1
|
Ortiz BT, Rodríguez D, Restrepo S. Prevalence and risk factors of Campylobacter jejuni and Campylobacter coli in fresh chicken carcasses from retail sites in Bogotá, Colombia. Heliyon 2024; 10:e26356. [PMID: 38420476 PMCID: PMC10900410 DOI: 10.1016/j.heliyon.2024.e26356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Campylobacter is one of the most common causes of foodborne gastroenteritis. The objective of this study was to estimate the prevalence and risk factors associated with Campylobacter jejuni and Campylobacter coli species in fresh chicken carcasses for human consumption from farmers' markets and small food stores in seven localities of Bogotá, Colombia. Ninety-one samples of fresh chicken carcasses were collected from farmers' markets and small food stores at seven localities in Bogotá. Samples were tested for Campylobacter using the real-time polymerase chain reaction (real time PCR) and isolation by plating. To analyze possible risk factors associated with Campylobacter spp. contamination in retail chicken carcasses, information was collected using a structured questionnaire and a univariate logistic regression analysis (α = 0.05) was used. Forty-two positive samples were obtained for Campylobacter spp., given a prevalence of 46.2%, of which 54.8% were to C. jejuni, 9.52% to C. coli and 35.7% to joint contaminations. C. jejuni was the most prevalent species. Risk factors found included poor cleanliness, in frequency of disinfection, type of establishment, and direct contact of chickens with other food. This study is the first report in the country on the prevalence and risk factors of Campylobacter in retail chicken.
Collapse
Affiliation(s)
- Brigithe Tatiana Ortiz
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Deyci Rodríguez
- Laboratory of Food Microbiology, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Silvia Restrepo
- Laboratory of Mycology and Phytopathology (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| |
Collapse
|
2
|
Dias TS, de Almeida Figueira A, Costa GA, da Cunha NC, Rossi DA, de Melo RT, de Almeida Pereira VL, de Aquino MHC. SVR-flaA typing of erythromycin- and ciprofloxacin-resistant Campylobacter jejuni strains isolated from poultry slaughterhouses in southern Brazil. Braz J Microbiol 2023; 54:1065-1073. [PMID: 37055624 PMCID: PMC10234967 DOI: 10.1007/s42770-023-00969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
The emergence of fluoroquinolone and macrolide resistance in C. jejuni, a recognized zoonotic pathogen, has increased worldwide. This study aimed to investigate phenotypic resistance to ciprofloxacin and erythromycin, the molecular mechanisms involved, and the strain of C. jejuni isolated from broiler carcasses. Eighty C. jejuni isolates from broiler carcasses in southern Brazil were investigated for their susceptibility to ciprofloxacin and erythromycin at minimal inhibitory concentrations. Mismatch amplification mutation assay-polymerase chain reaction (MAMA-PCR) was performed to detect substitutions of Thr-86-Ile, A2074C, and A2075G of domain V in the 23S rRNA. The presence of ermB gene and CmeABC operon were investigated by PCR. DNA sequencing was used to detect substitutions in the L4 and L22 proteins of the erythromycin-resistant strains. The Short Variable Region (SVR) of flaA was used to type all the strains resistant to both antimicrobials. Ciprofloxacin and erythromycin resistance were detected in 81.25% and 30.00% of the strains, respectively, and minimal inhibitory concentration values ranged from ≤ 0.125 to 64 µg/mL for ciprofloxacin and 0.5 to > 128 µg/mL for erythromycin. The Thr-86-Ile mutation in gyrA was observed in 100% of the ciprofloxacin-resistant strains. Mutations in both the A2074C and A2075G positions of 23S rRNA were observed in 62.5% of the erythromycin-resistant strains, while 37.5% had only the mutation A2075G. None of the strains harbored CmeABC operon, and ermB was not detected. Using DNA sequencing, the amino acid substitution T177S was detected in L4, and substitutions I65V, A103V, and S109A were detected in L22. Twelve flaA-SVR alleles were identified among the strains, with the most common SVR-flaA allele, type 287, covering 31.03% of ciprofloxacin- and erythromycin-resistant isolates. The present study revealed a high incidence and high levels of resistance to ciprofloxacin and erythromycin, as well as broad molecular diversity in C. jejuni isolates from broiler carcasses.
Collapse
Affiliation(s)
- Thomas Salles Dias
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil.
