lactic acid bacteria exceeded 7 log CFU/g during storage in all samples, where the probiotic samples displayed higher acidity, lower pH, and reduced counts of Lb. monocytogenes in a shorter period than the control ones at both temperatures. Pulsed-field gel electrophoresis verified the presence of the probiotic strain until the end of storage at both temperatures and in adequate amounts, whereas the survival and the distribution of Listeria strains depended on the case. The sensory evaluation showed that the probiotic samples had desirable organoleptic characteristics, similar to the control. Finally, the spectral data collected from the yogurt samples during storage were correlated with microbiological counts and sensory data. Partial least squares and support vector machine regression and classification models were developed to provide quantitative estimations of yogurt microbiological counts and qualitative estimations of their sensory status, respectively, based on Fourier transform infrared fingerprints. The developed models exhibited satisfactory performance, and the acquired results were promising for the rapid estimation of the microbiological counts and sensory status of yogurt.
Collapse
Affiliation(s)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization — DIMITRA, Athens, Greece
| | | | | | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization — DIMITRA, Athens, Greece
| |
Collapse
|
32
|
Demaître N, Rasschaert G, De Zutter L, Geeraerd A, De Reu K. Genetic Listeria monocytogenes Types in the Pork Processing Plant Environment: From Occasional Introduction to Plausible Persistence in Harborage Sites. Pathogens 2021; 10:pathogens10060717. [PMID: 34200429 PMCID: PMC8228754 DOI: 10.3390/pathogens10060717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.
Collapse
Affiliation(s)
- Niels Demaître
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
| | - Geertrui Rasschaert
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Annemie Geeraerd
- Division MeBioS, Sustainability in the Agri-Food Chain Group, BIOSYST Department, KU Leuven, Willem de Croylaan 42, Box 2428, 3001 Leuven, Belgium;
| | - Koen De Reu
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
- Correspondence: ; Tel.: +32-9272-3043
| |
Collapse
|
33
|
Pineda APA, Campos GZ, Pimentel-Filho NJ, Franco BDGDM, Pinto UM. Brazilian Artisanal Cheeses: Diversity, Microbiological Safety, and Challenges for the Sector. Front Microbiol 2021; 12:666922. [PMID: 33959118 PMCID: PMC8093504 DOI: 10.3389/fmicb.2021.666922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Artisanal cheeses made with raw milk are highly appreciated products in Brazil. Most of these cheeses are produced in small facilities across different production regions in the country, some of which have been granted a protected designation of origin and are award winners. The most prominent state that manufactures these products is Minas Gerais (MG), but production is also gaining strength in other Brazilian states. The major challenge faced by artisanal cheese production is related to microbial risks associated with foodborne pathogens when the quality of the raw milk is unsatisfactory. Regulations created for the dairy industry are constantly been revised and adapted, considering the small-scale production of Brazilian artisanal cheeses, in order to guarantee safety at all steps of cheese production and commercialization. This text presents a summary of the huge diversity of artisanal cheeses produced in the country, grouped by geographical regions, and reviews the current challenges faced by producers and government considering the safety of these cheeses.
