1
|
Wu W, Bai Y, Zhao T, Liang M, Hu X, Wang D, Tang X, Yu L, Zhang Q, Li P, Zhang Z. Intelligent Electrochemical Point-of-Care Test Method with Interface Control Based on DNA Pyramids: Aflatoxin B1 Detection in Food and the Environment. Foods 2023; 12:4447. [PMID: 38137251 PMCID: PMC10743006 DOI: 10.3390/foods12244447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sensitive, intelligent point-of-care test (iPOCT) methods for small molecules like aflatoxin B1 (AFB1) are urgently needed for food and the environment. The challenge remains of surface control in iPOCT. Herein, we developed an electrochemical sensor based on the DNA pyramid (DNP), combining a smartphone, app, and mobile electrochemical workstations to detect AFB1. The DNP's structure can reduce local overcrowding and entanglement between neighboring probes, control the density and orientation of recognition probes (antibodies), produce uniform and orientational surface assemblies, and improve antigen-antibody-specific recognition and binding efficiency. Simultaneously, the hollow structure of the DNP enhances the electron transfer capacity and increases the sensitivity of electrochemical detection. In this work, the biosensor based on DNP was first combined with electrochemical (Ec) iPOCT to simultaneously achieve ordered interface modulation of recognition probes and intelligent detection of AFB1. Under optimal conditions, we found a detection limit of 3 pg/mL and a linear range of 0.006-30 ng/mL (R2 = 0.995). Further, using peanut, soybean, corn, and lake water as complex matrices, it recorded recoveries of 82.15-100.53%, excellent selectivity, acceptable stability, and good reproducibility. Finally, this Ec iPOCT provides consistent results compared to the high-performance liquid chromatography-tandem mass spectrometry method.
Collapse
Affiliation(s)
- Wenqin Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Yizhen Bai
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Tiantian Zhao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Meijuan Liang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Xiaofeng Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Du Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Xiaoqian Tang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Li Yu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
| | - Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Laboratory for Agricultural Testing (Biotoxin), Hubei Hongshan Lab, Wuhan 430062, China
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Electrochemistry Applied to Mycotoxin Determination in Food and Beverages. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Wu W, Zhou D, Chen X, Tang X, Jiang J, Yu L, Li H, Zhang Q, Zhang Z, Li P. Intelligent point-of-care test via smartphone-enabled microarray for multiple targets: Mycotoxins in food. SENSORS AND ACTUATORS B: CHEMICAL 2022; 360:131648. [DOI: 10.1016/j.snb.2022.131648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
5
|
Imade F, Ankwasa EM, Geng H, Ullah S, Ahmad T, Wang G, Zhang C, Dada O, Xing F, Zheng Y, Liu Y. Updates on food and feed mycotoxin contamination and safety in Africa with special reference to Nigeria. Mycology 2021; 12:245-260. [PMID: 34900380 PMCID: PMC8654414 DOI: 10.1080/21501203.2021.1941371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mycotoxin contamination of food and feed is a major concern in sub-Sahara African countries, particularly Nigeria. It represents a significant limit to health of human, livestock as well as the international trade. Aflatoxins, fumonisins, ochratoxin, zearalenone, deoxynivalenol and beauvericin are the major mycotoxins recognised in the aetiology of food safety challenges that precipitated countless number of diseases. In Nigeria, aflatoxins and fumonisin found in nearly all crops are the most common mycotoxins of economic and health importance such as sorghum, maize and groundnuts. Thus, consumption of food contaminated with mycotoxins are inevitable, hence the need for adequate regulation is necessary in these frontier economies as done in many developed economies to ensure food safety for human and animals. In low and middle-income countries, especially Nigeria, there is lack of awareness and sufficient information on the risk associated with consequent of mycotoxin contamination on wellbeing of human, animals health and the economy. It is based on the foregoing that this paper summarized the status of mycotoxin present in Nigerian food and feeds relative to the global regulatory standards. This aimed at preventing consuming mycotoxin contaminated food stuff while confronting its associated challenges. Suggestions on some possible control strategies to mitigate vending mycotoxin food and feeds were made.