| | - Arthur de Almeida Figueira
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
| | - Gisllany Alves Costa
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
| | - Nathalie Costa da Cunha
- Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Virginia Léo de Almeida Pereira
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
- Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Maria Helena Cosendey de Aquino
- Postgraduate Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, Brazil
- Department of Preventive Veterinary Medicine, Faculdade de Veterinária, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| |
Collapse
|
3
|
Santos AFM, Machado SCA, Dias TS, Rodrigues DP, Pereira VLA. High Genetic Similarity Among Salmonella Heidelberg Isolated from Poultry Farms, Wild Animals, Beef, Poultry and Pork Meat, and Humans in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2022-1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
| | | | - TS Dias
- Federal Fluminense University, Brazil
| | | | | |
Collapse
|
4
|
Djeghout B, Bloomfield SJ, Rudder S, Elumogo N, Mather AE, Wain J, Janecko N. Comparative genomics of Campylobacter jejuni from clinical campylobacteriosis stool specimens. Gut Pathog 2022; 14:45. [PMID: 36476389 PMCID: PMC9727990 DOI: 10.1186/s13099-022-00520-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is a pervasive pathogen of major public health concern with a complex ecology requiring accurate and informative approaches to define pathogen diversity during outbreak investigations. Source attribution analysis may be confounded if the genetic diversity of a C. jejuni population is not adequately captured in a single specimen. The aim of this study was to determine the genomic diversity of C. jejuni within individual stool specimens from four campylobacteriosis patients. Direct plating and pre-culture filtration of one stool specimen per patient was used to culture multiple isolates per stool specimen. Whole genome sequencing and pangenome level analysis were used to investigate genomic diversity of C. jejuni within a patient. RESULTS A total 92 C. jejuni isolates were recovered from four patients presenting with gastroenteritis. The number of isolates ranged from 13 to 30 per patient stool. Three patients yielded a single C. jejuni multilocus sequence type: ST-21 (n = 26, patient 4), ST-61 (n = 30, patient 1) and ST-2066 (n = 23, patient 2). Patient 3 was infected with two different sequence types [ST-51 (n = 12) and ST-354 (n = 1)]. Isolates belonging to the same sequence type from the same patient specimen shared 12-43 core non-recombinant SNPs and 0-20 frameshifts with each other, and the pangenomes of each sequence type consisted of 1406-1491 core genes and 231-264 accessory genes. However, neither the mutation nor the accessory genes were connected to a specific functional gene category. CONCLUSIONS Our findings show that the C. jejuni population recovered from an individual patient's stool are genetically diverse even within the same ST and may have shared common ancestors before specimens were obtained. The population is unlikely to have evolved from a single isolate at the time point of initial patient infection, leading us to conclude that patients were likely infected with a heterogeneous C. jejuni population. The diversity of the C. jejuni population found within individual stool specimens can inform future methodological approaches to attribution and outbreak investigations.
Collapse
Affiliation(s)
- Bilal Djeghout
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Samuel J. Bloomfield
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Steven Rudder
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Ngozi Elumogo
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.416391.80000 0004 0400 0120Eastern Pathology Alliance, Norfolk and Norwich University Hospital, Norwich, NR4 7UY UK
| | - Alison E. Mather
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.8273.e0000 0001 1092 7967Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - John Wain
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.8273.e0000 0001 1092 7967Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Nicol Janecko
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| |
Collapse
|
5
|
Elshebrawy HA, Abdel-Naeem HH, Mahros MA, Elsayed H, Imre K, Herman V, Morar A, Sallam KI. Multidrug-resistant Salmonella enterica serovars isolated from frozen chicken carcasses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
de Mesquita Souza Saraiva M, Lim K, do Monte DFM, Givisiez PEN, Alves LBR, de Freitas Neto OC, Kariuki S, Júnior AB, de Oliveira CJB, Gebreyes WA. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol 2022; 53:465-486. [PMID: 34775576 PMCID: PMC8590523 DOI: 10.1007/s42770-021-00635-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) remains a major global public health crisis. The food animal industry will face escalating challenges to increase productivity while minimizing AMR, since the global demand for animal protein has been continuously increasing and food animals play a key role in the global food supply, particularly broiler chickens. As chicken products are sources of low-cost, high-quality protein, poultry production is an important economic driver for livelihood and survival in developed and developing regions. The globalization of the food supply, markedly in the poultry industry, is aligned to the globalization of the whole modern society, with an unprecedented exchange of goods and services, and transit of human populations among regions and countries. Considering the increasing threat posed by AMR, human civilization is faced with a complex, multifaceted problem compromising its future. Actions to mitigate antimicrobial resistance are needed in all sectors of the society at the human, animal, and environmental levels. This review discusses the problems associated with antimicrobial resistance in the globalized food chain, using the poultry sector as a model. We cover critical aspects of the emergence and dissemination of antimicrobial resistance in the poultry industry and their implications to public health in a global perspective. Finally, we provide current insights using the multidisciplinary One Health approach to mitigate AMR at the human-animal-environment interface.
