1
|
Dušková M, Dorotíková K, Bartáková K, Králová M, Šedo O, Kameník J. The microbial contaminants of plant-based meat analogues from the retail market. Int J Food Microbiol 2024; 425:110869. [PMID: 39151231 DOI: 10.1016/j.ijfoodmicro.2024.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The aim of the study was to analyse the key microbial contaminants of plant-based meat analogues (PBMA) from retail. A total of 43 samples of PBMAs (12 frozen/31 chilled) in the "ready-to-cook" category, such as hamburgers, meatballs or breaded imitation steaks were purchased in retail stores in the Czech Republic in summer (n = 21) and autumn 2022 (n = 22). The detected indicator bacteria (total viable count, lactic acid bacteria, Enterobacteriaceae, yeasts, moulds) had relatively low values in the analysed PBMA samples and only rarely reached levels of 7 log CFU/g. E. coli, STEC and coagulase-positive staphylococci were not detected by isolation from plates in any of analysed samples. Mannitol positive Bacillus spp. were isolated from almost half of the analysed samples of the PBMA. B. cereus sensu lato was isolated from 3 samples by isolation from plates, and after enrichment in 35 samples (81 %). Clostridium perfringens could not be detected by isolation from plates, nevertheless after multiplication, it was detected in 21 % of samples. Analyses of PBMA samples revealed considerable variability in microbial quality. The presence of spore-forming bacteria with the potential to cause foodborne diseases is alarming. However, to evaluate the risks, further research focused on the possibilities of growth under different conditions of culinary treatment and preservation is needed.
Collapse
Affiliation(s)
- Marta Dušková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Kateřina Dorotíková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Klára Bartáková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Michaela Králová
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Josef Kameník
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
2
|
Comi G, Colautti A, Bernardi CEM, Stella S, Orecchia E, Coppola F, Iacumin L. Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms 2024; 12:1175. [PMID: 38930557 PMCID: PMC11206102 DOI: 10.3390/microorganisms12061175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cooked sausages packaged in a modified atmosphere (MAP: 20% CO2, 70% N2, <0.2% O2) with evident yellow stains were analyzed. The aims of this work were to study the microbial cause of the spoilage and to evaluate different antimicrobial compounds to prevent it. Leuconostoc gelidum was identified as the primary cause of the yellow coating in spoiled cooked sausage, as confirmed by its intentional inoculation on slices of unspoiled sausage. Leuconostoc gelidum was the main bacteria responsible for the yellow coating in spoiled cooked sausage, as confirmed by its intentional inoculation on slices of unspoiled sausage. The yellow color was also evident during growth in the model system containing cooked sausage extract, but the colonies on MRS agar appeared white, demonstrating that the food substrate stimulated the production of the yellow pigment. The spoilage was also characterized by different volatile compounds, including ketones, ethanol, acetic acid, and ethyl acetate, found in the spoiled cooked sausage packages. These compounds explained the activity of Leuc. gelidum because they are typical of heterofermentative LAB, cultivated either on food substrates or in artificial broths. Leuc. gelidum also produced slight swelling in the spoiled packages. The efficacy of different antimicrobials was assessed in model systems composed of cooked sausage extract with the antimicrobials added at food product concentrations. The data showed that sodium lactate, sodium acetate, and a combination of sodium lactate and sodium diacetate could only slow the growth of the spoiler-they could not stop it from occurring. Conversely, hop extract inhibited Leuc. gelidum, showing a minimal inhibitory concentration (MIC) of approximately 0.008 mg CAE/mL in synthetic broth and 4 mg CAE/kg in cooked sausage slices. Adding hop extract at the MIC did not allow Leuc. gelidum growth and did not change the sensorial characteristics of the cooked sausages. To our knowledge, this is the first report of the antimicrobial activities of hop extracts against Leuc. gelidum either in vitro or in vivo.