Collapse
Affiliation(s)
- Francis Imade
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China.,Botany Department, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Edo State, Edo State Nigeria
| | - Edgar Mugizi Ankwasa
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hairong Geng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Sana Ullah
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tanvir Ahmad
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chenxi Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Oyeyemi Dada
- Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongquan Zheng
- State Key Laboratory for Biology Pests, Institute of Plant Protection, Chinense Academy of Agricultural Sciences, Beljing, China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China.,School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Guangdong, China
| |
Collapse
|
6
|
Abstract
Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are present in many foods consumed by animals. Moreover, they most often contaminate products of plant and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible for the production of mycotoxins. They release toxic compounds that, when properly accumulated, can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern methods of analysis allow the detection of the presence of mycotoxins and determine the level of contamination with them, both in raw materials and in foods. Various food processes that can affect mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most feeding processes have a variable effect on mycotoxins, with those that use high temperatures having the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but they do not completely eliminate them. This article presents the risks associated with the presence of mycotoxins in foods and the methods of their detection and prevention.
Collapse
|
7
|
Schabo DC, Alvarenga VO, Schaffner DW, Magnani M. A worldwide systematic review, meta-analysis, and health risk assessment study of mycotoxins in beers. Compr Rev Food Sci Food Saf 2021; 20:5742-5764. [PMID: 34668294 DOI: 10.1111/1541-4337.12856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/21/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
Mycotoxins, including aflatoxins (AFs), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FBs), and zearalenone (ZEN), have been reported as beer contaminants. This systematic review and meta-analysis provide the prevalence and concentration of mycotoxins in beers and their worldwide distribution. Mycotoxin's exposure and cancer risk through beer consumption were determined. The overall pooled prevalence of mycotoxins in beers was 31% (95% confidence interval [CI] = 28%-35%; I2 = 90%, p = .00). The most prevalent mycotoxins in beers were DON and its derivatives (53%), OTA (52%), FBs (47%), followed by AFs (12%). Iran (99%), Hungary (95%), Denmark (92%), Armenia (83%), and Cyprus (83%) had the highest mycotoxin prevalence in beers. The global mycotoxins average concentration in beers was 12.52 μg/L (95% CI = 10.70-14.75 μg/L; I2 = 100%, p = .00). DON and its derivatives showed the highest concentration (26.91 μg/L), followed by FBs (23.19 μg/L), ZEN and its derivatives (20.25 μg/L), and AFs (15.65 μg/L). African region had the highest mycotoxins concentration (73.95 μg/L) mostly due to the high levels reported in beers from Cameroon (293.02 μg/L), Malawi (132.34 μg/L), and Eastern Cape province (126.12 μg/L). The meta-regression indicated stability (p ≥ .05) of the global pooled concentration of mycotoxins in beers over the years, whereas FBs concentration increased. The intake of DON and its derivatives, FBs, ZEN and its derivatives, and OTA through beers is of concern in African countries. OTA is also of concern in Brazil and Belgium. Results show high mycotoxins concentration in beers worldwide and highlight the health risks through contaminated beer consumption.
Collapse
Affiliation(s)
- Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.,Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
8
|
Oduori DO, Kwoba E, Thomas L, Grace D, Mutua F. Assessment of Foodborne Disease Hazards in Beverages Consumed in Nigeria: A Systematic Literature Review. Foodborne Pathog Dis 2021; 19:1-18. [PMID: 34529521 PMCID: PMC8785768 DOI: 10.1089/fpd.2021.0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Risk assessment is a formal process of identifying hazards and assessing the risk associated with them (risk is a combination of the severity of illness and the probability of occurrence). This review highlights foodborne disease hazards reported in beverages consumed in Nigeria for the period between 2000 and 2020. Based on a preregistered protocol and search syntax, studies were retrieved from the PubMed, Google Scholar, and ScienceDirect databases. Rayyan QCRI software was used to screen the articles. Data were then extracted from the included full-text articles, into a standardized excel workbook. A total of 18,762 articles were identified, from which 126 were included in the final analyses. The common beverages studied were sachet water (14.9%), borehole/well water (13.9%), cereal-based beverages (12.1%), raw/fresh milk (8.3%) and nono/nunu, which is a fermented milk-cereal beverage (7.2%). Sufficient data were available to undertake pooled prevalence estimates for some hazards within select beverages and revealed contamination rates for Staphylococcus spp. in raw/fresh milk, 12.3% (95% CI 6.3–20.0); Salmonella spp. in borehole/well water, 19.8% (95% CI 13.1–27.4); Klebsiella spp. in sachet water, 40.0% (95% CI 12.4–71.7); Staphylococcus spp. in nono/nunu, 32.6% (95% CI 14.7–53.8), and Escherichia spp. in nono/nunu, 30.7% (95% CI 21.9–40.2). Heterogeneity was present in the aggregate summary estimates. This review has highlighted the presence of several hazards of high importance to public health in commonly consumed beverages in Nigeria. The data presented here provide an entry point for future quantitative risk assessments both to determine the level of exposure of the community to these hazards and also for the identification of the most effective mitigation strategies to reduce these risks and improve health outcomes in Nigeria.