Collapse
Affiliation(s)
- Mauro de Mesquita Souza Saraiva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Kelvin Lim
- Veterinary Health Management Branch, National Parks Board, 6 Perahu Road, Singapore, Singapore
| | - Daniel Farias Marinho do Monte
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Patrícia Emília Naves Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Lucas Bocchini Rodrigues Alves
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | | | - Samuel Kariuki
- Kenya Medical Research Institute, Nairobi, Kenya
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Angelo Berchieri Júnior
- Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Wondwossen Abebe Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Prevalence and molecular characterization of multidrug-resistant and β-lactamase producing Salmonella enterica serovars isolated from duck, pigeon, and quail carcasses in Mansoura, Egypt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Ortiz-Suárez LE, Redondo-Solano M, Arias-Echandi ML, Valenzuela-Martínez C, Peña-Ramos EA. Optimization of the In Vitro Bactericidal Effect of a Mixture of Chlorine and Sodium Gallate against Campylobacter spp. and Arcobacter butzleri. J Food Prot 2021; 84:1127-1135. [PMID: 33428726 DOI: 10.4315/jfp-20-181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/06/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Campylobacter spp. and Arcobacter butzleri are foodborne pathogens associated with the consumption of contaminated raw chicken meat. At the industry level, the combination of new and common antimicrobials could be used as a strategy to control the presence of pathogens in chicken carcasses. The objective of this study was to determine the bacteriostatic and bactericidal effects of a mixture of chlorine (Cl) and sodium gallate (SG) on a mixture of two Campylobacter species (Campylobacter jejuni and Campylobacter coli) and A. butzleri. Using a central composite experimental design, it was established that the optimum inhibitory SG-Cl concentration for Campylobacter spp. was 44 to 45 ppm. After 15 h of incubation, Campylobacter species growth was reduced by 37.5% and the effect of Cl was potentiated by SG at concentrations above 45 ppm. In the case of A. butzleri, optimum levels of 28 and 41 ppm were observed for SG and Cl, respectively; no synergism was reported, as this bacterium was more sensitive to lower Cl concentrations than Campylobacter. After a 20-min pretreatment with peracetic acid (50 ppm), the optimum condition to achieve a >1.0-Log CFU/mL reduction of Campylobacter spp. was exposure to 177 ppm of Cl and 44 ppm of SG for 56 min. As A. butzleri showed lower resistance to the bacteriostatic effect of the Cl-SG combination, it was assumed that optimum bactericidal conditions for Campylobacter spp. were effective to control the former; this was confirmed with subsequent validation of the model. The SG-Cl combination has bactericidal properties against Campylobacter and A. butzleri, and it may be a useful strategy to improve sanitary practices applied in the poultry industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Luis Enrique Ortiz-Suárez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora, México 83304
| | - Mauricio Redondo-Solano
- Research Center for Tropical Diseases (CIET) and Food Microbiology Laboratory, Faculty of Microbiology, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, 11501-2060 San José, Costa Rica
| | - María Laura Arias-Echandi
- Research Center for Tropical Diseases (CIET) and Food Microbiology Laboratory, Faculty of Microbiology, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, 11501-2060 San José, Costa Rica
| | - Carol Valenzuela-Martínez
- Research Center for Tropical Diseases (CIET) and Food Microbiology Laboratory, Faculty of Microbiology, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, 11501-2060 San José, Costa Rica
| | - Etna Aida Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora, México 83304
| |
Collapse
|
9
|
Bai J, Chen Z, Luo K, Zeng F, Qu X, Zhang H, Chen K, Lin Q, He H, Liao M, Zhang J. Highly Prevalent Multidrug-Resistant Campylobacter spp. Isolated From a Yellow-Feathered Broiler Slaughterhouse in South China. Front Microbiol 2021; 12:682741. [PMID: 34220768 PMCID: PMC8242590 DOI: 10.3389/fmicb.2021.682741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate the prevalence, antimicrobial resistance, virulence genes, and genetic diversity of Campylobacter spp. along the yellow-feathered broiler slaughtering line in Southern China from December 2018 to June 2019. A total of 157 Campylobacter spp. isolates were identified from 1,102 samples (including 53.6% (75/140) of live chicken anal swab samples, 27.5% (44/160) of defeathering samples, 18.1% (29/160) of evisceration samples, 2.1% (3/140) of washing samples, 1.4% (2/140) of chilling samples, and 1.1% (4/362) of environmental samples). The prevalence of Campylobacter spp. was 14.2%, including 43.9% Campylobacter jejuni, 53.5% Campylobacter coli, and 2.5% other Campylobacter species. The highest antimicrobial resistance rate was found to be against sulfamethoxazole (138/157, 87.9%), and 90.4% (142/157) of the isolates were multidrug resistant (MDR). Examination of resistance-related genes revealed the double base mutated Thr-86-Ile, which informed ACA-TTA, with an Arg-79-Lys substitution in gyrA. Eleven virulence-associated genes (cadF, cdtA, cdtB, ciaB, flaA, imaA, dnaJ, plaA, virB11, racR, and cdtC) were also detected by a polymerase chain reaction (PCR) analysis, and cadF (81.5%) was the most prevalent. Based on an analysis of pulsed-field gel electrophoresis (PFGE) results, we found that Campylobacter spp. could be cross-contaminated throughout the entire slaughtering line. These results show that it is imperative to study the Campylobacter spp. from the yellow-feathered broiler along the slaughtering line in China to develop preventative and treatment measures for the poultry industry, as well as food safety and public health.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhengquan Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaifeng Chen
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qijie Lin
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haishan He
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangdong Laboratory for Lingnan Modern Agriculture, National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Kleinubing NR, Ramires T, Würfel SDFR, Haubert L, Scheik LK, Kremer FS, Lopes GV, Silva WPD. Antimicrobial resistance genes and plasmids in Campylobacter jejuni from broiler production chain in Southern Brazil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Zeng H, De Reu K, Gabriël S, Mattheus W, De Zutter L, Rasschaert G. Salmonella prevalence and persistence in industrialized poultry slaughterhouses. Poult Sci 2021; 100:100991. [PMID: 33610890 PMCID: PMC7905466 DOI: 10.1016/j.psj.2021.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Salmonella contamination sources and transmission routes were studied in 5 Belgian poultry slaughterhouses. Samples from the slaughter and cutting line after cleaning and disinfection were collected, as well as neck skin samples and thighs during slaughter of the first flock. In total, 680 swab and water samples were taken from the slaughter line before slaughter. In all slaughterhouses, Salmonella was notwithstanding cleaning and disinfection still isolated from the slaughter line before start of activities. The prevalence of Salmonella in the plucking area was 10.4% (38/365) (hanging area: 5.0%, scalding tank: 5.8%, plucking machine: 17.0%); in the evisceration room, 1.5% (2/138); and in the cutting area, 2.0% (3/149). No Salmonella (0/28) was found in samples from the chilling line. On neck skin samples taken from the various lines, Salmonella prevalence was 16.1% (48/299) after plucking, 16.0% (48/300) after evisceration, 23.3% (70/300) after chilling; on thighs, prevalence was 10.0% (24/240). Nine Salmonella serotypes were identified of which Salmonella Infantis was the most common serovar (53.8%), especially in slaughterhouse A. Two contamination causes were identified; first, although all flocks had an official Salmonella negative status, this was in one case incorrect and led to an enormous contamination of the neck skins of the flock and the slaughterline (i.e., cooling water). Second, molecular typing revealed cross-contamination from flocks slaughtered 1 d before sampling. Salmonella was apparently not always eliminated by the cleaning and disinfection process and able to contaminate the carcasses of the first slaughtered flock. In conclusion, the results of this study provided practical insights for poultry production to further improve their Salmonella control, for example, Salmonella status determination closer to the slaughter date, to adapt cleaning and disinfection protocols especially for critical machinery and better hygienic designed equipment.
