1
|
Evangeline WP, Rajalakshmi E, Mahalakshmi S, Ramya V, Devkiran B, Saranya E, Ramya M. Impact of eugenol on biofilm development in Shigella flexneri 1457: a plant terpenoid based-approach to inhibit food-borne pathogen. Arch Microbiol 2024; 206:384. [PMID: 39168903 DOI: 10.1007/s00203-024-04108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Shigella flexneri is a gram-negative bacterium responsible for shigellosis and bacterial dysentery. Despite using various synthetic antimicrobial agents and antibiotics, their efficacy is limited, prompting concerns over antibiotic resistance and associated health risks. This study investigated eugenol, a polyphenol with inherent antioxidant and antibacterial properties, as a potential alternative treatment. We aimed to evaluate eugenol's antibacterial effects and mechanisms of action against S. flexneri and its impact on biofilm formation. We observed significant growth suppression of S. flexneri with eugenol concentrations of 8-10 mM (98.29%). Quantitative analysis using the Crystal Violet assay demonstrated a marked reduction in biofilm formation at 10 mM (97.01 %). Assessment of Cell Viability and morphology via Fluorescence-Activated Cell Sorting and Scanning Electron Microscopy confirmed these findings. Additionally, qPCR analysis revealed the downregulation of key genes responsible for adhesion (yebL), quorum sensing (rcsC, sdiA), and EPS production (s0482) associated with bacterial growth and biofilm formation. The present study suggests eugenol could offer a promising alternative to conventional antibiotics for treating shigellosis caused by S. flexneri.
Collapse
Affiliation(s)
- Wilson Pearl Evangeline
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Elumalai Rajalakshmi
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Singaravel Mahalakshmi
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Vasudevan Ramya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Banik Devkiran
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Elangovan Saranya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Mohandass Ramya
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Vazquez-Armenta FJ, Aros-Corrales MO, Alvarez-Ainza ML, Bernal-Mercado AT, Ayala-Zavala JF, Ochoa-Leyva A, Lopez-Zavala AA. Antibacterial and anti-virulence potential of plant phenolic compounds against Vibrio parahaemolyticus. F1000Res 2024; 12:1256. [PMID: 39345269 PMCID: PMC11437291 DOI: 10.12688/f1000research.141268.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background: Vibrio parahaemolyticus is a pathogenic bacterium that affects shrimp aquaculture; its infection can lead to severe production losses of up to 90%. On the other hand, plant phenolic compounds have emerged as a promising alternative to combat bacterial infections. The antibacterial and anti-virulence activity of the plant phenolic compounds quercetin, morin, vanillic acid, and protocatechuic acid against two strains of V. parahaemolyticus (Vp124 and Vp320) was evaluated. Methods: The broth microdilution test was carried out to determine phenolic compounds' antibacterial activity. Moreover, the biofilm-forming ability of V. parahaemolyticus strains in the presence of phenolic compounds was determined by total biomass staining assay using the cationic dye crystal violet. The semisolid agar displacement technique was used to observe the effect of phenolic compounds on the swimming-like motility of V. parahaemolyticus. Results: Results showed that phenolic compounds inhibited both strains effectively, with minimum inhibitory concentrations (MICs) ranging from 0.8 to 35.03 mM. Furthermore, at 0.125 - 0.5 × MIC of phenolic compounds, V. parahaemolyticus biofilms biomass was reduced by 63.22 - 92.68%. Also, quercetin and morin inhibited the motility of both strains by 15.86 - 23.64% (Vp124) and 24.28 - 40.71% (Vp320). Conclusions: The results suggest that quercetin, morin, vanillic, and protocatechuic acids may be potential agents for controlling V. parahaemolyticus.
Collapse
Affiliation(s)
- F Javier Vazquez-Armenta
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - M Olivia Aros-Corrales
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - M Lizeth Alvarez-Ainza
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - A Thalia Bernal-Mercado
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - J Fernando Ayala-Zavala
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Centro de Investigacion en Alimentacion y Desarrollo AC, Hermosillo, Sonora, 83304, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico City, 62210, Mexico
| | - A Alexis Lopez-Zavala
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| |
Collapse
|
3
|
Jayaraman S, Rajendhran N, Kannan MA, Ramasamy T. Quercetin disrupts biofilm formation and attenuates virulence of Aeromonas hydrophila. Arch Microbiol 2024; 206:326. [PMID: 38922407 DOI: 10.1007/s00203-024-04034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Aeromonas hydrophila poses significant health and economic challenges in aquaculture owing to its pathogenicity and prevalence. Overuse of antibiotics has led to multidrug resistance and environmental pollution, necessitating alternative strategies. This study investigated the antibacterial and antibiofilm potentials of quercetin against A. hydrophila. Efficacy was assessed using various assays, including antibacterial activity, biofilm inhibition, specific growth time, hemolysis inhibition, autoaggregation, and microscopic evaluation. Additionally, docking analysis was performed to explore potential interactions between quercetin and virulence proteins of A. hydrophila, including proaerolysin, chaperone needle-subunit complex of the type III secretion system, and alpha-pore forming toxin (PDB ID: 1PRE, 2Q1K, 6GRK). Quercetin exhibited potent antibacterial activity with 21.1 ± 1.1 mm zone of inhibition at 1.5 mg mL-1. It also demonstrated significant antibiofilm activity, reducing biofilm formation by 46.3 ± 1.3% at the MIC and attenuating autoaggregation by 55.9 ± 1.5%. Hemolysis was inhibited by 41 ± 1.8%. Microscopic analysis revealed the disintegration of the A. hydrophila biofilm matrix. Docking studies indicated active hydrogen bond interactions between quercetin and the targeted virulence proteins with the binding energy -3.2, -5.6, and -5.1 kcal mol⁻1, respectively. These results suggest that quercetin is an excellent alternative to antibiotics for combating A. hydrophila infection in aquaculture. The multifaceted efficacy of quercetin in inhibiting bacterial growth, biofilm formation, virulence factors, and autoaggregation highlights the potential for aquaculture health and sustainability. Future research should delve into the precise mechanisms of action and explore synergistic combinations with other compounds for enhanced efficacy and targeted interventions.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
| |
Collapse
|
4
|
Beltrán-Martínez ME, Tapia-Rodríguez MR, Ayala-Zavala JF, Gómez-Álvarez A, Robles-Zepeda RE, Torres-Moreno H, de Rodríguez DJ, López-Romero JC. Antimicrobial and Antibiofilm Potential of Flourensia retinophylla against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1671. [PMID: 38931103 PMCID: PMC11207523 DOI: 10.3390/plants13121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Staphylococcus aureus is a Gram-positive bacteria with the greatest impact in the clinical area, due to the high rate of infections and deaths reaching every year. A previous scenario is associated with the bacteria's ability to develop resistance against conventional antibiotic therapies as well as biofilm formation. The above situation exhibits the necessity to reach new effective strategies against this pathogen. Flourensia retinophylla is a medicinal plant commonly used for bacterial infections treatments and has demonstrated antimicrobial effect, although its effect against S. aureus and bacterial biofilms has not been investigated. The purpose of this work was to analyze the antimicrobial and antibiofilm potential of F. retinophylla against S. aureus. The antimicrobial effect was determined using an ethanolic extract of F. retinophylla. The surface charge of the bacterial membrane, the K+ leakage and the effect on motility were determined. The ability to prevent and remove bacterial biofilms was analyzed in terms of bacterial biomass, metabolic activity and viability. The results showed that F. retinophylla presents inhibitory (MIC: 250 µg/mL) and bactericidal (MBC: 500 µg/mL) activity against S. aureus. The MIC extract increased the bacterial surface charge by 1.4 times and the K+ concentration in the extracellular medium by 60%. The MIC extract inhibited the motility process by 100%, 61% and 40% after 24, 48 and 72 h, respectively. The MIC extract prevented the formation of biofilms by more than 80% in terms of biomass production and metabolic activity. An extract at 10 × MIC reduced the metabolic activity by 82% and the viability by ≈50% in preformed biofilms. The results suggest that F. retinophylla affects S. areus membrane and the process of biofilm formation and removal. This effect could set a precedent to use this plant as alternative for antimicrobial and disinfectant therapies to control infections caused by this pathogen. In addition, this shrub could be considered for carrying out a purification process in order to identify the compounds responsible for the antimicrobial and antibiofilm effect.