Collapse
Affiliation(s)
- Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Andrea Colautti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Cristian Edoardo Maria Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (C.E.M.B.); (S.S.)
| | - Simone Stella
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (C.E.M.B.); (S.S.)
| | - Elisabetta Orecchia
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Francesca Coppola
- Food Sciences Institute, National Research Council, Via Roma, 64, 83100 Avellino, Italy;
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| |
Collapse
|
3
|
Mustedanagic A, Schrattenecker A, Dzieciol M, Tichy A, Thalguter S, Wagner M, Stessl B. Characterization of Leuconostoc carnosum and Latilactobacillus sakei during Cooked Pork Ham Processing. Foods 2023; 12:2475. [PMID: 37444213 DOI: 10.3390/foods12132475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cooked ham is a popular, ready-to-eat product made of pork meat that is susceptible to microbial growth throughout its shelf life. In this study, we aimed to monitor the microbial growth and composition of nine vacuum-packed cooked ham lots using plate counting until the microbial limit of 7.4 log10 AMC/LAB CFU/g was exceeded. Eight out of nine lots exceeded the microbial limit after 20 days of storage. Lactic acid bacteria strains, particularly Leuconostoc carnosum and Latilactobacillus sakei, prevailed in vacuum-packed cooked ham. Leuconostoc carnosum 2 (Leuc 2) and Latilactobacillus sakei 4 (Sakei 4) were isolated from raw meat and the post-cooking area of the food processing facility. Carbohydrate utilization patterns of Leuc. carnosum PFGE types isolated from raw meat and the food processing environment differed from those isolated from cooked ham. These findings demonstrate how raw meat and its processing environment impact the quality and shelf life of cooked ham.
Collapse
Affiliation(s)
- Azra Mustedanagic
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Anna Schrattenecker
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Monika Dzieciol
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Alexander Tichy
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sarah Thalguter
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Beatrix Stessl
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
4
|
The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams. Microorganisms 2022; 10:microorganisms10061106. [PMID: 35744624 PMCID: PMC9229742 DOI: 10.3390/microorganisms10061106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to analyse the influence of the contamination level of fresh meat on the bacterial population in raw material before cooking and on the microbiota of cooked hams following heat treatment. The effect of incubation temperatures of 6.5 and 15 °C on the results obtained was also evaluated during the bacteriological investigation. The total viable count (TVC), the number of Enterobacteriaceae and lactic acid bacteria (LAB) were determined in the samples. LAB were isolated from 13 samples out of the 50 fresh meat samples. The species most frequently detected included Latilactobacillus sakei, Leuconostoc carnosum, Enterococcus gilvus, Latilactobacillus curvatus, and Leuconostoc gelidum. The meat sampled after the brine injection and tumbler massaging showed higher bacterial counts compared to fresh meat samples (p < 0.001). The heat treatment destroyed the majority of the bacteria, as the bacterial counts were beneath the limit of detection with a few exceptions. Although the primary cultivation of samples of cooked hams did not reveal the presence of LAB, their presence was confirmed in 11 out of 12 samples by a stability test. Bacteria of the genus Leuconostoc were the most numerous.
Collapse
|
5
|
Spampinato G, Candeliere F, Amaretti A, Licciardello F, Rossi M, Raimondi S. Microbiota Survey of Sliced Cooked Ham During the Secondary Shelf Life. Front Microbiol 2022; 13:842390. [PMID: 35350621 PMCID: PMC8957903 DOI: 10.3389/fmicb.2022.842390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Sliced cooked ham packaged in a modified atmosphere is a popular ready-to-eat product, subjected to abundant microbial contamination throughout its shelf life that can lead to deterioration of both sensorial properties and safety. In this study, the microbial load and the chemical-physical features of cooked ham of five producers were monitored for a period of 12 days after the opening of the packages (i.e., the secondary shelf life), during which the products were stored in a domestic refrigerator at 5.2 ± 0.6°C. The sensorial properties presented a perceivable decay after 8 days and became unacceptable after 12 days. High-performance liquid chromatography analysis and solid-phase microextraction coupled with gas chromatography profiling of volatile metabolites indicated that lactic acid, ethanol, acetic acid, acetoin, 3-methyl-1-butanol, and 2-3 butanediol were the main metabolites that characterized the evolution of the analyzed cooked ham. The microbiota was monitored by 16S ribosomal RNA gene profiling and culture-dependent techniques. Already at the opening of packages, all the products presented high microbial load, generally dominated by lactic acid bacteria, with evident differences among the products. The increase of lactic acid bacteria somehow protected samples from abundant contamination by other bacteria, concurring with the evolution of more safe products. This role was exerted by numerous Latilactobacillus, Leuconostoc, and Carnobacterium species, among which the most frequently detected were Latilactobacillus sakei, Latilactobacillus sakei carnosum, Leuconostoc mesenteroides, and Carnobacterium divergens. Some products presented more complex communities that encompassed Proteobacteria such as Moellerella wisconsensis, Proteus hauseri, Brochothrix thermosphacta, and less frequently Pseudomonas, Erwinia, and Massilia. Opportunistic pathogenic bacteria such as Escherichia coli and Vibrio sp. were found in small quantities. The yeasts Kazachstania servazzii and Debaryomyces hansenii occurred already at 0 days, whereas various species of Candida (Candida zeylanoides, Candida sake, Candida norvegica, and Candida glaebosa) were abundant only after 12 days. These results indicated that the microbiological contaminants overgrowing during the secondary shelf life did not derive from environmental cross-contamination at the opening of the tray but were already present when the packages were opened, highlighting the phases of production up to the packaging as those crucial in managing the safety risk associated to this product.