Collapse
Affiliation(s)
- H Zeng
- Flanders Research Institute For Agriculture, Fisheries and Food (ILVO), B-9090 Melle, Belgium; Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - K De Reu
- Flanders Research Institute For Agriculture, Fisheries and Food (ILVO), B-9090 Melle, Belgium
| | - S Gabriël
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - W Mattheus
- Sciensano, Infectious Diseases in Humans, Bacterial Diseases, B-1180 Brussels, Belgium
| | - L De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - G Rasschaert
- Flanders Research Institute For Agriculture, Fisheries and Food (ILVO), B-9090 Melle, Belgium.
| |
Collapse
|
12
|
Dias TS, Nascimento RJ, Machado LS, Abreu DLC, do Nascimento ER, Pereira VLA, de Aquino MHC. Comparison of antimicrobial resistance in thermophilic Campylobacter strains isolated from conventional production and backyard poultry flocks. Br Poult Sci 2020; 62:188-192. [PMID: 33026245 DOI: 10.1080/00071668.2020.1833302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. The aim of this study was to compare the resistance pattern of thermophilic Campylobacter spp. isolated from conventional production (n = 34) and backyard poultry flocks (n = 36) from Rio de Janeiro State, Brazil. The disc diffusion method and statistical tests were used for investigation and analysis of the resistance pattern of Campylobacter spp. isolated from different rearing systems.2. Antimicrobial resistance percentages to amoxycillin with clavulanic acid (AMC), ampicillin (AMP), ceftiofur (CTF), ciprofloxacin (CIP), enrofloxacin (ENO), erythromycin (ERI), gentamicin (GEN) and tetracycline (TET) were 32.4%, 44.1%, 67.6%, 97.1%, 82.4%, 26.5%, 5.9% and 38.2% in conventional production flocks respectively, while the backyard flock's resistance levels were 0.0%, 13.9%, 69.4%, 100.0%, 91.7%, 5.6%, 0.0% and 16.7%, respectively.3. Campylobacter spp. from conventional poultry production was more resistant to AMC, AMO, ERI and TET (P > 0.05) when compared to strains from backyard poultry. A higher frequency of resistance to fluoroquinolones (FLQ), CIP and ENO, was observed in strains from both systems, demonstrating the spread of resistant strains among poultry production environments.
Collapse
Affiliation(s)
- T S Dias
- Post-graduation Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculty of Veterinary, Fluminense Federal University (UFF), Brazil
| | - R J Nascimento
- Post-graduation Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculty of Veterinary, Fluminense Federal University (UFF), Brazil
| | - L S Machado
- Post-graduation Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculty of Veterinary, Fluminense Federal University (UFF), Brazil
| | - D L C Abreu
- Post-graduation Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculty of Veterinary, Fluminense Federal University (UFF), Brazil.,Public Health Department, Faculty of Veterinary, Fluminense Federal University (UFF), Brazil
| | - E R do Nascimento
- Post-graduation Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculty of Veterinary, Fluminense Federal University (UFF), Brazil.,Public Health Department, Faculty of Veterinary, Fluminense Federal University (UFF), Brazil
| | - V L A Pereira
- Post-graduation Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculty of Veterinary, Fluminense Federal University (UFF), Brazil.,Public Health Department, Faculty of Veterinary, Fluminense Federal University (UFF), Brazil
| | - M H C de Aquino
- Post-graduation Program in Veterinary Medicine (Veterinary Hygiene and Processing Technology of Animal Products), Faculty of Veterinary, Fluminense Federal University (UFF), Brazil.,Public Health Department, Faculty of Veterinary, Fluminense Federal University (UFF), Brazil
| |
Collapse
|
13
|
Ramires T, de Oliveira MG, Kleinubing NR, de Fátima Rauber Würfel S, Mata MM, Iglesias MA, Lopes GV, Dellagostin OA, da Silva WP. Genetic diversity, antimicrobial resistance, and virulence genes of thermophilic Campylobacter isolated from broiler production chain. Braz J Microbiol 2020; 51:2021-2032. [PMID: 32514993 PMCID: PMC7688733 DOI: 10.1007/s42770-020-00314-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 06/04/2020] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to investigate the prevalence of thermophilic Campylobacter in the broiler production chain of southern Brazil, by evaluating broiler farms and slaughter line samples, and to determine the genetic diversity, antimicrobial resistance, and virulence genes of the isolates. Of the 140 samples investigated in this study, 75 (53.6%) were positive for thermophilic Campylobacter, and all isolates were identified by phenotypic and molecular tests as C. jejuni. The resistance to nalidixic acid was the most common (74%), followed by resistance to enrofloxacin (67.3%) and ciprofloxacin (37.1%). However, there was no resistance to the macrolides tested which are recommended for the treatment of human campylobacteriosis. The PFGE showed that the isolates were grouped in eight macrorestriction patterns (P1 to P8). A representative isolate of each macrorestriction pattern was investigated for the presence of virulence genes and all isolates carried the cadF, ciaB, cdtA, cdtB, cdtC, and flaA genes. The dnaJ gene was detected in 87.5% (7/8) of the isolates. The flhA and racR genes were detected in 75% (6/8), while the pldA gene was present in 62.5% (5/8) and the wlaN gene in 25% (2/8). The presence of C. jejuni in broiler farms and in the slaughterhouse is a hazard to consumer given that this pathogen can be maintained throughout the broiler production chain and contaminates the final product. Moreover, the presence of the major virulence genes in the isolates demonstrates that they have the ability to develop campylobacteriosis in humans.