Collapse
Affiliation(s)
- Minerva Edith Beltrán-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Melvin Roberto Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Agustín Gómez-Álvarez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | | | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| | | | - Julio César López-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| |
Collapse
|
5
|
Carneiro BT, de Castro FNAM, Benetti F, Nima G, Suzuki TYU, André CB. Flavonoids effects against bacteria associated to periodontal disease and dental caries: a scoping review. BIOFOULING 2024; 40:99-113. [PMID: 38425046 DOI: 10.1080/08927014.2024.2321965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
This scoping review focused on exploring the efficacy of flavonoids against bacteria associated with dental caries and periodontal diseases. Inclusion criteria comprise studies investigating the antibacterial effects of flavonoids against bacteria linked to caries or periodontal diseases, both pure or diluted in vehicle forms. The search, conducted in August 2023, in databases including PubMed/MEDLINE, Scopus, Web of Science, Embase, LILACS, and Gray Literature. Out of the initial 1125 studies, 79 met the inclusion criteria, majority in vitro studies. Prominent flavonoids tested included epigallocatechin-gallate, apigenin, quercetin, and myricetin. Predominant findings consistently pointed to bacteriostatic, bactericidal, and antibiofilm activities. The study primarily investigated bacteria associated with dental caries, followed by periodontopathogens. A higher number of publications presented positive antibacterial results against Streptococcus mutans in comparison to Porphyromonas gingivalis. These encouraging findings underline the potential applicability of commercially available flavonoids in materials or therapies, underscoring the need for further exploration in this field.
Collapse
Affiliation(s)
- Bruna Tavares Carneiro
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Francine Benetti
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Nima
- Departament of Biomaterials, School of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Thais Yumi Umeda Suzuki
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Bosso André
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Qiao Z, Guo X, Wang T, Wei J, Liu Y, Ma Y, Lü X. Effects of Sub-Minimum Inhibitory Concentrations of Bacteriocin BM173 on Listeria Monocytogenes Biofilm Formation. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10192-1. [PMID: 37982962 DOI: 10.1007/s12602-023-10192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Listeria monocytogenes is a significant foodborne pathogen that can form biofilms on various food processing surfaces, thereby enhancing resistance to disinfectants and exacerbating harm to human health. Previous studies have indicated that bacteriocin BM173 exhibits antibacterial and antibiofilm activities. In the current study, our aim was to assess the inhibitory mode of action of sub-inhibitory concentrations (SICs, 1/32 × MIC and 1/16 × MIC) of BM173 on the biofilm formation L. monocytogenes. Crystal violet staining assay revealed that SICs of BM173 significantly inhibit L. monocytogenes biofilm formation. Furthermore, the results of swimming motility assay, plate count, ruthenium red staining, and scanning electron microscopy (SEM) revealed that SICs of BM173 could effectively reduce the movement, cell adhesion, and exopolysaccharide (EPS) production of L. monocytogenes, thereby inhibiting biofilm formation. Real-time quantitative PCR analyses further demonstrated that SICs of BM173 down-regulated the expression of biofilm-associated genes, including those encoding adhesion, virulence factors, and quorum sensing. Additionally, SICs of BM173 effectively reduced the biofilm formation of L. monocytogenes on the surfaces of three food-grade materials (glass, stainless steel, and silicone) at 4 and 25 °C. These outcomes suggest that BM173 holds great potential for development as a promising food preservative for application in the food industry.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China.
| | - Xing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiangmian Wei
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Yan Ma
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
7
|
Avila-Novoa MG, González-Torres B, González-Gómez JP, Guerrero-Medina PJ, Martínez-Chávez L, Martínez-Gonzáles NE, Chaidez C, Gutiérrez-Lomelí M. Genomic Insights into Listeria monocytogenes: Organic Acid Interventions for Biofilm Prevention and Control. Int J Mol Sci 2023; 24:13108. [PMID: 37685913 PMCID: PMC10487766 DOI: 10.3390/ijms241713108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Listeria monocytogenes is an important pathogen that has been implicated in foodborne illness. The aim of the present study was to investigate the diversity of virulence factors associated with the mechanisms of pathogenicity, persistence, and formation of biofilm L. monocytogenes by tandem analysis of whole-genome sequencing. The lineages that presented L. monocytogenes (LmAV-2, LmAV-3, and LmAV-6) from Hass avocados were lineages I and II. Listeria pathogenicity island 1 (LIPI-1) and LIPI-2 were found in the isolates, while LIPI-3 and Listeria genomic island (LGI-2) only was in IIb. Stress survival island (SSI-1) was identified in lineage I and II. In the in silico analysis, resistance genes belonging to several groups of antibiotics were detected, but the bcrABC and transposon Tn6188 related to resistance to quaternary ammonium salts (QACs) were not detected in L. monocytogenes. Subsequently, the anti-L. monocytogenes planktonic cell effect showed for QACs (MIC = 6.25 ppm/MBC = 100 ppm), lactic acid (MBC = 1 mg/mL), citric acid (MBC = 0.5 mg/mL) and gallic acid (MBC = 2 mg/mL). The anti-biofilm effect with organic acids (22 °C) caused a reduction of 4-5 log10 cfu/cm2 after 10 min against control biofilm L. monocytogenes formed on PP than SS. This study is an important contribution to understanding the genomic diversity and epidemiology of L. monocytogenes to establish a control measure to reduce the impact on the environment and the consumer.
Collapse
Affiliation(s)
- María Guadalupe Avila-Novoa
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Jean Pierre González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Pedro Javier Guerrero-Medina
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| | - Liliana Martínez-Chávez
- Departamentos de Farmacobiología y Matemáticas, CUCEI, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Nanci Edid Martínez-Gonzáles
- Departamentos de Farmacobiología y Matemáticas, CUCEI, Universidad de Guadalajara, Marcelino García Barragán 1451, Guadalajara 44430, Jalisco, Mexico; (L.M.-C.); (N.E.M.-G.)
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km 5.5, Campo El Diez, Culiacán 80110, Sinaloa, Mexico; (B.G.-T.); (J.P.G.-G.); (C.C.)
| | - Melesio Gutiérrez-Lomelí
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, Departamento de Ciencias Básicas, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Col. Lindavista, Ocotlán 47820, Jalisco, Mexico; (M.G.A.-N.); (P.J.G.-M.)