Collapse
Affiliation(s)
- Ana Paulina Arellano Pineda
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Zampieri Campos
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Thakali A, MacRae JD. A review of chemical and microbial contamination in food: What are the threats to a circular food system? ENVIRONMENTAL RESEARCH 2021; 194:110635. [PMID: 33347866 DOI: 10.1016/j.envres.2020.110635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
A circular food system is one in which food waste is processed to recover plant nutrients and returned to the soil to enable the production of more food, rather than being diverted to landfill or incineration. The approach may be used to reduce energy and water use in food production and contribute to the sustainability of the system. Anaerobic digestion and composting are common food waste treatment technologies used to stabilize waste and produce residual materials that can replenish the soil, thus contributing to a circular food system. This approach can only be deemed safe and feasible, however, if food waste is uncontaminated or any contaminants are destroyed during treatment. This review brings together information on several contaminant classes at different stages of the food supply chain, their possible sources, and their fates during composting and digestion. The main aim is to identify factors that could impede the transition towards a safe, reliable and efficient circular food system. We investigated heavy metals, halogenated organic compounds, foodborne pathogens and antibiotic resistance genes (ARGs) in the food system and their fates during digestion and composting. Production and processing stages were identified as major entry points for these classes of contaminants. Heavy metals and foodborne pathogens pose less risk in a circular system than halogenated organics or antibiotic resistance. Given the diversity of properties among halogenated organic compounds, there is conflicting evidence about their fate during treatment. There are relatively few studies on the fate of ARGs during treatment, and these have produced variable results, indicating a need for more research to clarify their fate in the final products. Repeated land application of contaminated food waste residuals can increase the risk of accumulation and jeopardize the safety of a circular food system. Thus, careful management of the system and research into the fate of the contaminants during treatment is needed.
Collapse
Affiliation(s)
- Astha Thakali
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA.
| |
Collapse
|
35
|
Zwirzitz B, Wetzels SU, Dixon ED, Fleischmann S, Selberherr E, Thalguter S, Quijada NM, Dzieciol M, Wagner M, Stessl B. Co-Occurrence of Listeria spp. and Spoilage Associated Microbiota During Meat Processing Due to Cross-Contamination Events. Front Microbiol 2021; 12:632935. [PMID: 33613505 PMCID: PMC7892895 DOI: 10.3389/fmicb.2021.632935] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
A large part of foodborne outbreaks related to Listeria monocytogenes are linked to meat and meat products. Especially, recontamination of meat products and deli-meat during slicing, packaging, and repackaging is in the focus of food authorities. In that regard, L. monocytogenes persistence in multi-species biofilms is one major issue, since they survive elaborate cleaning and disinfection measures. Here, we analyzed the microbial community structure throughout a meat processing facility using a combination of high-throughput full-length 16S ribosomal RNA (rRNA) gene sequencing and traditional microbiological methods. Samples were taken at different stages during meat cutting as well as from multiple sites throughout the facility environment to capture the product and the environmental associated microbiota co-occurring with Listeria spp. and L. monocytogenes. The listeria testing revealed a widely disseminated contamination (50%; 88 of 176 samples were positive for Listeria spp. and 13.6%; 24 of 176 samples were positive for L. monocytogenes). The pulsed-field gel electrophoresis (PFGE) typing evidenced 14 heterogeneous L. monocytogenes profiles with PCR-serogroup 1/2a, 3a as most dominant. PFGE type MA3-17 contributed to the resilient microbiota of the facility environment and was related to environmental persistence. The core in-house microbiota consisted mainly of the genera Acinetobacter, Pseudomonas, Psychrobacter (Proteobacteria), Anaerobacillus, Bacillus (Firmicutes), and Chryseobacterium (Bacteroidota). While the overall microbial community structure clearly differed between product and environmental samples, we were able to discern correlation patterns regarding the presence/absence of Listeria spp. in both sample groups. Specifically, our longitudinal analysis revealed association of Listeria spp. with known biofilm-producing Pseudomonas, Acinetobacter, and Janthinobacterium species on the meat samples. Similar patterns were also observed on the surface, indicating dispersal of microorganisms from this multispecies biofilm. Our data provided a better understanding of the built environment microbiome in the meat processing context and promoted more effective options for targeted disinfection in the analyzed facility.