Collapse
Affiliation(s)
- Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mauricéia Greici de Oliveira
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Marcia Magalhães Mata
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
Lemos MPL, Saraiva MMS, Leite EL, Silva NMV, Vasconcelos PC, Giachetto PF, Freitas Neto OC, Givisiez PEN, Gebreyes WA, Oliveira CJB. The posthatch prophylactic use of ceftiofur affects the cecal microbiota similar to the dietary sanguinarine supplementation in broilers. Poult Sci 2020; 99:6013-6021. [PMID: 33142520 PMCID: PMC7647783 DOI: 10.1016/j.psj.2020.06.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
The prophylactic administration of ceftiofur to newly hatched chicks is a common practice in some hatcheries worldwide to mitigate early gastrointestinal infections caused by Enterobacteriaceae. In spite of the crucial role of the gut microbiome for the broiler's health, there is still limited information on how the microbial composition is affected by such procedure. We investigated the effects of posthatch prophylactic application of ceftiofur on the cecal microbiota of 14-day-old broilers fed regular or sanguinarine-supplemented diets. DNA samples were extracted from cecal contents, amplified for the V3-V4 regions of the microbial 16S rRNA gene, and sequenced in a high-throughput sequencing platform (Illumina MiSeq). After downstream bioinformatics and statistical analyses, our results demonstrated that both ceftiofur and sanguinarine treatments similarly increased the proportions of the phylum Bacteroidetes and the genera Bacteroides and Megamonas, whereas reduced the relative abundances of Firmicutes and Lachnospiraceae in the ceca of the birds. Such changes are probably associated with increased carbohydrate fermentation processes favoring the production of short-chain fatty acids. This was also corroborated by the functional prediction findings, which suggest an increase in some metabolic pathways associated with digestibility in broilers receiving ceftiofur. Considering that antimicrobial stewardship in animal production systems is strongly needed to mitigate the threat of antimicrobial resistance, our findings show that supplementation with a phytogenic feed additive can lead to a similar microbial composition in the ceca of commercial broiler chickens, suggesting that the use of alternative products could lead to functional modifications without increasing pressure for antimicrobial resistance.
Collapse
Affiliation(s)
- Mateus P L Lemos
- Department of Veterinary Sciences, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Mauro M S Saraiva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Elma L Leite
- Department of Veterinary Sciences, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Núbia M V Silva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Priscylla C Vasconcelos
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Poliana F Giachetto
- Laboratório de Bioinformática Aplicada (LBA), Embrapa Informática Agropecuária (EMBRAPA), Campinas, SP, Brazil
| | - Oliveiro C Freitas Neto
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Patrícia E N Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Wondwossen A Gebreyes
- Department of Preventive Veterinary Medicine, Veterinary College, The Ohio State University, Columbus-OH, USA; Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - Celso J B Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil; Global One Health initiative (GOHi), The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Marin C, Sevilla-Navarro S, Lonjedo R, Catalá-Gregori P, Ferrús MA, Vega S, Jiménez-Belenguer A. Genotyping and molecular characterization of antimicrobial resistance in thermophilic Campylobacter isolated from poultry breeders and their progeny in Eastern Spain. Poult Sci 2020; 99:5096-5104. [PMID: 32988548 PMCID: PMC7598336 DOI: 10.1016/j.psj.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/04/2022] Open
Abstract
Thermophilic Campylobacter spp. are recognized as a major cause of acute bacterial diarrhea in humans, with broiler meat being the most common source of human infection. Antibiotic therapy is usually necessary for severe or prolonged infections, especially in immunocompromised populations such as young or elderly individuals. However, different studies have demonstrated a close association between antibiotic use in animal production and antimicrobial resistance (AMR) in humans. In this sense, there is social pressure to reduce antibiotic administration and find adequate alternatives to control the presence of bacterial infections in farms. However, there is a lack of information related to Campylobacter AMR dynamics through the entire production system from breeders to their progeny. It is unknown if resistance genes are a result of adaptation through chromosomal mutation or through horizontal gene transfer, instead of vertical transmission of DNA from the parent to their progeny. Thus, the main objectives of this study were to assess the main AMR rates present in a poultry production system, to study the relationship between Campylobacter AMR profiles from breeders and their progeny, and to study the presence and distribution of antibiotic resistance genes in poultry production. Regarding AMR rates, ciprofloxacin was classified as extremely high, followed by nalidixic acid and tetracyclines that were classified as very high. Moreover, this study demonstrated a relationship between the AMR patterns and genes found from Campylobacter strains isolated in breeders and those present in their progeny.