| |
Collapse
|
8
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
9
|
Roy PK, Kim SH, Jeon EB, Park EH, Park SY. Inhibition of Listeria monocytogenes Cocktail Culture Biofilms on Crab and Shrimp Coupons and the Expression of Biofilm-Related Genes. Antibiotics (Basel) 2023; 12:1008. [PMID: 37370327 DOI: 10.3390/antibiotics12061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes, a bacterium that is transmitted by tainted food, causes the infection listeriosis. In this study, quercetin was tested for its antibacterial properties and effectiveness as a food additive in preventing the growth of L. monocytogenes cocktail (ATCC19117, ATCC19113, and ATCC15313) biofilms on crabs and shrimps. Quercetin showed the least bactericidal activity and no discernible microbial growth at a minimum inhibitory concentration (MIC) of 250 µg/mL. The biofilm inhibition was performed at sub-MICs (1/2, 1/4, and 1/8 MIC). There was no quercetin added to the control group. Additionally, the present work examines the expression of various genes related to biofilm formation and quorum sensing (flaA, fbp, agrA, hlyA, and prfA). The levels of target genes were all significantly down-regulated. Quercetin (0-125 µg/mL) on the surfaces of the crab and shrimp was studied; its inhibitory effects were measured as log reductions at 0.39-2.31 log CFU/cm2 and 0.42-2.36 log CFU/cm2, respectively (p < 0.05). Quercetin reduced the formation of biofilms by disrupting cell-to-cell connections and causing cell lysis, which led to the deformation of the cells, evidenced by FE-SEM (field-emission scanning electron microscopy). These findings emphasize the significance of using natural food agents to target bacteria throughout the entire food production process.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Hee Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
10
|
Qiao Z, Zhang L, Wang X, Liu B, Shan Y, Yi Y, Zhou Y, Lü X. Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics Antimicrob Proteins 2022; 14:1067-1076. [PMID: 34709598 DOI: 10.1007/s12602-021-09863-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes is a well-known foodborne pathogen that usually lives as biofilm to cope with unfavorable surroundings. Bacteriocins have been reported as antimicrobial compounds, and their bactericidal actions have been extensively studied, but their antibiofilm actions have rarely been studied. Previous study indicated that bacteriocin BMP32r has a broad-spectrum antibacterial activity. In this study, the efficacy of BMP32r against the planktonic bacteria, inhibition of forming biofilm, destruction of mature biofilm, and kill persisters of L. monocytogenes ATCC 15,313 was determined. BMP32r exhibited the bactericidal effect on L. monocytogenes planktonic bacteria. Crystal violet staining showed that sub-minimum inhibitory concentrations (SICs) of BMP32r (1/32 × MIC and 1/16 × MIC) significantly (p < 0.001) inhibit the biofilm formation. In addition, the results of CCK-8, plate count, ruthenium red staining, scanning electron microscopy, and real-time quantitative PCR assay showed that SICs of BMP32r reduced cell adhesion, exopolysaccharide production, quorum sensing, and virulence genes expression in biofilm formation. Moreover, higher concentrations of BMP32r (2 × MIC and 4 × MIC) disrupt the mature biofilm by killing the bacteria in the biofilm and kill L. monocytogenes persisters bacteria effectively. Therefore, BMP32r has promising potential as an antibiofilm agent to combat L. monocytogenes.
Collapse
Affiliation(s)
- Zhu Qiao
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.,School of Biological and Food Processing Engineering, Huanghuai University, Henan Province 463000, Zhumadian, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Phenyllactic acid application to control Listeria monocytogenes biofilms and its growth in milk and spiced beef. Int J Food Microbiol 2022; 381:109910. [DOI: 10.1016/j.ijfoodmicro.2022.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
|
12
|
Antibiofilm Efficacy of Quercetin against Vibrio parahaemolyticus Biofilm on Food-Contact Surfaces in the Food Industry. Microorganisms 2022; 10:microorganisms10101902. [PMID: 36296179 PMCID: PMC9610505 DOI: 10.3390/microorganisms10101902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus, one of the most common foodborne pathogenic bacteria that forms biofilms, is a persistent source of concern for the food industry. The food production chain employs a variety of methods to control biofilms, although none are completely successful. This study aims to evaluate the effectiveness of quercetin as a food additive in reducing V. parahaemolyticus biofilm formation on stainless-steel coupons (SS) and hand gloves (HG) as well as testing its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. Control group was not added with quercetin. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagellar motility (flaA, flgL), biofilm formation (vp0952, vp0962), virulence (VopQ, vp0450), and quorum-sensing (aphA, luxS) were all dramatically suppressed. Quercetin (0−110 μg/mL) was investigated on SS and HG surfaces, the inhibitory effect were 0.10−2.17 and 0.26−2.31 log CFU/cm2, respectively (p < 0.05). Field emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Additionally, there was a significant difference between the treated and control groups in terms of motility (swimming and swarming). According to our research, quercetin produced from plants should be employed as an antibiofilm agent in the food sector to prevent the growth of V. parahaemolyticus biofilms. These results indicate that throughout the entire food production chain, bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood industry.
Collapse
|
13
|
Antimicrobial Efficacy of Quercetin against Vibrio parahaemolyticus Biofilm on Food Surfaces and Downregulation of Virulence Genes. Polymers (Basel) 2022; 14:polym14183847. [PMID: 36145988 PMCID: PMC9505375 DOI: 10.3390/polym14183847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
For the seafood industry, Vibrio parahaemolyticus, one of the most prevalent food-borne pathogenic bacteria that forms biofilms, is a constant cause of concern. There are numerous techniques used throughout the food supply chain to manage biofilms, but none are entirely effective. Through assessing its antioxidant and antibacterial properties, quercetin will be evaluated for its ability to prevent the growth of V. parahaemolyticus biofilm on shrimp and crab shell surfaces. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth of bacteria. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin without (control) and with sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of related genes linked to flagella motility (flaA and flgL), biofilm formation (vp0952 and vp0962), and quorum-sensing (luxS and aphA) were all dramatically reduced (p < 0.05). Quercetin (0−110 μg/mL) was investigated on shrimp and crab shell surfaces, the inhibitory effects were 0.68−3.70 and 0.74−3.09 log CFU/cm2, respectively (p < 0.05). The findings were verified using field emission scanning electron microscopy (FE-SEM), which revealed quercetin prevented the development of biofilms by severing cell-to-cell contacts and induced cell lysis, which resulted in the loss of normal cell shape. Furthermore, there was a substantial difference in motility between the treatment and control groups (swimming and swarming). According to our findings, plant-derived quercetin should be used as an antimicrobial agent in the food industry to inhibit the establishment of V. parahaemolyticus biofilms. These findings suggest that bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood sector along the entire food production chain.
Collapse
|
14
|
Roy PK, Song MG, Park SY. The Inhibitory Effect of Quercetin on Biofilm Formation of Listeria monocytogenes Mixed Culture and Repression of Virulence. Antioxidants (Basel) 2022; 11:antiox11091733. [PMID: 36139807 PMCID: PMC9495692 DOI: 10.3390/antiox11091733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 02/08/2023] Open
Abstract
Listeria monocytogenes is the species of foodborne pathogenic bacteria that causes the infection listeriosis. The food production chain employs various methods to control biofilms, although none are completely successful. This study evaluates the effectiveness of quercetin as a food additive in reducing L. monocytogenes mixed cultures (ATCC19113, ATCC19117, and ATCC15313) biofilm formation on stainless steel (SS), silicon rubber (SR), and hand glove (HG) coupons, as well as tests its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 250 µg/mL, the tested quercetin exhibited the lowest bactericidal action with no visible bacterial growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against L. monocytogenes was examined. A control group was not added with quercetin. The current study also investigates the effect of quercetin on the expression of different genes engaged in motility (flaA, fbp), QS (agrA), and virulence (hlyA, prfA). Through increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagella motility, virulence, and quorum-sensing were all dramatically reduced. Quercetin (0−125 μg/mL) was investigated on the SS, SR, and HG surfaces; the inhibitory effects were 0.39−2.07, 0.09−1.96 and 0.03−1.69 log CFU/cm2, respectively (p < 0.05). Field-emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Our findings suggest that plant-derived quercetin should be used as an antimicrobial agent in the food industry to control the development of L. monocytogenes biofilms. These outcomes suggest that bacterial targets are of interest for biofilm reduction, with alternative natural food agents in the food sector along the entire food production chain.