Collapse
Affiliation(s)
- Benjamin Zwirzitz
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Stefanie U. Wetzels
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Emmanuel D. Dixon
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Svenja Fleischmann
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Evelyne Selberherr
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Sarah Thalguter
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Narciso M. Quijada
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Monika Dzieciol
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Beatrix Stessl
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
36
|
Listeria monocytogenes Assessment in a Ready-to-Eat Salad Shelf-Life Study Using Conventional Culture-Based Methods, Genetic Profiling, and Propidium Monoazide Quantitative PCR. Foods 2021; 10:foods10020235. [PMID: 33498826 PMCID: PMC7911829 DOI: 10.3390/foods10020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Listeriosis is almost entirely transmitted through foods contaminated with Listeria monocytogenes. Ready-to-eat foods present a particular challenge due to their long refrigerated shelf-life, not requiring any heat treatment before consumption. In this work, a shelf-life assessment of an industrially produced ready-to-eat salad was performed using conventional culture-based and molecular methods. L. monocytogenes isolates were confirmed and serogrouped using multiplex PCR, and genetic subtyping was performed by pulsed-field gel electrophoresis (PFGE). PMAxx-qPCR was used as an alternative method for L. monocytogenes quantification in foods. Salad samples were kept at 4 °C, 12 °C, and 16 °C for eight days and analysed. At 4 °C, acceptable results were obtained considering hygiene indicators, i.e., Enterobacteriaceae (ranging from 3.55 ± 0.15 log cfu/g to 5.39 ± 0.21 log cfu/g) and aerobic mesophilic colony counts (5.91 ± 0.90 log cfu/g to 9.41 ± 0.58 log cfu/g) throughout the study, but the same did not happen at 12 °C and 16 °C. L. monocytogenes culture-based quantification exhibited low numbers (<1 log cfu/g) for all temperatures. From 30 presumptive isolates, 10 (33.3%) were confirmed as L. monocytogenes with the majority belonging to serogroup IVb. PFGE subtyping showed that 7 of the 10 L. monocytogenes isolates had 100% of pulsotype similarity, suggesting a possible common contamination source. PMAxx-qPCR revealed a statistically higher L. monocytogenes quantification (>3 log cfu/g) when compared to the conventional culture-based method, suggesting viable but non-culturable forms. Taken together, results underline the need to combine conventional methods with more sensitive, specific, and rapid ones for L. monocytogenes assessment in ready-to-eat foods shelf-life studies to reduce the potential risk for consumers.
Collapse
|
37
|
Wagner M, Stessl B. Sampling the Food-Processing Environment: Taking Up the Cudgel for Preventive Quality Management in Food Processing (FP). Methods Mol Biol 2021; 2220:233-242. [PMID: 32975779 DOI: 10.1007/978-1-0716-0982-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Listeria monitoring program for Austrian dairies and cheese factories was established in 1988. The aim was to control the entrance of L. monocytogenes into the food-processing environment (FPE), preventing the contamination of food under processing. The Austrian Listeria monitoring program comprises four levels of investigation, dealing with routine monitoring of samples and consequences of finding a positive sample. Preventive quality control concepts attempt to detect a foodborne hazard along the food-processing chain, prior to food delivery, retailing, and consumption. The implementation of a preventive food safety concept provokes a deepened insight by the manufacturers into problems concerning food safety. The development of preventive quality assurance strategies contributes to the national food safety status and protects public health.
Collapse
Affiliation(s)
- Martin Wagner
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria.
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Tulln, Austria.
| | - Beatrix Stessl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
38
|
KARA R, ASLAN S. Investigation of Listeria monocytogenes in workers, equipment and environments at Kaymak processing plants. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.02620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Savaş ASLAN
- Afyonkarahisar Health Sciences University, Turkey
| |
Collapse
|
39
|
Dygico LK, Gahan CGM, Grogan H, Burgess CM. Examining the efficacy of mushroom industry biocides on Listeria monocytogenes biofilm. J Appl Microbiol 2020; 130:1106-1116. [PMID: 32350966 DOI: 10.1111/jam.14681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
AIMS The aim of this study was to test the efficacy of new and currently used biocides in the mushroom industry for inactivating Listeria monocytogenes biofilm. METHODS AND RESULTS A laboratory-scale study was initially carried out to test the efficacy of eleven biocidal products against a cocktail of five L. monocytogenes strains that were grown to 3-day biofilms on stainless steel coupons. Biocidal efficacy was then tested under clean and dirty conditions based on the EN 13697:2015 method. The results for the biocides tested ranged between 1·7-log and 6-log reduction of biofilm, with only the efficacy of the sodium hypochlorite-based biocide being significantly reduced in dirty conditions. A pilot-scale trial was then carried out on a subset of biocides against L. monocytogenes on concrete floors in a mushroom growing room and it was found that biocide efficacy in laboratory-scale did not translate well in pilot-scale. CONCLUSIONS Biocides that are used in the mushroom industry and potential alternative biocides were determined to be effective against L. monocytogenes biofilm in both laboratory-scale and pilot-scale experiments. SIGNIFICANCE AND IMPACT OF THE STUDY This study has direct impact for the industry as it provides information on the efficacy of currently used biocides and other biocidal products against L. monocytogenes, an added benefit to their primary use.