Collapse
Affiliation(s)
- C Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - S Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - R Lonjedo
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain
| | - P Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - M A Ferrús
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain
| | - S Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - A Jiménez-Belenguer
- Biotechnology Department. Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
16
|
Dos Santos Pozza J, Voss-Rech D, Dos Santos Lopes L, Silveira Luiz Vaz C. Research Note: A baseline survey of thermotolerant Campylobacter in retail chicken in southern Brazil. Poult Sci 2020; 99:2690-2695. [PMID: 32359606 PMCID: PMC7597543 DOI: 10.1016/j.psj.2019.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/18/2022] Open
Abstract
Chicken is a leading source of thermotolerant Campylobacter, which triggers human foodborne enteritis. This study evaluated thermotolerant Campylobacter contamination of retail chicken in southern Brazil, using qualitative and quantitative analyses. Selective enrichment in Bolton broth for 24 and 48 h after plating onto modified charcoal-cefoperazone-deoxycholate (mCCD) agar and Preston agar was assessed. The combined results of the detection and enumeration methods revealed a frequency of 70% occurrence of thermotolerant Campylobacter in chicken samples. Campylobacter was enumerated in 60% of the samples, whereas 46% of the samples were positive in the qualitative analysis. Quantitative analysis showed average counts of 3.10 ± 0.15 log10 CFU/sample. Higher numbers of Campylobacter-positive samples were found using 24-h enrichment before plating onto Preston agar (46%) than onto mCCD agar (2%). The majority of isolated strains were identified as Campylobacter jejuni, and Campylobacter coli was also found but to a lesser extent. Subtyping revealed a clear distinction between strains isolated from different chicken sources. The enriched samples plated onto mCCD agar showed extensive spreading of nonproducing extended-spectrum β-lactamases Proteus mirabilis that hampered the identification of Campylobacter colonies. P. mirabilis strains showed resistance to cefoperazone, trimethoprim, and polymyxin B present in broth and plate media used and were inhibited by rifampicin present in Preston agar. The results underline the effect of the spread of contaminant strains on Campylobacter cultures, which might be prevented using a recently revised International Organization for Standardization method for qualitative analysis of chicken.
Collapse
|
17
|
Han X, Guan X, Zeng H, Li J, Huang X, Wen Y, Zhao Q, Huang X, Yan Q, Huang Y, Cao S, Wu R, Ma X, Zou L. Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic Campylobacter spp. isolated from ducks in a Chinese slaughterhouse. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Prevalence, Antimicrobial Resistance, and Molecular Typing of Thermophilic Campylobacter Spp. in a Greek Poultry Slaughterhouse. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2019-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Campylobacter species are one of the leading causes of foodborne disease. Poultry is a major reservoir and source of its transmission to humans. The aim of this study was to estimate the prevalence and antimicrobial resistance of Campylobacter spp. isolated from chicken carcasses, the environment, and processing equipment of a poultry slaughterhouse in Greece, to identify the dominant Campylobacter species and to determine if there are clonal relationships among the isolates. Fifty poultry samples and 25 environmental samples were examined using microbial cultures and PCR. Forty-nine of 50 poultry samples (98%) were found to be positive for Campylobacter spp. The environment of the slaughterhouse was also found to be significantly contaminated with Campylobacter spp. Thirty-seven isolates were found to be susceptible to all antimicrobials tested (56.1%) and 29 isolates showed resistance to at least two of the antimicrobials tested (43.9%). We observed 24 different PFGE-types among the 53 isolates with 14 of them isolated only once, while five PFGE-types were represented by two isolates. The remaining 29 isolates were represented by five PFGE-types each consisting of three to 12 isolates. Regarding the relationship of the PFGE types and corresponding resistance profiles, all strains of each PFGE-type shared the same antimicrobial resistance profile. This study reports evidence for Campylobacter spp. cross-contamination among broiler carcasses in a Greek slaughterhouse.
Collapse
|
19
|
Wang C, Nie T, Lin F, Connerton IF, Lu Z, Zhou S, Hang H. Resistance mechanisms adopted by a Salmonella Typhimurium mutant against bacteriophage. Virus Res 2019; 273:197759. [PMID: 31539557 DOI: 10.1016/j.virusres.2019.197759] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have key roles in regulating bacterial populations in most habitats. A Salmonella Typhimurium mutant (N18) with impaired sensitivity to phage fmb-p1 was obtained and examined, the adsorption efficiency of fmb-p1 to N18 was reduced to 6%, compared to more than 97% for wild type S. Typhimurium CMCC50115. Reduced adsorption was accompanied by a reduction of 90% in the LPS content compared to wild type. Electron microscopy showed phage scattered around N18 with minimal engagement, while the phage were efficiently adsorbed to the wild type with tails oriented towards the bacterial surface. Evidence suggests fmb-p1 can slightly infect N18 and this does not give rise to an increase of phage titer. RT-qPCR data show that several Salmonella genes involved in lipopolysaccharide synthesis and five virulence related genes were down-regulated upon exposure of N18 to phage fmb-p1. In contrast, phage resistance related genes such as the SOS response, restriction-modification (RM), and Cas1 gene were up-regulated in N18. These data suggest that although inefficient adsorption and entry is the primary mechanism of resistance, transcriptional responses to phage exposure indicate that alternative resistance mechanisms against phage infection are also brought to bear, including digestion of phage nucleic acids and activation of the SOS. These findings may help develop strategies for biocontrol of Salmonella where multi-resistant bacteria are encountered or emerge in applications for food production, bioremediation or wastewater treatment.