Collapse
Affiliation(s)
- Gloria Spampinato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Duthoo E, De Reu K, Leroy F, Weckx S, Heyndrickx M, Rasschaert G. To culture or not to culture: careful assessment of metabarcoding data is necessary when evaluating the microbiota of a modified-atmosphere-packaged vegetarian meat alternative throughout its shelf-life period. BMC Microbiol 2022; 22:34. [PMID: 35078415 PMCID: PMC8788083 DOI: 10.1186/s12866-022-02446-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
As the increased consumption of ready-to-eat meat alternatives is a fairly recent trend, little is known about the composition and dynamics of the microbiota present on such products. Such information is nonetheless valuable in view of spoilage and food safety prevention. Even though refrigeration and modified-atmosphere-packaging (MAP) can extend the shelf-life period, microbial spoilage can still occur in these products. In the present study, the microbiota of a vegetarian alternative to poultry-based charcuterie was investigated during storage, contrasting the use of a culture-dependent method to a culture-independent metagenetic method.
Results
The former revealed that lactic acid bacteria (LAB) were the most abundant microbial group, specifically at the end of the shelf-life period, whereby Latilactobacillus sakei was the most abundant species. Metabarcoding analysis, in contrast, revealed that DNA of Xanthomonas was most prominently present, which likely was an artifact due to the presence of xanthan gum as an ingredient, followed by Streptococcus and Weissella.
Conclusions
Taken together, these results indicated that Lb. sakei was likely the most prominent specific spoilage organisms (SSO) and, additionally, that the use of metagenetic analysis needs to be interpreted with care in this specific type of product. In order to improve the performance of metagenetics in food samples with a high DNA matrix but a low bacterial DNA load, selective depletion techniques for matrix DNA could be explored.
Collapse
|
7
|
Blanco – Lizarazo CM, Sierra-Cadavid A, Montoya R AM, Ospina-E JC. Analysis of microbiota structure in cooked ham as influenced by chemical composition and processing treatments: Identification of spoilage bacteria and elucidation on contamination route. Curr Res Food Sci 2022; 5:726-734. [PMID: 35497775 PMCID: PMC9046883 DOI: 10.1016/j.crfs.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Spoilage in cooked ham is one of the main challenges where microbial contamination can play a fundamental role. This study aimed to characterize pork-cooked ham's microbial community changes among different food production conditions (formulation and processing) using 16S rRNA sequencing and also to investigate the spoilage bacteria in order to elucidate their contamination route. Samples of three pork-cooked ham references with and without post-pasteurization treatment and in contact with the slicing-packaging conveyor belt and slicer and packager surfaces were performed by 16S rRNA gene sequencing. In order to clarify the contamination route, surfaces were sampled by conventional microbiological methods. Results showed that Leuconostoc spp. was the principal genera in spoiled cooked ham and had no relation neither to formulation nor contact with the slicing-packaging conveyor belt. The contamination route found for Leuconostoc spp. was associated with the storage and packaging zone. In addition, the calculated shelf-life decreased to 57.5% independently of the environment interaction minimization when ham casing permeability was changed and linked to contamination of spoilage bacteria during the slicing and packaging process. This research illustrates how the combined approach provides complementary results to implement suggestions in the facility to reduce the cross-contamination with spoilage bacteria. It also generates tools to comprehend and propose transference models understanding the environmental and intrinsic factors related to microbial transfer rate. The structure of the bacterial community in cooked ham had no relation to the formulation. Genus Leuconostoc dominated the spoilage in cooked ham. The methodology allows validating the contamination route for spoilage bacteria. Post-pasteurization treatment reduce microbiota diversity. The ham shelf lifetime decrease get related to cross-contamination during slicing.