Collapse
Affiliation(s)
- David O Oduori
- International Livestock Research Institute, Nairobi, Kenya.,Department of Animal Health and Production, Maasai Mara University, Narok, Kenya
| | - Emmah Kwoba
- International Livestock Research Institute, Nairobi, Kenya
| | - Lian Thomas
- International Livestock Research Institute, Nairobi, Kenya.,Institute of Infection Veterinary & Ecological Sciences, University of Liverpool, Wirral, United Kingdom
| | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya.,Natural Resource Institute, University of Greenwich, Kent, United Kingdom
| | - Florence Mutua
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
9
|
Schabo DC, Freire L, Sant'Ana AS, Schaffner DW, Magnani M. Mycotoxins in artisanal beers: An overview of relevant aspects of the raw material, manufacturing steps and regulatory issues involved. Food Res Int 2021; 141:110114. [PMID: 33641981 DOI: 10.1016/j.foodres.2021.110114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The consumption of artisanal beer has increased worldwide. Artisanal beers can include malted or unmalted wheat, maize, rice and sorghum, in addition to the basic ingredients. These grains can be infected by toxigenic fungi in the field or during storage and mycotoxins can be produced if they find favorable conditions. Mycotoxins may not be eliminated throughout the beer brewing and be detected in the final product. In addition, modified mycotoxins may also be formed during beer brewing. This review compiles relevant information about mycotoxins produced by Aspergillus, Fusarium and Penicillium in raw material of artisanal beer, as well as updates information about the production and fate of mycotoxins during the beer brewing process. Findings highlight that malting conditions favor the production of mycotoxins by the fungi contaminating cereals. Therefore, good agricultural and postharvest mitigation strategies are the most effective options for preventing the growth of toxigenic fungi and the production of mycotoxins in cereals. However, the final concentration of mycotoxin in artisanal beer is difficult to predict as it depends on the initial concentration contained in the raw material and the processing conditions. The current lack of limits of mycotoxins in artisanal beer underestimates possible risks to human health. In addition, modified mycotoxins, not detected by conventional methods, may be formed in artisanal beers. Maximum tolerated limits for these contaminants must be urgently established based on scientific data about transfer of mycotoxins throughout the artisanal beer brewery process.