Collapse
Affiliation(s)
- L K Dygico
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - C G M Gahan
- School of Microbiology, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - H Grogan
- Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - C M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
40
|
Spanu C, Jordan K. Listeria monocytogenes environmental sampling program in ready-to-eat processing facilities: A practical approach. Compr Rev Food Sci Food Saf 2020; 19:2843-2861. [PMID: 33337052 DOI: 10.1111/1541-4337.12619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen that is frequently found in the environment. It can easily enter food processing environments and contaminate food, potentially causing public health issues. Food business operators (FBOs) are responsible for the control of L. monocytogenes in the food processing environment, particularly in facilities producing ready-to-eat food. The design and implementation of an effective environmental monitoring program (EMP) for L. monocytogenes is an integral part of controlling L. monocytogenes. An effective EMP, including all aspects from sampling, to analysis, to data interpretation, to implementation of corrective actions (including food disposition), is a tool that will help with identification and control of L. monocytogenes contamination. It should be used in conjunction with end product testing, not as a replacement for it. An EMP should be specifically designed for a particular facility on a case-by-case risk-based approach, by a food safety team within the facility. It should be reviewed regularly (at least every 6 months) and verified for its effectiveness. The control of L. monocytogenes in the food industry involves the full commitment of management and of all personnel involved with the safety of foods placed on the market, thus reducing the risk of listeriosis to consumers. Several regulatory and guidance documents provide recommendations for designing aspects of an effective L. monocytogenes EMP. However, a comprehensive review of the key components of an EMP in a single document is lacking. The objective of the present review is to provide FBOs with a practical guide to design, implementation, and verification of an EMP tailored by the food safety team for each food business.
Collapse
Affiliation(s)
- Carlo Spanu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Kieran Jordan
- Department of Food Safety, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
41
|
Wang D, Deng L, Cai H, Yang J, Bao L, Zhu Y, Wang X. Bimetallic PtCu Nanocrystal Sensitization WO 3 Hollow Spheres for Highly Efficient 3-Hydroxy-2-butanone Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18904-18912. [PMID: 32251603 DOI: 10.1021/acsami.0c02523] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As a foodborne bacterium, Listeria monocytogenes (LM) can cause serious diseases and even death to weak people. 3-Hydroxy-2-butanone (3H-2B) has been proven to be a biomarker for exhalation of LM. Detection of 3H-2B is a fast and effective method for determining whether the food is infected. Herein, we present an excellent 3H-2B gas sensor based on bimetallic PtCu nanocrystal modified WO3 hollow spheres. The structure and morphology of the PtCu/WO3 were characterized, and their gas sensitivities were measured by a static testing method. The results showed that the sensor response of WO3 hollow spheres was enhanced by about 15 times after modification with bimetallic PtCu nanocrystal. The maximum response value of the PtCu/WO3 sensor to 10 ppm 3H-2B is as high as 221.2 at 110 °C. In addition, the PtCu/WO3 sensor also exhibited good selectivity to 3H-2B, fast response/recovery time (9 s/28 s), and low limit of detection (LOD < 0.5 ppm). Furthermore, the sensitivity mechanism was studied by monitoring the reaction products by gas chromatography-mass spectrometry. The excellent gas-sensing performance can be attributed to the synergy between PtCu and WO3, including the unique spillover effect of O2 on PtCu nanoparticles, the regulated depletion layer by p-type CuxO to n-type WO3, and their selective catalysis to 3H-2B. Hence, this work offers the rational design and synthesis of highly efficient sensitive materials for the detection of LM for food security.