Collapse
Affiliation(s)
- Changbao Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| | - Hua Hang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
20
|
Nascimento RJ, Frasão BS, Dias TS, Nascimento ER, Tavares LS, Almeida VL, Aquino MHC. Detection of efflux pump CmeABC in enrofloxacin resistant Campylobacter spp. strains isolated from broiler chickens (Gallus gallus domesticus) in the state of Rio de Janeiro, Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Fowls are the main reservoirs of the highly important food-originating pathogen called Campylobacter spp. and broilers’ meat and byproducts are the main vehicles of this microorganism. Increasing of Campylobacter spp. resistant strains to fluorquinolones, an antimicrobial class often employed in poultry farming and in human medicine has become a great concern to poultry breeders. In fact, several studies evaluated increasing bacterial resistance against these antimicrobial agents. The role of CmeABC efflux system has been underscored among the resistance mechanisms in Campylobacter spp. to fluorquinolones. This study investigated the occurrence of CmeABC efflux pump in 81 and 78 enrofloxacin resistant strains of Campylobacter jejuni and C. coli respectively, isolated from broilers collected from six abattoirs situated at São José do Vale do Rio Preto/RJ poultry center and from two commercial abattoirs situated at Metropolitan Region of Rio de Janeiro, from 2013 to 2016. The resistance to enrofloxacin was assessed by agar dilution to determine minimum inhibitory concentration (MIC). The CmeABC efflux system was investigated through the detection of genes genes cmeA, cmeB and cmeC by PCR. The activity of CmeABC efflux pump was investigated in 20 strains by using the efflux pump inhibitor Phenylalanine-Arginine β-Naphthylamide (PAβN). The three genes cmeA, cmeB and cmeC were detected in 94.3% of the strains (C. jejuni = 80 and C. coli = 70), whereas the system was absent or incomplete in 5.7% of strains (C. jejuni = 1 and C. coli = 8). MIC varied between 0.5μg/ml and 64μg/ml, and 88.7% of strains were enrofloxacin resistant and 11.3% featuring intermediate resistance. The inhibition of the efflux pump by PAβN reduced the MIC to enrofloxacin up to eight times in fifteen strains (75%). These results indicate that this system is frequent and active in Campylobacter spp. Resistant strains in the presence of enrofloxacin.
Collapse
|
21
|
Hassena AB, Siala M, Guermazi S, Zormati S, Gdoura R, Sellami H. Occurrence and Phenotypic and Molecular Characterization of Antimicrobial Resistance of Salmonella Isolates from Food in Tunisia. J Food Prot 2019; 82:1166-1175. [PMID: 31233356 DOI: 10.4315/0362-028x.jfp-18-607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS Multidrug-resistant Salmonella isolates have been recovered from food in Tunisia. Salmonella isolates from food are resistant to fluoroquinolones and cephalosporins. Surveillance of the antimicrobial susceptibility of foodborne bacteria is needed in Tunisia.
Collapse
Affiliation(s)
- Amal Ben Hassena
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mariam Siala
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Sonda Guermazi
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Sonia Zormati
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.,2 Centre Régional de Recherches Vétérinaires de Sfax, Sfax, Tunisia
| | - Radhouane Gdoura
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Hanen Sellami
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.,3 Laboratoire de Traitement et de Valorisation des Rejets Hydriques (LTVRH), Water Researches and Technologies Center (CERTE), University of Carthage, Tourist Road Soliman, BP 273-8020, Nabeul 8000, Tunisia
| |
Collapse
|
22
|
Pereira AMPT, Silva LJG, Rodrigues J, Lino C, Pena A. Risk assessment of fluoroquinolones from poultry muscle consumption: Comparing healthy adult and pre-school populations. Food Chem Toxicol 2018; 118:340-347. [PMID: 29763680 DOI: 10.1016/j.fct.2018.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 12/01/2022]
Abstract
Antibiotics, especially fluoroquinolones (FQs), have been largely used in animal husbandry namely poultry production. Therefore, this study aimed to identify, quantify and estimate the daily intake for adult and 3-year-old populations of the FQs norfloxacin (NOR), ciprofloxacin (CIP) and enrofloxacin (ENR) through poultry muscle consumption. The results showed detection frequencies of 78% and 62% in supermarket and school canteen samples, respectively. Of the 182 analysed samples, 4 did not comply with ENR maximum residue level (MRL), and 9 were contaminated with NOR, not allowed as a veterinary medicine of food-producing animals. The highest estimated daily intake value was obtained for the 3-year-old population regarding the sum of ENR and CIP (0.46 μg kg-1 day-1); value substantially lower than the established acceptable daily intake (2.0 μg kg-1 day-1). Although the low risk found, the high detection frequencies support the apprehension of the different international organizations, towards the emergence of human bacterial resistances to FQs originated from poultry production.