Collapse
Affiliation(s)
- Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Campus Colorado do Oeste, BR 435, Km 63, Colorado do Oeste, RO 76993-000, Brazil; Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil
| | - Luísa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 3083-862, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 3083-862, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
10
|
Pickova D, Ostry V, Malir J, Toman J, Malir F. A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five Years. Toxins (Basel) 2020; 12:E789. [PMID: 33322380 PMCID: PMC7763258 DOI: 10.3390/toxins12120789] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Spices are imported worldwide mainly from developing countries with tropical and/or subtropical climate. Local conditions, such as high temperature, heavy rainfall, and humidity, promote fungal growth leading to increased occurrence of mycotoxins in spices. Moreover, the lack of good agricultural practice (GAP), good manufacturing practice (GMP), and good hygienic practice (GHP) in developing countries are of great concern. This review summarizes recent data from a total of 56 original papers dealing with mycotoxins and microfungi in various spices in the last five years. A total of 38 kinds of spices, 17 mycotoxins, and 14 microfungi are discussed in the review. Worldwide, spices are rather overlooked in terms of mycotoxin regulations, which usually only cover aflatoxins (AFs) and ochratoxin A (OTA). In this paper, an extensive attention is devoted to the limits on mycotoxins in spices in the context of the European Union (EU) as well as other countries. As proven in this review, the incidence of AFs and OTA, as well as other mycotoxins, is relatively high in many spices; thus, the preparation of new regulation limits is advisable.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jan Malir
- Department of Public Law, Institute of State and Law, Czech Academy of Sciences, Narodni 18, CZ-11600 Prague, Czech Republic;
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
11
|
Wu Y, Ye J, Xuan Z, Li L, Wang H, Wang S, Liu H, Wang S. Development and validation of a rapid and efficient method for simultaneous determination of mycotoxins in coix seed using one-step extraction and UHPLC-HRMS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 38:148-159. [PMID: 33166220 DOI: 10.1080/19440049.2020.1833089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Coix seed is an important food and traditional Chinese medicine in China and other Asian countries. Notably, coix seed is currently being used as a traditional medicine for the treatment of COVID-19 in China. However, coix seeds are generally contaminated by mycotoxins, and this risk cannot be ignored. In this paper, we developed a method that involves direct extraction and UHPLC-HRMS analysis for the simultaneous detection of 24 mycotoxins in coix seeds. UHPLC-HRMS instrument and data acquisition parameters, and the sample pretreatment were optimised. One-step extraction showed several advantages compared to the three commercial solid-phase extraction clean-up methods, including ease of use, reduced time of sample preparation, low cost, good recovery, and acceptable matrix effect. The method validation results indicate that all mycotoxins have good linearity and sensitivity. Recoveries were between 74.2-101.1%, and RSD ranged from 0.1-5.8%. The LOQs for 24 mycotoxins were in the range of 0.5-100 µg/kg. To survey the contamination levels of these mycotoxins in commercial coix seeds, more than 70 samples were collected from Chinese markets and were analysed using the newly developed method. Zearalenone (positive ratio: 98.7%, range:1.1-1562 µg/kg), deoxynivalenol (positive ratio: 87%, range: 8.4-382.5 µg/kg), nivalenol (positive ratio: 85.7%, range: 26.8-828.2 µg/kg), fumonisin B1 (positive ratio: 84.4%, range:2.5-314.5 µg/kg), fumonisin B2 (positive ratio: 75.3%, range:1.6-72.8 µg/kg), fumonisin B3 (positive ratio: 48%, range:1.0-203.6 µg/kg), aflatoxin B1 (positive ratio: 29.9%, range: 0.39-14.7 µg/kg), sterigmatocystin (positive ratio: 29.9%, range: 1.4-51.6 µg/kg), and tenuazonic acid (positive ratio: 19.5%, range 36.1-105.7 µg/kg) were the most frequent mycotoxin contaminants. These results highlight the importance of routine monitoring and control of mycotoxins in coix seeds.
Collapse
Affiliation(s)
- Yu Wu
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Haibo Wang
- Guangxi-ASEAN Food Inspection and Testing Center , Nanning, China
| | - Songshan Wang
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Institute of Grain and Oil Quality and Safety , Beijing, China
| |
Collapse
|
12
|
Barbosa AC, da Silva FA, da Silva LP, Azevedo Vargas E, Veloso Terra JC, Alves Dos Santos E, Augusti R. Development and validation of an analytical method for the extraction, identification, and quantification of multi-mycotoxins in beer using a modified QuEChERS procedure and UHPLC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:2135-2148. [PMID: 33136536 DOI: 10.1080/19440049.2020.1812735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although beer is one of the most popular alcoholic beverages in the world, there is no specific legislation regarding contaminants, especially mycotoxins, for this product. The present manuscript reports the development and validation of an analytical methodology based on the QuEChERS approach, followed by quantification via UHPLC-MS/MS for the simultaneous determination of seventeen mycotoxins in beer. During the validation, amatrix effect was observed for 82% of the analytes. Linearity and recovery were evaluated using spiked blank samples, and the chosen methodology proved to be efficient for all analytes, with recoveries ranging from 71 to 118%, excepting ergonovine, for which recovery of 57% was achieved. Precision was estimated in terms of repeatability and reproducibility, with variations from 2.6 to 28.2% and 9.7 to 28.7%, respectively. The detection (LOD) and quantification (LOQ) limits, determined from the values of CCα and CCβ, ranged from 0.26 to 117 µgkg-1 and from 0.30 to 135 µgkg-1, respectively. Measurement uncertainties were based on the bottom-up methodology, with uncertainties ranging from 0.03 to 17 µgkg-1. Finally, thirty-eight beer samples, collected at the local market, were analysed, and 16 of them showed contamination by deoxynivalenol in concentrations ranging from 159 ± 26 µgkg-1 to 648 ± 106 µgkg-1.