Collapse
Affiliation(s)
| | | | - Shin Young Park
- Correspondence: ; Tel.: +82-55-772-9143; Fax: +82-55-772-9149
| |
Collapse
|
15
|
Kim YK, Roy PK, Ashrafudoulla M, Nahar S, Toushik SH, Hossain MI, Mizan MFR, Park SH, Ha SD. Antibiofilm effects of quercetin against Salmonella enterica biofilm formation and virulence, stress response, and quorum-sensing gene expression. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Fan Q, He Q, Zhang T, Song W, Sheng Q, Yuan Y, Yue T. Antibiofilm potential of lactobionic acid against Salmonella Typhimurium. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Zanna S, Mercier D, Gardin E, Allion-Maurer A, Marcus P. EPS for bacterial anti-adhesive properties investigated on a model metal surface. Colloids Surf B Biointerfaces 2022; 213:112413. [PMID: 35189477 DOI: 10.1016/j.colsurfb.2022.112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/13/2023]
Abstract
Understanding Extracellular Polymeric Substances (EPS) interaction on a well-defined chromium surface is of importance especially for biocorrosion processes. Adsorption of EPS extracted from Pseudoalteromonas NCIMB 2021 on Cr surfaces was investigated using in situ quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). We show that EPS adsorption is an irreversible process. The amount of adsorbed EPS increases with increasing EPS concentration in solution. For low EPS concentration, the surface is only partially covered by EPS, whereas a continuous organic film of around 15 nm is formed at the surface for high EPS concentrations. An in-depth structuration of this organic layer is evidenced with a strong enrichment of proteins in the inner part and of polysaccharides in the outer part. Adhesion of Pseudoalteromonas NCIMB 2021 has been tested on Cr surfaces covered or not by EPS extracted from Pseudoalteromonas NCIMB 2021. EPS conditioning with a 15 nm film inhibits bacterial adhesion on Cr, showing that this organic film has efficient anti-adhesive properties.
Collapse
Affiliation(s)
- Sandrine Zanna
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France.
| | - Dimitri Mercier
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France.
| | - Elise Gardin
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France; Aperam Isbergues, Research Center - Solutions Dept., BP 15, F-62330 Isbergues, France
| | - Audrey Allion-Maurer
- Aperam Isbergues, Research Center - Solutions Dept., BP 15, F-62330 Isbergues, France
| | - Philippe Marcus
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, Research Group Physical Chemistry of Surfaces, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
18
|
Nguyen TLA, Bhattacharya D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022; 27:molecules27082494. [PMID: 35458691 PMCID: PMC9029217 DOI: 10.3390/molecules27082494] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Quercetin, an essential plant flavonoid, possesses a variety of pharmacological activities. Extensive literature investigates its antimicrobial activity and possible mechanism of action. Quercetin has been shown to inhibit the growth of different Gram-positive and Gram-negative bacteria as well as fungi and viruses. The mechanism of its antimicrobial action includes cell membrane damage, change of membrane permeability, inhibition of synthesis of nucleic acids and proteins, reduction of expression of virulence factors, mitochondrial dysfunction, and preventing biofilm formation. Quercetin has also been shown to inhibit the growth of various drug-resistant microorganisms, thereby suggesting its use as a potent antimicrobial agent against drug-resistant strains. Furthermore, certain structural modifications of quercetin have sometimes been shown to enhance its antimicrobial activity compared to that of the parent molecule. In this review, we have summarized the antimicrobial activity of quercetin with a special focus on its mechanistic principle. Therefore, this review will provide further insights into the scientific understanding of quercetin’s mechanism of action, and the implications for its use as a clinically relevant antimicrobial agent.
Collapse
|
19
|
Phenolic compounds of Phellinus spp. with antibacterial and antiviral activities. Braz J Microbiol 2022; 53:1187-1197. [PMID: 35380361 PMCID: PMC9433629 DOI: 10.1007/s42770-022-00745-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/27/2022] [Indexed: 11/02/2022] Open
Abstract
Phellinus Quél is one of the largest genera of Hymenochaetaceae; it comprises about 220 species widely distributed on Earth. Most Phellinus species are lignicolous mushrooms that accumulate bioactive compounds. This research studied the phenolic composition of Phellinus spp. and their relationship with antibacterial and antiviral capacity. Phenolics were extracted from Phellinus badius, P. fastuosus, and P. grenadensis; their antiviral and antibacterial activities were evaluated against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Escherichia coli O157: H7; and the bacteriophages MS2 and Φ- × 174. Gallic acid, chlorogenic acid, caffeic acid, epicatechin, ferulic acid, catechin, 1,3-dicaffeoylquinic acid, p-coumaric acid, and rutin were found in different proportions among Phellinus spp. Total phenolic content ranged from 96 to 209 mg GAE/g, and total flavonoids from 10 to 27 QE/g. The minimum inhibitory concentrations of P. badius, P. grenadensis, and P. fastuosus against E. coli O157: H7 were 13, 20, and 27 mg/mL, against S. enterica were 20, 30, and 15 mg/mL, and against L. monocytogenes were 10, 15, and 25 mg/mL, respectively. The phenolic content was better correlated with the antibacterial effect against E. coli O157: H7 and L. monocytogenes (r = 0.8-0.9), but not against S. enterica (r = 0.05). The antiviral activity of the extracts (0.9 mg/mL) was 29 to 41% against MS2 and 27 to 38% for Φ-X174 virus (r = 0.8-0.9). In silico analysis showed binding energy values of - 7.9 and - 4.8 kcal/mol between the identified phenolic compounds and the M and G proteins of each virus. The antibacterial and antiviral properties of Phellinus species were correlated with the phenolic content.
Collapse
|
20
|
Gemmell CT, Parreira VR, Farber JM. Controlling Listeria monocytogenes Growth and Biofilm Formation Using Flavonoids. J Food Prot 2022; 85:639-646. [PMID: 34982818 DOI: 10.4315/jfp-21-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The aim of this study was to investigate the ability of natural plant-derivate products (flavonoid compounds) to inhibit the growth and biofilm-forming ability of Listeria monocytogenes. A collection of 500 synthetic and natural flavonoids were tested individually on strains of L. monocytogenes for their antimicrobial and antibiofilm activity. The flavonoids were tested against a L. monocytogenes cocktail of five strains at a concentration of 100 μM to determine their effect on planktonic growth. The optical density was measured every hour for 24 h at 37°C, and every hour for 48 h at 22°C. A total of 17 flavonoids were chosen for further study because of their ability to significantly reduce the growth of L. monocytogenes up to 97%. An additional two flavonoids that increased planktonic growth were chosen as well to investigate whether they had the same effect on biofilm growth. A lower concentration of flavonoid compounds (50 μM) was selected to investigate the individual effects on L. monocytogenes biofilm formation using (i) stainless steel coupons to quantify biomass using crystal violet staining and (ii) glass slides using confocal laser scanning microscopic (CLSM) imaging to observe the biofilm architecture. The 19 flavonoids showed various levels of L. monocytogenes biofilm growth inhibition, ranging from 2 to 100% after 48 h of incubation at 22 or 10°C. This includes 18 of the 19 flavonoids significantly (P ≤ 0.05) inhibiting L. monocytogenes biofilm formation on stainless steel coupons under at least one of the testing conditions. However, only one flavonoid compound demonstrated significant biofilm inhibition (P ≤ 0.05) under all conditions tested. Furthermore, 8 of the selected 19 flavonoid compounds showed visible reductions through CLSM in L. monocytogenes biofilm formation. Overall, we identified five flavonoid compounds to be promising antibiofilm and antimicrobial agents against L. monocytogenes. HIGHLIGHTS
Collapse
Affiliation(s)
- Christopher T Gemmell
- Canadian Research Institute for Food Safety, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
21
|
Roy PK, Song MG, Park SY. Impact of Quercetin against Salmonella Typhimurium Biofilm Formation on Food-Contact Surfaces and Molecular Mechanism Pattern. Foods 2022; 11:977. [PMID: 35407064 PMCID: PMC8997561 DOI: 10.3390/foods11070977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022] Open
Abstract
Quercetin is an active nutraceutical element that is found in a variety of foods, vegetables, fruits, and other products. Due to its antioxidant properties, quercetin is a flexible functional food that has broad protective effects against a wide range of infectious and degenerative disorders. As a result, research is required on food-contact surfaces (rubber (R) and hand gloves (HG)) that can lead to cross-contamination. In this investigation, the inhibitory effects of quercetin, an antioxidant and antibacterial molecule, were investigated at sub-MIC (125; 1/2, 62.5; 1/4, and 31.25; 1/8 MIC, μg/mL) against Salmonella Typhimurium on surfaces. When quercetin (0−125 μg/mL) was observed on R and HG surfaces, the inhibitory effects were 0.09−2.49 and 0.20−2.43 log CFU/cm2, respectively (p < 0.05). The results were confirmed by field emission scanning electron microscopy (FE-SEM), because quercetin inhibited the biofilms by disturbing cell-to-cell connections and inducing cell lysis, resulting in the loss of normal cell morphology, and the motility (swimming and swarming) was significantly different at 1/4 and 1/2 MIC compared to the control. Quercetin significantly (p < 0.05) suppressed the expression levels of virulence and stress response (rpoS, avrA, and hilA) and quorum-sensing (luxS) genes. Our findings imply that plant-derived quercetin could be used as an antibiofilm agent in the food industry to prevent S. Typhimurium biofilm formation.