Collapse
Affiliation(s)
- Ding Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lifeng Deng
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haijie Cai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jialin Yang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Bao
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xianying Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
42
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jordan K, Sampers I, Wagner M, Da Silva Felicio MT, Georgiadis M, Messens W, Mosbach‐Schulz O, Allende A. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA J 2020; 18:e06092. [PMID: 32874300 PMCID: PMC7448082 DOI: 10.2903/j.efsa.2020.6092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A multi-country outbreak of Listeria monocytogenes ST6 linked to blanched frozen vegetables (bfV) took place in the EU (2015-2018). Evidence of food-borne outbreaks shows that L. monocytogenes is the most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV, for the elderly (65-74 years old) population, is up to 3,600 times greater than cooked bfV and very likely lower than any of the evaluated ready-to-eat food categories. The main factors affecting contamination and growth of L. monocytogenes in bfV during processing are the hygiene of the raw materials and process water; the hygienic conditions of the food processing environment (FPE); and the time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling). Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations used for thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of the possible control options suggests that application of a complete HACCP plan is either not possible or would not further enhance food safety. Instead, specific prerequisite programmes (PRP) and operational PRP activities should be applied such as cleaning and disinfection of the FPE, water control, t/T control and product information and consumer awareness. The occurrence of low levels of L. monocytogenes at the end of the production process (e.g. < 10 CFU/g) would be compatible with the limit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed (i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C), L. monocytogenes levels need to be considerably lower (not detected in 25 g). Routine monitoring programmes for L. monocytogenes should be designed following a risk-based approach and regularly revised based on trend analysis, being FPE monitoring a key activity in the frozen vegetable industry.
Collapse
|
43
|
Determining common contributory factors in food safety incidents – A review of global outbreaks and recalls 2008–2018. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
The ability of Listeria monocytogenes to form biofilm on surfaces relevant to the mushroom production environment. Int J Food Microbiol 2020; 317:108385. [DOI: 10.1016/j.ijfoodmicro.2019.108385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/08/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
|
45
|
Wu ST, Hammons SR, Wang J, Assisi C, DiPietro B, Oliver HF. Predictive risk models combined with employee- and management-implemented SSOPs identified and reduced Listeria monocytogenes prevalence in retail delis. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
John J, Joy WC, Jovana K. Prevalence of Listeria spp. in produce handling and processing facilities in the Pacific Northwest. Food Microbiol 2020; 90:103468. [PMID: 32336359 DOI: 10.1016/j.fm.2020.103468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
Listeria monocytogenes is a significant concern for the produce industry; however, there is limited information to support the practical decision-making to mitigate this risk. This study investigated the prevalence of Listeria spp. and L. monocytogenes in seven produce handling and processing (PHP) facilities in the Pacific Northwest. PHP facilities were defined as facilities that receive raw agricultural commodities and further handle, pack, wash, or process prior to distribution into the retail sector. Environmental swabs (n = 50/facility) were collected in high-risk areas (e.g., near raw product entry points) from seven PHP facilities over two visits. Listeria spp. were isolated using modified ISO 11290-1 method and speciated with Microgen® Listeria-ID. Listeria spp., including L. monocytogenes, were found in 5/7 PHP. Prevalence of Listeria spp. ranged from 2% to 26% in these five facilities. Drains, entry areas, and portable equipment consistently tested positive for Listeria spp. during active production. Two additional sampling rounds (n = 50/round) were conducted in the highest prevalence facility (Facility #1). Overall, Listeria spp. were detected in 44/150 (29.3%) swabs collected from Facility #1. This study demonstrated the high prevalence of Listeria spp. near raw product entry points across PHP facilities.