Collapse
Affiliation(s)
- Ana Cristina Barbosa
- Departamento De Química, Centro Federal De Educação Tecnológica De Minas Gerais , Belo Horizonte, Minas Gerais, Brazil
| | | | - Lucas Pinto da Silva
- Departamento De Química, Universidade Federal De Minas Gerais , Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Rodinei Augusti
- Departamento De Química, Universidade Federal De Minas Gerais , Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Adaku Chilaka C, Mally A. Mycotoxin Occurrence, Exposure and Health Implications in Infants and Young Children in Sub-Saharan Africa: A Review. Foods 2020; 9:E1585. [PMID: 33139646 PMCID: PMC7693847 DOI: 10.3390/foods9111585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Infants and young children (IYC) remain the most vulnerable population group to environmental hazards worldwide, especially in economically developing regions such as sub-Saharan Africa (SSA). As a result, several governmental and non-governmental institutions including health, environmental and food safety networks and researchers have been proactive toward protecting this group. Mycotoxins, toxic secondary fungal metabolites, contribute largely to the health risks of this young population. In SSA, the scenario is worsened by socioeconomic status, poor agricultural and storage practices, and low level of awareness, as well as the non-establishment and lack of enforcement of regulatory limits in the region. Studies have revealed mycotoxin occurrence in breast milk and other weaning foods. Of concern is the early exposure of infants to mycotoxins through transplacental transfer and breast milk as a consequence of maternal exposure, which may result in adverse health effects. The current paper presents an overview of mycotoxin occurrence in foods intended for IYC in SSA. It discusses the imperative evidence of mycotoxin exposure of this population group in SSA, taking into account consumption data and the occurrence of mycotoxins in food, as well as biomonitoring approaches. Additionally, it discusses the health implications associated with IYC exposure to mycotoxins in SSA.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany;
| | | |
Collapse
|
14
|
Traditional and Artisanal Beverages in Nigeria: Microbial Diversity and Safety Issues. BEVERAGES 2020. [DOI: 10.3390/beverages6030053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A review of up to 90 articles on the microorganisms associated with important artisanal or traditional beverages in Nigeria was carried out. This resulted in an overview of the prevalent microorganisms associated with soymilk, nono (fermented cow milk), tiger nut milk, yoghurt, kunu, zobo, palm wine and the local beers pito and brukutu. The bacteria genera, namely Bacillus, Escherichia, Lactobacillus, Staphylococcus, and Streptococcus, were detected in all nine beverages. On the contrary, this survey resulted in finding that the genera Saccharomyces, Aspergillus, Candida, and Penicillium were the eukaryotic microorganisms isolated in all beverages. The occurrence of fungal isolates, which can be responsible for producing mycotoxins, is a concern and shows the need for post-production tests. Overall, there is a low prevalence of bacteria associated with hygiene, especially the Escherichia genus in alcoholic beverages such as palm wine, pito and burukutu, which may be due both to a low acidity and high ethanol content. However, the prevalence of hygiene indicator genera was higher in nonalcoholic drinks, probably because of incorrect practices during processing. The magnitude of the production and sales of unregulated local beverages in Nigeria has reached the stage where significant regulation and food safety standards are required to safeguard public health. An opportunity exists to monitor and characterize the microbial flora of the artisanal beverages using molecular methods at all stages of production and storage.