Collapse
Affiliation(s)
| | | | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (P.K.R.); (M.G.S.)
| |
Collapse
|
22
|
Zhang H, Li S, Cheng Y. Antibiofilm Activity of Allicin and Quercetin in Treating Biofilm-Associated Orthopaedics Infection. Appl Biochem Biotechnol 2022:10.1007/s12010-022-03845-4. [PMID: 35142967 DOI: 10.1007/s12010-022-03845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 01/09/2023]
Abstract
Biofilms formed by bacteria are the group of sessile microbial cells that remain encompassed by self-secreted polymeric substances and have resulted in great health-care concern. The extracellular polymeric substances (EPS) prevent the penetration of antibiotics and other drugs, thereby resulting in the development of multi-drug resistance or antibiotic resistance. The biofilm-associated prosthetics being places at the joins of bone injury are the common sites for the development of biofilm-associated infection. This often spreads and results in the development of orthopaedic infections. Most of the infections are associated with musculoskeletal system and originate from non-living surfaces. The biofilm prevents the penetration of drugs, thereby resulting in the development of antibiotic resistance or multi-drug resistance. The minimum inhibitory concentration (MIC) for allicin and quercetin was found to be 80 µg/mL for quercetin and 100 µg/mL for amoxicillin against the sessile communities of Pseudomonas aeruginosa associated with the orthopaedic infection. The role of quercetin and allicin in reduction of protein, carbohydrate and eDNA content of the exopolysaccharides (EPS) was tested. The anti-quorum sensing activity of quercetin and allicin was confirmed both by biochemical and by photomicrographic studies. The antibiofilm and antimicrobial activities of quercetin and allicin were determined both by in vitro and in silico studies on P. aeruginosa bacterial strain from biofilm-associated orthopaedic infection.
Collapse
Affiliation(s)
- Huajun Zhang
- Department of Orthopaedics, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu Province, China
| | - Shengjie Li
- The Second Department of Orthopedic, Baiyin Integrated Traditional Chinese and Western Medicine Hospital, Baiyin, 730900, Gansu Province, China
| | - Yujing Cheng
- The First Department of Orthopedic, The First People's Hospital of Taian, Taian, 271000, Shandong Province, China.
| |
Collapse
|
23
|
Inhibition Activity of Plantaricin Q7 Produced by Lactobacillus plantarum Q7 against Listeria monocytogenes and Its Biofilm. FERMENTATION 2022. [DOI: 10.3390/fermentation8020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plantaricin Q7 is a broad-spectrum antimicrobial peptide produced by Lactobacillus plantarum Q7. The effects of plantaricin Q7 on Listeria monocytogenes and its biofilm were investigated. The results showed that plantaricin Q7 changed the cell membrane permeability and integrity of Listeria monocytogenes significantly. The extracellular lactate dehydrogenase activity increased from 156.74 U/L to 497.62 U/L, and the K+ concentration was increased rapidly from 0.02 g/L to 0.09 g/L. Furthermore, the flagellum motility of Listeria monocytogenes reduced and the relative adhesion rate decreased about 30% after treatment with plantaricin Q7. Meanwhile, the morphology and structure of Listeria monocytogenes cell and biofilm were damaged. These findings suggested that plantaricin Q7 exhibited significant inhibitory effects on not only Listeria monocytogenes cell but also its biofilm, which might be used as a natural and effective biological preservative for food storage.
Collapse
|
24
|
Han Q, Feng L, Zhang Y, Zhang R, Wang G, Zhang Y. Effect of Juglone against Pseudomonas syringae pv Actinidiae Planktonic Growth and Biofilm Formation. Molecules 2021; 26:molecules26247580. [PMID: 34946659 PMCID: PMC8705749 DOI: 10.3390/molecules26247580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas syringaepv Actinidiae (P. syringae) is a common pathogen causing plant diseases. Limoli proved that its strong pathogenicity is closely related to biofilm state. As a natural bacteriostatic agent with broad-spectrum bactericidal properties, juglone can be used as a substitute for synthetic bacteriostatic agents. To explore the antibacterial mechanism, this study was carried out to examine the inhibitory effect of juglone on cell membrane destruction, abnormal oxidative stress, DNA insertion and biofilm prevention of P. syringae. Results showed that juglone at 20 μg/mL can act against planktogenic P. syringae (107 CFU/mL). Specially, the application of juglone significantly damaged the permeability and integrity of the cell membrane of P. syringae. Additionally, juglone caused abnormal intracellular oxidative stress, and also embedded in genomic DNA, which affected the normal function of the DNA of P. syringae. In addition, environmental scanning electron microscope (ESEM) and other methods showed that juglone effectively restricted the production of extracellular polymers, and then affected the formation of the cell membrane. This study provided a possibility for the development and utilization of natural juglone in plants, especially P. syringae.