Collapse
|
8
|
Duthoo E, Rasschaert G, Leroy F, Weckx S, Heyndrickx M, De Reu K. The Microbiota of Modified-Atmosphere-Packaged Cooked Charcuterie Products throughout Their Shelf-Life Period, as Revealed by a Complementary Combination of Culture-Dependent and Culture-Independent Analysis. Microorganisms 2021; 9:microorganisms9061223. [PMID: 34200022 PMCID: PMC8229102 DOI: 10.3390/microorganisms9061223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Although refrigeration and modified-atmosphere packaging (MAP) allow for an extended shelf life of cooked charcuterie products, they are still susceptible to bacterial spoilage. To obtain better insights into factors that govern product deterioration, ample information is needed on the associated microbiota. In this study, sliced MAP cooked ham and cooked chicken samples were subjected to culture-dependent and culture-independent microbial analysis. In total, 683 bacterial isolates were obtained and identified from 60 samples collected throughout the storage period. For both charcuterie types, lactic acid bacteria (LAB) constituted the most abundant microbial group. In cooked ham, Brochothrix thermosphacta was highly abundant at the beginning of the shelf-life period, but was later overtaken by Leuconostoc carnosum and Lactococcus piscium. For cooked chicken products, Latilactobacillus sakei was most abundant throughout the entire period. Additionally, 13 cooked ham and 16 cooked chicken samples were analyzed using metabarcoding. Findings obtained with this method were generally in accordance with the results from the culture-dependent approach, yet they additionally demonstrated the presence of Photobacterium at the beginning of the shelf-life period in both product types. The results indicated that combining culture-dependent methods with metabarcoding can give complementary insights into the evolution of microorganisms in perishable foods.
Collapse
Affiliation(s)
- Evelyne Duthoo
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
| | - Geertrui Rasschaert
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (F.L.); (S.W.)
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (F.L.); (S.W.)
| | - Marc Heyndrickx
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, 9820 Merelbeke, Belgium
| | - Koen De Reu
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
- Correspondence: ; Tel.: +32-92723043
| |
Collapse
|
9
|
Bacterial community dynamics during different stages of processing of smoked bacon using the 16S rRNA gene amplicon analysis. Int J Food Microbiol 2021; 351:109076. [PMID: 34090034 DOI: 10.1016/j.ijfoodmicro.2021.109076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/26/2023]
Abstract
To identify the microbial community and origin of the spoilage flora of bacon, the changes in microbial population numbers and community structure were followed along the processing line, using culture-independent and culture-dependent methods. 16S rRNA gene amplicon sequencing (16S-seq) analysis showed that community complexity and structure significantly differed at different processing stages. Some 428 bacterial groups were ascertained at genus level, and Acinetobacter, Pseudomonas, Psychrobacter, and Brochothrix were the predominant bacteria on raw meats. After curing specimens dominated by Psychrobacter, Weissella, Vibrio, Leuconostoc, Myroides, Acinetobacter, and Lactobacillus, a total of 33 species were identified by traditional microbiological analyses and direct sequence determination methods. Our results indicated that curing should be considered one of the primary factors during various processing steps, presumably contaminating the products directly or indirectly.