Collapse
|
15
|
Yapo AE, Strub C, Durand N, Ahoua ARC, Schorr-Galindo S, Bonfoh B, Fontana A, Koussémon M. Mass spectrometry-based detection and risk assessment of mycotoxin contamination of ‘kankankan’ used for roasted meat consumption in Abidjan, Côte d’Ivoire. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1564-1578. [DOI: 10.1080/19440049.2020.1784468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Armel Elysée Yapo
- Department of Food Science and Technology, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
- Department Research and Development, Centre Suisse De Recherches Scientifiques En Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| | - Caroline Strub
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
| | - Noël Durand
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
- CIRAD, UMR Qualisud, Montpellier, France
| | - Angora Rémi Constant Ahoua
- Department Research and Development, Centre Suisse De Recherches Scientifiques En Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| | - Sabine Schorr-Galindo
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
| | - Bassirou Bonfoh
- Department Research and Development, Centre Suisse De Recherches Scientifiques En Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| | - Angélique Fontana
- QualiSud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d’Avignon, Univ De La Réunion, Montpellier, France
| | - Marina Koussémon
- Department of Food Science and Technology, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| |
Collapse
|
16
|
Adebo OA. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients 2020; 12:E1111. [PMID: 32316319 PMCID: PMC7231209 DOI: 10.3390/nu12041111] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022] Open
Abstract
Sorghum (Sorghum bicolor) is a well-known drought and climate resistant crop with vast food use for the inhabitants of Africa and other developing countries. The importance of this crop is well reflected in its embedded benefits and use as a staple food, with fermentation playing a significant role in transforming this crop into an edible form. Although the majority of these fermented food products evolve from ethnic groups and rural communities, industrialization and the application of improved food processing techniques have led to the commercial success and viability of derived products. While some of these sorghum-based fermented food products still continue to bask in this success, much more still needs to be done to further explore evolving techniques, technologies and processes. The addition of other affordable nutrient sources in sorghum-based fermented foods is equally important, as this will effectively augment the intake of a nutritionally balanced product.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg (Doornfontein Campus), P.O. Box 17011 Johannesburg, Gauteng 2028, South Africa
| |
Collapse
|
17
|
Wan J, Chen B, Rao J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr Rev Food Sci Food Saf 2020; 19:928-953. [PMID: 33331688 DOI: 10.1111/1541-4337.12546] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022]
Abstract
Mycotoxins contamination in cereal-based food is ubiquitous according to systematic review of the scientific documentation of worldwide mycotoxin contamination in cereal and their products between 2008 and 2018, thus representing food safety issue especially in developing tropical countries. Food processing plays a vital role to prevent mycotoxin contamination in food. Therefore, it is with great urgency to develop strategies to inhibit fungi growth and mycotoxin production during food processing. This review begins by discussing physicochemical properties of five most common mycotoxins (aflatoxins, fumonisins, ochratoxins, deoxynivalenol, and zearalenone) found in cereal grains, regulation for mycotoxins in food, and their potential negative impact on human health. The fate of mycotoxins during major cereal-based food processing including milling, breadmaking, extrusion, malting, and brewing was then summarized. In the end, traditional mitigation strategies including physical and chemical and potential application of biocontrol agent and essential oil nanoemulsions that can be applied during food processing were discussed. It indicated that no single method is currently available to completely prevent mycotoxin contamination in cereal foods.
Collapse
Affiliation(s)
- Jing Wan
- Department of Plant Sciences, North Dakota State University, Fargo, ND.,School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
18
|
|
19
|
Lulamba TE, Stafford RA, Njobeh PB. A sub-Saharan African perspective on mycotoxins in beer - a review. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, CnrSiemert & Beit Streets, 2028 Johannesburg - New Doornfontein Johannesburg South Africa
| | - Robert A. Stafford
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, CnrSiemert & Beit Streets, 2028 Johannesburg - New Doornfontein Johannesburg South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, CnrSiemert & Beit Streets, 2028 Johannesburg - New Doornfontein Johannesburg South Africa
| |
Collapse
|
20
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. Stability of fumonisin B1, deoxynivalenol, zearalenone, and T-2 toxin during processing of traditional Nigerian beer and spices. Mycotoxin Res 2018; 34:229-239. [DOI: 10.1007/s12550-018-0318-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/15/2018] [Accepted: 04/25/2018] [Indexed: 12/01/2022]
|