Collapse
Affiliation(s)
| | | | | | | | - Guoliang Wang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| | - Youlin Zhang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| |
Collapse
|
25
|
Recent advances in anti-adhesion mechanism of natural antimicrobial agents on fresh produce. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Santos CA, Lima EMF, Franco BDGDM, Pinto UM. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front Microbiol 2021; 12:735931. [PMID: 34594318 PMCID: PMC8477669 DOI: 10.3389/fmicb.2021.735931] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of multidrug-resistant bacteria stimulates the search for new substitutes to traditional antimicrobial agents, especially molecules with antivirulence properties, such as those that interfere with quorum sensing (QS). This study aimed to evaluate the potential of phenolic compounds for QS inhibition in a QS biosensor strain (Chromobacterium violaceum) and three foodborne bacterial species (Aeromonas hydrophila, Salmonella enterica serovar Montevideo, and Serratia marcescens). Initially, an in silico molecular docking study was performed to select the compounds with the greatest potential for QS inhibition, using structural variants of the CviR QS regulator of C. violaceum as target. Curcumin, capsaicin, resveratrol, gallic acid, and phloridizin presented good affinity to at least four CviR structural variants. These phenolic compounds were tested for antimicrobial activity, inhibition of biofilm formation, and anti-QS activity. The antimicrobial activity when combined with kanamycin was also assessed. Curcumin, capsaicin, and resveratrol inhibited up to 50% of violacein production by C. violaceum. Biofilm formation was inhibited by resveratrol up to 80% in A. hydrophila, by capsaicin and curcumin up to 40% in S. Montevideo and by resveratrol and capsaicin up to 60% in S. marcescens. Curcumin completely inhibited swarming motility in S. marcescens. Additionally, curcumin and resveratrol increased the sensitivity of the tested bacteria to kanamycin. These results indicate that curcumin and resveratrol at concentrations as low as 6μM are potential quorum sensing inhibitors besides having antimicrobial properties at higher concentrations, encouraging applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Wang L, Wang G, Qu H, Wang K, Jing S, Guan S, Su L, Li Q, Wang D. Taxifolin, an Inhibitor of Sortase A, Interferes With the Adhesion of Methicillin-Resistant Staphylococcal aureus. Front Microbiol 2021; 12:686864. [PMID: 34295320 PMCID: PMC8290497 DOI: 10.3389/fmicb.2021.686864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
The evolution and spread of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant hidden risk to human public health. The majority of antibiotics used clinically have become mostly ineffective, and so the development of novel anti-infection strategies is urgently required. Since Staphylococcus aureus (S. aureus) cysteine transpeptidase sortase A (SrtA) mediates the surface-anchoring of proteins to its surface, compounds that inhibit SrtA are considered potential antivirulence treatments. Herein, we report on the efficacy of the potent SrtA inhibitor taxifolin (Tax), a flavonoid compound isolated from Chinese herbs. It was able to reversibly block the activity of SrtA with an IC50 of 24.53 ± 0.42 μM. Tax did not display toxicity toward mammalian cells or S. aureus at a concentration of 200 μM. In addition, Tax attenuated the virulence-related phenotype of SrtA in vitro by decreasing the adherence of S. aureus, reducing the formation of a biofilm, and anchoring of S. aureus protein A on its cell wall. The mechanism of the SrtA-Tax interaction was determined using a localized surface plasmon resonance assay. Subsequent mechanistic studies confirmed that Asp-170 and Gln-172 were the principal sites on SrtA with which it binds to Tax. Importantly, in vivo experiments demonstrated that Tax protects mice against pneumonia induced by lethal doses of MRSA, significantly improving their survival rate and reducing the number of viable S. aureus in the lung tissue. The present study indicates that Tax is a useful pioneer compound for the development of novel agents against S. aureus infections.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Han Qu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kai Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun, China
| | - Shuhan Guan
- College of Animal Science, Jilin University, Changchun, China
| | - Liyan Su
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
28
|
Liu Y, Wu L, Yan Y, Yang K, Dong P, Luo X, Zhang Y, Zhu L. Lactic Acid and Peroxyacetic Acid Inhibit Biofilm of Escherichia coli O157:H7 Formed in Beef Extract. Foodborne Pathog Dis 2021; 18:744-751. [PMID: 34197219 DOI: 10.1089/fpd.2021.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to evaluate the inhibitory effect of lactic acid (LA) and peroxyacetic acid (PAA) on the biofilm formation of Escherichia coli O157:H7 in beef extract (BE). BE medium was used as the growth substrate in this study, to make the control effect closer to the situation of the factory. The biofilm inhibitory efficacy of LA and PAA was tested by using a crystal violet staining assay and microscopic examination. And then, extracellular polymeric substance (EPS) production, metabolic activity, and real-time polymerase chain reaction assay were used to reveal the biofilm inhibition mechanism of LA and PAA. The results showed that both LA and PAA significantly inhibited biofilm formation of E. coli O157:H7 at minimum inhibitory concentrations (MICs) (p < 0.05). At MIC, LA and PAA showed different effects on the biofilm metabolic activity and the EPS production of E. coli O157:H7. Supporting these findings, expression analysis showed that LA significantly suppressed quorum sensing genes (luxS and sdiA) and adhesion genes (flhC), while PAA downregulated the transcription of extracellular polysaccharide synthesis genes (adrB and adrA) and the global regulatory factor csgD. This result revealed that LA and PAA had different biofilm inhibitory mechanisms on E. coli O157:H7; LA inhibited the biofilm formation mainly by inhibiting metabolic activity, while PAA inhibited EPS production. This study provided a theoretical basis for the control of E. coli O157:H7 biofilm in the actual production process.
Collapse
Affiliation(s)
- Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Lina Wu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Yuqing Yan
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Kehui Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| |
Collapse
|
29
|
Reduction of the attachment, survival and growth of L. monocytogenes on lettuce leaves by UV-C stress. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Antibiofilm properties of copper (II) and iron (III) complexes with an EDTA-based phenylene macrocycle and its acyclic analogue against food and clinical related pathogens. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Zamuz S, Munekata PE, Dzuvor CK, Zhang W, Sant'Ana AS, Lorenzo JM. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Electrostatic Spraying of Passion Fruit (Passiflora edulis L.) Peel Extract for Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Fresh-Cut Lollo Rossa and Beetroot Leaves. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02608-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Properties of the Extracellular Polymeric Substance Layer from Minimally Grown Planktonic Cells of Listeria monocytogenes. Biomolecules 2021; 11:biom11020331. [PMID: 33671666 PMCID: PMC7926710 DOI: 10.3390/biom11020331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterium Listeria monocytogenes is a serious concern to food processing facilities because of its persistence. When liquid cultures of L. monocytogenes were prepared in defined media, it was noted that planktonic cells rapidly dropped out of suspension. Zeta potential and hydrophobicity assays found that the cells were more negatively charged (−22, −18, −10 mV in defined media D10, MCDB 202 and brain heart infusion [BHI] media, respectively) and were also more hydrophobic. A SEM analysis detected a capsular-like structure on the surface of cells grown in D10 media. A crude extract of the extracellular polymeric substance (EPS) was found to contain cell-associated proteins. The proteins were removed with pronase treatment. The remaining non-proteinaceous component was not stained by Coomassie blue dye and a further chemical analysis of the EPS did not detect significant amounts of sugars, DNA, polyglutamic acid or any other specific amino acid. When the purified EPS was subjected to attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, the spectra obtained did not match the profile of any of the 12 reference compounds used. An x-ray diffraction (XRD) analysis showed that the EPS was amorphous and a nuclear magnetic resonance (NMR) analysis detected the presence of glycerol. An elemental energy dispersive x-ray (EDX) analysis showed traces of phosphorous as a major component. In conclusion, it is proposed that the non-proteinaceous component may be phospholipid in nature, possibly derived from the cell wall lipoteichoic acid.
Collapse
|
35
|
Wang Y, Pei Z, Lou Z, Wang H. Evaluation of Anti-Biofilm Capability of Cordycepin Against Candida albicans. Infect Drug Resist 2021; 14:435-448. [PMID: 33574683 PMCID: PMC7872900 DOI: 10.2147/idr.s285690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The opportunistic pathogen Candida albicans can form biofilms, resulting in drug resistance with great risk to medical treatment. METHODOLOGY We investigated the ability of C. albicans to form biofilms on different materials, as well as the inhibitory and eradicating effects of cordycepin on biofilm. The action mechanism of cordycepin against biofilm was studied by crystal violet staining, XTT [2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction method, phenol-sulfuric acid method, cellular superficial hydrophobicity (CSH) assay, and confocal laser scanning microscope observation. We also evaluated the acute toxicity of cordycepin in vivo. RESULTS The results showed facile formation of biofilms by C. albicans on polypropylene. The 50% minimum inhibitory concentration (MIC50) of cordycepin was 0.062 mg/mL. A concentration of 0.125 mg/mL significantly decreased biofilm formation, metabolic activity, secretion of extracellular polysaccharides, and relative CSH. Cordycepin could inhibit biofilm formation at low concentration without affecting fungal growth. In addition, cordycepin effectively eradicated 59.14% of mature biofilms of C. albicans at a concentration of 0.5 mg/mL. For acute toxicity, the LD50 (50% of lethal dose) of cordycepin was determined as higher than 500 mg/kg for mice. CONCLUSION The results of this study show that cordycepin significantly inhibited and eradicated biofilms by decreasing metabolic activity, the ratio of living cells, the hydrophobicity, and damaging the extracellular polysaccharides of biofilm. These findings should facilitate more effective application of cordycepin and suggest a new direction for the treatment of fungal infections.