Collapse
|
10
|
|
11
|
Silva R, Pereira J, Rouxinol M, Patarata L. Sensory Changes and Listeria monocytogenes Behavior in Sliced Cured Pork Loins during Extended Storage. Foods 2020; 9:E621. [PMID: 32408592 PMCID: PMC7278872 DOI: 10.3390/foods9050621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Cured pork loins are sausages with a production tradition in several regions worldwide. They are made from one of the noblest cuts of pork, and for this reason cured loins are one of the most expensive pork meat products. Establishing the correct shelf life allows products to be accepted by the consumer, and to avoid the costs associated with shorter shelf lives. The aim of this study is: (1) to establish proper shelf life by evaluating the willingness of participants to consume and the sensory modifications that occur during prolonged storage via Check All That Apply (CATA) questions; and (2) to study the behavior of Listeria monocytogenes through a microbial challenge test. Sliced cured pork loins can be stored at 6 ± 1 °C for 105 days while maintaining a consumer acceptance of more than 75%. The freshness loss was associated mainly with a decrease in aromatic notes (particularly the smoke and cured aroma), and with the appearance of spoiled characteristics, specifically a sour/vinegar aroma and acidic taste that were detected by a reduced proportion of participants. The freshness evaluation was positively influenced by the typical characteristics of cured products, such as color and a garlic and wine aroma. Sour/vinegar aroma and acidic taste were the attributes most associated with higher freshness penalization. During the period of the test, Listeria monocytogenes inoculated onto the cured loin slices did not grow.
Collapse
Affiliation(s)
- Rita Silva
- Escola de Ciências Agrárias e Veterinárias (ECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, 5000-081 Vila Real, Portugal;
| | - Jorge Pereira
- Campus da Penha, Estrada da Penha, Universidade do Algarve, Instituto Superior de Engenharia, 8005-139 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
| | | | - Luis Patarata
- Escola de Ciências Agrárias e Veterinárias (ECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, 5000-081 Vila Real, Portugal;
- CECAV—Center of Studies in Animal and Veterinary Science, 5000-081 Vila Real, Portugal
| |
Collapse
|
12
|
Zagdoun M, Coeuret G, N'Dione M, Champomier-Vergès MC, Chaillou S. Large microbiota survey reveals how the microbial ecology of cooked ham is shaped by different processing steps. Food Microbiol 2020; 91:103547. [PMID: 32539984 DOI: 10.1016/j.fm.2020.103547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 05/03/2020] [Indexed: 01/19/2023]
Abstract
Cooked ham production involves numerous steps shaping the microbial communities of the final product, with consequences on spoilage metabolites production. To identify the main factors driving the ecology of ham and its spoilage, we designed a study encompassing five variables related to ham production: type of storage during meat transportation, churning speed, drain-off time, slicing line and O2 packaging permeability. About 200 samples from the same facility were obtained and characterized with respect to i) their microbiota based on gyrB amplicon sequencing ii) their production of spoilage-related metabolites based on E-Nose analysis and enzymatic assays. The slicing was the most critical step, shaping two general types of microbiota according to the slicing line: one dominated by Carnobacterium divergens and another one dominated by Leuconostoc carnosum and Serratia proteamaculans. Regarding metabolites production, L. carnosum was associated to d-lactic acid, ethanol and acetic acid production, whereas Serratia proteamaculans was associated to acetic acid production. This last species prevailed with highly O2-permeable packaging. Within a given slicing line, campaign-based variations were observed, with Lactobacillus sakei, Leuconostoc mesenteroides and Carnobacterium maltaromaticum prevalent in summer. L. sakei was associated with l-lactic acid production and C. maltaromaticum with formic and acetic acid productions.
Collapse
Affiliation(s)
- Marine Zagdoun
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Gwendoline Coeuret
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Méry N'Dione
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Stéphane Chaillou
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
13
|
Laranja DC, Malheiros PDS, Tondo EC. Effective use of nisin to control lactic acid bacterial spoilage in sliced cooked ham. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Daniela Comparsi Laranja
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Patrícia da Silva Malheiros
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| | - Eduardo Cesar Tondo
- Department of Food Science Institute of Food Science and Technology, Federal University of Rio Grande do Sul (ICTA‐UFRGS) Porto Alegre Brazil
| |
Collapse
|
14
|
Khorsandi A, Eskandari MH, Aminlari M, Shekarforoush SS, Golmakani MT. Shelf-life extension of vacuum packed emulsion-type sausage using combination of natural antimicrobials. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
The application of selected ion flow tube-mass spectrometry to follow volatile formation in modified-atmosphere-packaged cooked ham. Food Res Int 2019; 123:601-611. [PMID: 31285009 DOI: 10.1016/j.foodres.2019.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 11/22/2022]
Abstract
Cooked pork products, i.e., sliced cooked hams maintained under modified-atmosphere-packaging (MAP), were analysed both microbiologically and with respect to volatile levels during storage. Three storage temperature ranges were compared (4-6 °C, 7-9 °C, and 11-13 °C), representing different refrigeration conditions at household level. The microbial loads were determined by plating samples on six different agar media, followed by (GTG)5-PCR fingerprinting of genomic DNA of selected isolates, and identification of representative isolates by 16S rRNA, pheS, and rpoA gene sequencing. Carnobacterium maltaromaticum, Lactobacillus sakei, and Serratia proteamaculans were the major bacterial species found among the 619 isolates identified. The volatiles produced during storage were followed by selected ion flow tube-mass spectrometry (SIFT-MS) and the identity of the volatiles was confirmed by headspace solid-phase microextraction combined with gas chromatography and time-of-flight mass spectrometry (HS-SPME-GC-TOF-MS). SIFT-MS analysis showed that volatiles, such as 2,3-butanediol, acetoin, and ethanol, may serve as potential markers for spoilage development. Differences in volatile production between samples were likely due to discrepancies in the initial microbial load and the effect of storage conditions. In conclusion, this study combines the use of new mass spectrometric techniques to examine volatile production during spoilage as an additional source of information during microbiological community analysis.