Collapse
Affiliation(s)
- André M P T Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.
| | - Liliana J G Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.
| | - Jéssica Rodrigues
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
23
|
Cunha-Neto AD, Carvalho LA, Carvalho RCT, dos Prazeres Rodrigues D, Mano SB, Figueiredo EEDS, Conte-Junior CA. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poult Sci 2018; 97:1373-1381. [DOI: 10.3382/ps/pex406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/24/2017] [Indexed: 11/20/2022] Open
|
24
|
Lansini V, Maia DSV, da Fontoura Prates D, de Lima AS, da Silva WP. Antibacterial activity of Timsen ® ( n-alkyl dimethyl benzyl ammonium chloride-40%) in scalding and precooling water in poultry slaughterhouses. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:2607-2612. [PMID: 28740319 PMCID: PMC5502014 DOI: 10.1007/s13197-017-2660-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the efficacy of a product based on n-alkyl dimethyl benzyl ammonium chloride-40%, marketed as Timsen®, during scalding and precooling of poultry carcasses in slaughterhouses. To this end, three poultry slaughterhouses (A, B and C) were evaluated. The product was added (200 ppm) to the scalding (58 °C) and precooling water (4 °C), and microbiological analyses were performed of the water and the poultry carcasses before and after Timsen® addition. The product controlled the multiplication of aerobic mesophilic microorganisms, both in the scalding as in the precooling water. In a comparison of carcasses soaked in Timsen®-treated scalding and precooling water with carcasses soaked in untreated water, the count of aerobic mesophilic microorganisms in the later was higher and thermotolerant coliform was not detected in samples of carcasses soaked in Timsen®-treated water. When the scalding and precooling water was not treated with the product, Listeria spp. was isolated from poultry carcasses of two slaughterhouses (A and C), while these microorganisms were not detected when Timsen® was applied. The use of Timsen® in the scalding and precooling water enhanced the safety and control microbial contamination of poultry carcasses.
Collapse
Affiliation(s)
- Valmor Lansini
- Department of Agroindustrial Science and Technology, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Denise da Fontoura Prates
- Department of Agroindustrial Science and Technology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Andréia Saldanha de Lima
- Department of Agroindustrial Science and Technology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Wladimir Padilha da Silva
- Department of Agroindustrial Science and Technology, Universidade Federal de Pelotas, Pelotas, Brazil
- Unit of Biotechnology, Center of Technological Development, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
25
|
Reddy S, Zishiri OT. Detection and prevalence of antimicrobial resistance genes in <i>Campylobacter</i> spp. isolated from chickens and humans. ACTA ACUST UNITED AC 2017; 84:e1-e6. [PMID: 28582978 PMCID: PMC6238756 DOI: 10.4102/ojvr.v84i1.1411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/07/2022]
Abstract
Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes.
Collapse
|
26
|
Silva WC, Targino BN, Mendonça RS, Sant’Ana AS, Hungaro HM. Campylobacter: An overview of cases, occurrence in food, contamination sources, and antimicrobial resistance in Brazil. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1298125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Willian Cruzeiro Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Brenda Neres Targino
- Department of Food Sciences, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Anderson S. Sant’Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Humberto Moreira Hungaro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|
27
|
Raeisi M, Khoshbakht R, Ghaemi EA, Bayani M, Hashemi M, Seyedghasemi NS, Shirzad-Aski H. Antimicrobial Resistance and Virulence-Associated Genes of Campylobacter spp. Isolated from Raw Milk, Fish, Poultry, and Red Meat. Microb Drug Resist 2017; 23:925-933. [PMID: 28177853 DOI: 10.1089/mdr.2016.0183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study was designed and conducted to evaluate the frequency, antimicrobial resistance, and presence of six virulence-associated genes among thermophilic Campylobacters isolated from raw milk, poultry (chicken, turkey, and duck), fish, cattle, and sheep meat. Out of 590 samples, which were recovered from different origins, 141 (23.9%) samples were positive for Campylobacters. Campylobacter spp. was isolated in 40.8% (106/260), 14% (28/200), and 8.7% (7/80) of poultry meat, red meat, and milk samples, respectively. Antimicrobial susceptibility test indicated a high frequency of resistance to ciprofloxacin, tetracycline, and nalidixic acid among the isolates. Furthermore, prevalence of waaC, ciaB, and pldA genes were 91.7%, 86.7%, and 80.8%, respectively; and, none of the isolates harbored both wlaN and cgtB genes, simultaneously. Moreover, there was a weak correlation between antibiotics resistance and presence of the pathogen genes. However, the existence of Campylobacter spp. isolates in food animal products, with high resistance to antibiotics and several virulence gene possessions, is alarming and increases the attention to the widespread use of antibiotics.
Collapse
Affiliation(s)
- Mojtaba Raeisi
- 1 Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan, Iran .,2 Department of Nutrition, Faculty of Health, Golestan University of Medical Sciences , Gorgan, Iran
| | - Rahem Khoshbakht
- 3 Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies , Amol, Iran
| | - Ezzat Allah Ghaemi
- 1 Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan, Iran
| | - Mahsan Bayani
- 4 Faculty of Veterinary Medicine, Semnan University , Semnan, Iran
| | - Mohammad Hashemi
- 5 Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | | | - Hesamaddin Shirzad-Aski
- 1 Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan, Iran
| |
Collapse
|
28
|
Tejada TS, Silva CSJ, Lopes NA, Silva DT, Agostinetto A, Silva EF, Menezes DB, Timm CD. DNA Profiles of Salmonella Spp. Isolated from Chicken Products and From Broiler and Human Feces. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2016-0316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- TS Tejada
- Universidade Federal de Pelotas, Brazil
| | - CSJ Silva
- Universidade Federal de Pelotas, Brazil
| | - NA Lopes
- Universidade Federal de Pelotas, Brazil
| | - DT Silva
- Universidade Federal de Pelotas, Brazil
| | | | - EF Silva
- Universidade Federal de Pelotas, Brazil
| | | | - CD Timm
- Universidade Federal de Pelotas, Brazil
| |
Collapse
|