Collapse
Affiliation(s)
- Jorgensen John
- Food Innovation Center, 1207 NW Naito Parkway, Oregon State University, Portland, OR, 97209, USA
| | - Waite-Cusic Joy
- Department of Food Science and Technology, 100 Wiegand Hall, Oregon State University, Corvallis, OR, 97331, USA
| | - Kovacevic Jovana
- Food Innovation Center, 1207 NW Naito Parkway, Oregon State University, Portland, OR, 97209, USA.
| |
Collapse
|
47
|
Meloni D. High-Hydrostatic-Pressure (HHP) Processing Technology as a Novel Control Method for Listeria monocytogenes Occurrence in Mediterranean-Style Dry-Fermented Sausages. Foods 2019; 8:E672. [PMID: 31842401 PMCID: PMC6963505 DOI: 10.3390/foods8120672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Although conventional microbial control techniques are currently employed and largely successful, their major drawbacks are related to their effects on quality of processed food. In recent years, there has been a growing demand for high-quality foods that are microbially safe and retain most of their natural freshness. Therefore, several modern and innovative methods of microbial control in food processing have been developed. High-hydrostatic-pressure (HHP) processing technology has been mainly used to enhance the food safety of ready-to-eat (RTE) products as a new pre-/post-packaging, non-thermal purification method in the meat industry. Listeria monocytogenes is a pertinent target for microbiological safety and shelf-life; due to its capacity to multiply in a broad range of food environments, is extremely complicated to prevent in fermented-sausage-producing plants. The frequent detection of L. monocytogenes in final products emphasizes the necessity for the producers of fermented sausages to correctly overcome the hurdles of the technological process and to prevent the presence of L. monocytogenes by applying novel control techniques. This review discusses a collection of recent studies describing pressure-induced elimination of L. monocytogenes in fermented sausages produced in the Mediterranean area.
Collapse
Affiliation(s)
- Domenico Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
48
|
Use of lactobacilli strains with probiotic potential in traditional fermented milk and their impact on quality and safety related to Listeria monocytogenes. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Kazemian MR, Wang L, Liu S. Engineering Rechargeable Antibacterial Coatings on Stainless Steel for Efficient Inactivation of Pathogenic Bacteria in the Presence of Organic Matter. ACS APPLIED BIO MATERIALS 2019; 2:5021-5031. [DOI: 10.1021/acsabm.9b00721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant. Int J Food Microbiol 2019; 314:108360. [PMID: 31678600 DOI: 10.1016/j.ijfoodmicro.2019.108360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Due to a higher probability for violation of hygiene measures, reconstruction work is a substantial food safety challenge for food business operators (FBOs). Here, we monitored a Listeria monocytogenes contamination scenario during a timely enduring reconstruction period that aimed at an expansion of the main building of a leading meat processing facility. Reconstruction took place while food production was ongoing. We used a longitudinal sampling scheme targeting 40 floor water drains distributed over the food processing environment (FPE) over a five year period. The population structure of L. monocytogenes was determined by PCR-serogrouping, pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). While the first sampling deciphered a baseline of contamination (45%), intensified sanitation measures decreased L. monocytogenes prevalence before commencement of work (5%). The reconstruction activities increased the prevalence of L. monocytogenes in the FPE (20.5%) and changed the population structure to a higher proportion of disease-associated genotypes (61%). During the first sampling ST121 was prevalent throughout the FPE, even in the packaging area. After the second and third sampling, following increased application of hypochlorite during sanitation, ST121 was only present in the raw material preparation area. A resilient flora was detected during three sampling events (ST8, ST9 and ST37) which might have not been exposed to daily cleaning in the floor drains. After the accomplishment of reconstruction work, the L. monocytogenes population structure shifted to the condition initially found (45% and 20.5% during the first and sixth sampling event). This paper indicates that reconstruction phases are high risk episodes for food safety in FPEs. Special precautions must be taken to avoid cross-contamination of products since reconstruction is usually ongoing for extended periods of time.
Collapse
|