Collapse
Affiliation(s)
- Yu Wang
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zejun Pei
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| |
Collapse
|
36
|
Cui H, Li H, Abdel-Samie MA, Surendhiran D, Lin L. Anti-Listeria monocytogenes biofilm mechanism of cold nitrogen plasma. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Trujillo-Mayol I, Casas-Forero N, Pastene-Navarrete E, Lima Silva F, Alarcón-Enos J. Fractionation and Hydrolyzation of Avocado Peel Extract: Improvement of Antibacterial Activity. Antibiotics (Basel) 2020; 10:antibiotics10010023. [PMID: 33396588 PMCID: PMC7824035 DOI: 10.3390/antibiotics10010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Avocado Hass (Persea americana Mill) peel extract (APE) has the potential as a natural ingredient to substitute for chemical preservatives. The objectives of this study were to assess the phytochemical composition by high-performance liquid chromatography-quadrupole time-of-flight mass/mass spectrometry (HPLC-qTOF-MS/MS), total phenolic content (TPC), proanthocyanidin (PAC) content, and antioxidant activity of the APE, the organic fraction (OF), the aqueous fraction (AF), and the acid-microwave hydrolyzed APE (HAPE), on the antibacterial activity (ABA). The results indicated that APE and OF contained (p ˂ 0.05) a higher phenolic composition and antioxidant activity than AF and HAPE. The ABA specified that Pseudomonas aeruginosa and Bacillus cereus were inhibited by all the extracts (minimal inhibitory concentration-MIC ≥ 500 µg/mL), Staphylococcus aureus was only significantly inhibited by APE (≥750 µg/mL), the same MIC was observed for the OF on Salmonella spp. and Listeria monocytogenes. The HAPE increased the inhibitory efficiency up to 25% on Escherichia coli and Salmonella spp. (MIC ≥ 750 µg/mL), and 83.34% on L. monocytogenes (MIC ≥ 125 µg/mL) compared to APE (MIC ≥ 750 µg/mL). Also, HAPE inhibited the biofilm formation at the lowest concentration (125 µg/mL); meanwhile, the biofilm disruption showed to be concentration-time-dependent (p ˃ 0.05) compared to amoxicillin. In conclusion, the fractionation and hydrolyzation of APE improved the ABA; thus, those strategies are useful to design new antimicrobial compounds.
Collapse
Affiliation(s)
- Igor Trujillo-Mayol
- Food Engineering Department, Health and Food Science Faculty, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile; (I.T.-M.); (N.C.-F.)
| | - Nidia Casas-Forero
- Food Engineering Department, Health and Food Science Faculty, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile; (I.T.-M.); (N.C.-F.)
| | - Edgar Pastene-Navarrete
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile;
| | - Fabiana Lima Silva
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile;
- Institute of Health Sciences, Universidade Paulista, São Paulo 13565-905, Brazil;
| | - Julio Alarcón-Enos
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile;
- Faculty of Basic Sciences, Universidad del Bío-Bío Campus Fernando May, Av. Andrés Bello 720, Chillan 3800708, Chile
- Correspondence: ; Tel.: +56-042-2463049
| |
Collapse
|
38
|
Yang D, Wang T, Long M, Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8825387. [PMID: 33488935 PMCID: PMC7790550 DOI: 10.1155/2020/8825387] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Abstract
Quercetin is a flavonoid compound widely present in plants and exhibits a variety of biological activities. Research on quercetin has shown its potential for medical application. In this research, we elucidate its antioxidant mechanism and the broad-spectrum antibacterial and antiparasite properties; summarise its potential application in antioncology and cardiovascular protection and anti-immunosuppression treatment; and demonstrate its ability to alleviate the toxicity of mycotoxins. This research is expected to offer some insights and inspirations for the further study of quercetin, its properties, and the scientific basis for its better application in clinical practice.
Collapse
Affiliation(s)
- Dengyu Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Tiancheng Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
39
|
Quercetin inhibits virulence properties of Porphyromas gingivalis in periodontal disease. Sci Rep 2020; 10:18313. [PMID: 33110205 PMCID: PMC7591570 DOI: 10.1038/s41598-020-74977-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis is a causative agent in the onset and progression of periodontal disease. This study aims to investigate the effects of quercetin, a natural plant product, on P. gingivalis virulence properties including gingipain, haemagglutinin and biofilm formation. Antimicrobial effects and morphological changes of quercetin on P. gingivalis were detected. The effects of quercetin on gingipains activities and hemolytic, hemagglutination activities were evaluated using chromogenic peptides and sheep erythrocytes. The biofilm biomass and metabolism with different concentrations of quercetin were assessed by the crystal violet and MTT assay. The structures and thickness of the biofilms were observed by confocal laser scanning microscopy. Bacterial cell surface properties including cell surface hydrophobicity and aggregation were also evaluated. The mRNA expression of virulence and iron/heme utilization was assessed using real time-PCR. Quercetin exhibited antimicrobial effects and damaged the cell structure. Quercetin can inhibit gingipains, hemolytic, hemagglutination activities and biofilm formation at sub-MIC concentrations. Molecular docking analysis further indicated that quercetin can interact with gingipains. The biofilm became sparser and thinner after quercetin treatment. Quercetin also modulate cell surface hydrophobicity and aggregation. Expression of the genes tested was down-regulated in the presence of quercetin. In conclusion, our study demonstrated that quercetin inhibited various virulence factors of P. gingivalis.
Collapse
|
40
|
Rajivgandhi GN, Ramachandran G, Maruthupandy M, Manoharan N, Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Li WJ. Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124830] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Aissaoui M, Rahmoun MN, Latrache H, Barek S, Elassri A, Bensouici C, El Haci IA, Choukchou-Braham N. Structural characterization, antioxidant, and antibiofilm activities of Coffea canephora green seeds. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:107-112. [PMID: 32759405 DOI: 10.1515/jcim-2020-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/28/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES In order to explore Coffea canephora green seeds as natural extract for application in the functional-food industry, we focused this study to the evaluation of the antioxidant and the antiadhesion effect of C. canephora green seeds extracts. METHODS The analysis of C. canephora green seeds extracts was carried out by RP-HPLC-PDA. These extracts were screened for antioxidant activities by ABTS and phenanthroline assays. The antibacterial activity was determined by microdilution method against three reference bacteria. The inhibition of bacterial adhesion at 1/8 MIC was carried out against three reference bacteria. RESULTS The RP-HPLC-PDA revealed the presence of gallic acid, vanillin, quercetin, chlorogenic acid, and P-coumaric acid. The n-buatnol extract have the highest activity ABTS assays (3.96 ± 0.08 μg/mL). For this extract, the A0.5 was 1.90 ± 0.05 μg/mL for phenanthroline assay. The n-butanol extract and the methanolic extract have the higher antibacterial activity against Staphylococcus aureus ATCC 25923 (40 µg/mL).At MIC/8, the extracts of C. canephora showed 70% higher antidhesive activity against S. aureus ATCC 25923. CONCLUSIONS Our finding provides an effective and specific new approach to the search of antioxidant and antiadhesive compounds for different uses.