Collapse
|
16
|
Menezes NMC, Martins WF, Longhi DA, de Aragão GMF. Modeling the effect of oregano essential oil on shelf-life extension of vacuum-packed cooked sliced ham. Meat Sci 2018; 139:113-119. [DOI: 10.1016/j.meatsci.2018.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/23/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
17
|
Janiszewski P, Borzuta K, Lisiak D, Bartodziejska B, Grześkowiak E, Królasik J, Poławska E. The quality of pork and the shelf life of the chosen carcass elements during storage depending on the method of carcass chilling. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Piotr Janiszewski
- Department of Meat and Fat Technology; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology; ul. Głogowska 239, Poznań 60-111 Poland
| | - Karol Borzuta
- Department of Meat and Fat Technology; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology; ul. Głogowska 239, Poznań 60-111 Poland
| | - Dariusz Lisiak
- Department of Meat and Fat Technology; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology; ul. Głogowska 239, Poznań 60-111 Poland
| | - Beata Bartodziejska
- Department of Quality of Food; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology; Al. Marszałka J. Piłsudskiego 84, Łódź 92-202 Poland
| | - Eugenia Grześkowiak
- Department of Meat and Fat Technology; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology; ul. Głogowska 239, Poznań 60-111 Poland
| | - Joanna Królasik
- Department of Quality of Food; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology; Al. Marszałka J. Piłsudskiego 84, Łódź 92-202 Poland
| | - Ewa Poławska
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences; Jastrzębiec, Postępu 36A, Wólka Kosowska 05-552 Poland
| |
Collapse
|
18
|
Correa JP, Molina V, Sanchez M, Kainz C, Eisenberg P, Massani MB. Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packag Shelf Life 2017. [DOI: 10.1016/j.fpsl.2016.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Exploring lot-to-lot variation in spoilage bacterial communities on commercial modified atmosphere packaged beef. Food Microbiol 2016; 62:147-152. [PMID: 27889141 DOI: 10.1016/j.fm.2016.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/15/2016] [Accepted: 10/02/2016] [Indexed: 11/22/2022]
Abstract
Understanding the factors influencing meat bacterial communities is important as these communities are largely responsible for meat spoilage. The composition and structure of a bacterial community on a high-O2 modified-atmosphere packaged beef product were examined after packaging, on the use-by date and two days after, to determine whether the communities at each stage were similar to those in samples taken from different production lots. Furthermore, we examined whether the taxa associated with product spoilage were distributed across production lots. Results from 16S rRNA amplicon sequencing showed that while the early samples harbored distinct bacterial communities, after 8-12 days storage at 6 °C the communities were similar to those in samples from different lots, comprising mainly of common meat spoilage bacteria Carnobacterium spp., Brochothrix spp., Leuconostoc spp. and Lactococcus spp. Interestingly, abundant operational taxonomic units associated with product spoilage were shared between the production lots, suggesting that the bacteria enable to spoil the product were constant contaminants in the production chain. A characteristic succession pattern and the distribution of common spoilage bacteria between lots suggest that both the packaging type and the initial community structure influenced the development of the spoilage bacterial community.
Collapse
|