Collapse
Affiliation(s)
- Mohammed Aissaoui
- Département de Biologie, Laboratoire Antibiotiques Antifongiques: Physico-Chimie, Synthèse et Activité Biologique, Faculté SNV-STU, University of Tlemcen, Tlemcen, Algeria
| | - Mohammed Nadjib Rahmoun
- Département de Biologie, Laboratoire Antibiotiques Antifongiques: Physico-Chimie, Synthèse et Activité Biologique, Faculté SNV-STU, University of Tlemcen, Tlemcen, Algeria
| | - Hassan Latrache
- Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Said Barek
- Département de Biologie, Laboratoire Antibiotiques Antifongiques: Physico-Chimie, Synthèse et Activité Biologique, Faculté SNV-STU, University of Tlemcen, Tlemcen, Algeria
| | - Ayoub Elassri
- Laboratory of Bioprocess and Biointerfaces, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Chawki Bensouici
- Centre de Recherche en Biotechnologie Ali Mendjli Nouvelle Ville UV 03 BP E73Constantine, Algeria
| | - Imad Abdelhamid El Haci
- Département de Biologie, Centre de Recherche scientifique et technique en Analyses Physico-Chimiques (CRAPC), Tipaza, Algeria
- Laboratoire de Produits Naturels, Faculté SNV-STU, University of Tlemcen, Tlemcen, Algeria
| | - Noureddine Choukchou-Braham
- Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
42
|
Kang J, Liu L, Liu Y, Wang X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7121-7131. [PMID: 32588628 DOI: 10.1021/acs.jafc.0c01901] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance and capacity for biofilm formation of Shigella flexneri render previous prevention and control strategies minimally effective. Ferulic acid (FA) has been demonstrated to be useful due to its application in foods as an alternative natural preservative. However, information regarding the S. flexneri phenotype and molecular responses to FA exposure is limited. The present study investigated the effects of FA on S. flexneri planktonic growth and biofilm formation. The results demonstrated that the cell membrane of S. flexneri in planktonic growth mode exhibited irreversible destruction after FA exposure, as characterized by decreased cell viability, leakage of cytoplasmic constituents, accelerated adenosine triphosphate (ATP) consumption, cell membrane depolarization, and cellular morphological changes. FA significantly inhibited S. flexneri adhesion and biofilm formation at a working concentration (1/8 MIC) that almost did not inhibit planktonic growth. Transcriptomics profiling showed that the exposure to a subinhibitory concentration of FA dramatically altered gene expression in the S. flexneri biofilm, as a total of 169 differentially expressed genes (DEGs) were upregulated and 533 DEGs were downregulated, compared to the intact biofilm. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the DEGs were mainly involved in pathways of ribosomes, ABC transporters, and the citrate cycle. Furthermore, we show that FA altered the transcription of S. flexneri genes associated with adhesion, transcriptional regulation, and the synthesis and transport of extracellular polymeric substances that contribute to biofilm formation. These data provide novel insights into S. flexneri behavioral responses to FA exposure and suggest that FA could effectively constrain S. flexneri and its biofilm formation.
Collapse
Affiliation(s)
- Jiamu Kang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xiaoyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
43
|
Vazquez-Armenta FJ, Hernandez-Oñate MA, Martinez-Tellez MA, Lopez-Zavala AA, Gonzalez-Aguilar GA, Gutierrez-Pacheco MM, Ayala-Zavala JF. Quercetin repressed the stress response factor (sigB) and virulence genes (prfA, actA, inlA, and inlC), lower the adhesion, and biofilm development of L. monocytogenes. Food Microbiol 2019; 87:103377. [PMID: 31948618 DOI: 10.1016/j.fm.2019.103377] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/18/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
The present study explored the effect of quercetin on the expression of virulence genes actA, inlA, inlC, and their regulatory components, sigB and prfA, in L. monocytogenes. Furthermore, the physicochemical changes on the surface, membrane permeability, and biofilm formation of quercetin-treated bacteria were evaluated. An inhibitory dose-dependent effect of quercetin (0.1-0.8 mM) was observed on the cell attachment on stainless steel at 2 and 6 h at 37 °C. Quercetin at 0.8 mM prevented the biofilm formation on stainless steel surfaces after 6 h of incubation at 37 °C, while the untreated bacteria formed biofilms with a cell density of 5.1 Log CFU/cm2. The microscopic analysis evidenced that quercetin at 0.2 mM decreased the biovolume and covered area of the attached micro-colonies. Also, sigB, prfA, inlA, inlC, and actA genes were downregulated by 7-29 times lower compared to untreated bacteria. In addition, quercetin decreased the superficial cell charge, increased the membrane permeability, and its surface hydrophobicity. These results demonstrated that quercetin prevented biofilm formation, repressed the genes of stress and virulence of L. monocytogenes and also altered the physicochemical cell properties.
Collapse
Affiliation(s)
- F J Vazquez-Armenta
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - M A Hernandez-Oñate
- CONACYT - Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - M A Martinez-Tellez
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - A A Lopez-Zavala
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Blvd. Rosales y Luis Encinas, Hermosillo, Sonora, 83000, Mexico
| | - G A Gonzalez-Aguilar
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - M M Gutierrez-Pacheco
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - J F Ayala-Zavala
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46 Col. La Victoria, Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
44
|
Bernal‐Mercado A, Gutierrez‐Pacheco MM, Encinas‐Basurto D, Mata‐Haro V, Lopez‐Zavala A, Islas‐Osuna M, Gonzalez‐Aguilar G, Ayala‐Zavala J. Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic
Escherichia coli
on silicone surfaces. J Appl Microbiol 2019; 128:387-400. [DOI: 10.1111/jam.14472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- A.T. Bernal‐Mercado
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - M. Melissa Gutierrez‐Pacheco
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - D. Encinas‐Basurto
- Departamento de Fisica. Posgrado en Nanotecnología Universidad de Sonora Hermosillo Sonora Mexico
| | - V. Mata‐Haro
- Coordinacion de Ciencia de los Alimentos Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - A.A. Lopez‐Zavala
- Departamento de Ciencias Químico Biologicas Universidad de Sonora Hermosillo Sonora Mexico
| | - M.A. Islas‐Osuna
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - G.A. Gonzalez‐Aguilar
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - J.F. Ayala‐Zavala
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| |
Collapse
|
45
|
Asgharpour F, Moghadamnia AA, Zabihi E, Kazemi S, Ebrahimzadeh Namvar A, Gholinia H, Motallebnejad M, Nouri HR. Iranian propolis efficiently inhibits growth of oral streptococci and cancer cell lines. Altern Ther Health Med 2019; 19:266. [PMID: 31601198 PMCID: PMC6788029 DOI: 10.1186/s12906-019-2677-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
Abstract
Background Propolis is a natural bee product with a wide range of biological activities that are related to its chemical composition. The present study investigated the quantification of quercetin (Q) in Ardabil ethanol extract of propolis (AEEP), and then compared its anti-bacterial, anti- biofilm and cytotoxic effects on cancer and normal cell lines. Method In the present study, the chemical composition of AEEP was determined through the high-performance liquid chromatography (HPLC). The AEEP and its main component, quercetin (Q), were evaluated in vitro against 57 oral streptococci by a broth micro-dilution method. The biofilm formation was assessed through the crystal violet staining and MTT assays. The impact of AEEP and Q anti-proliferative effect were evaluated on the fibroblast as normal and cancer cell lines (KB and A431). Results The Q concentration in the composition of AEEP was 6.9% of all its components. The findings indicated that the AEEP and Q were efficient against the cariogenic bacteria and were able to inhibit the S.mutans biofilm adherence at a sub-MIC concentration. Moreover, electron micrographs indicated the inhibition of biofilms compared to control biofilms. In addition, the AEEP and Q indicated a dose-dependent cytotoxic effect on A431 and KB cell lines. On the contrary, they had no cytotoxic effect on fibroblast cells. Conclusion The results indicated that the synergistic impact of main components of AEEP was related to the inhibition of the cancer cell proliferation, cariogenic bacteria and oral biofilm formation. It may play a promising role in the complementary medicine and, it is suggested to be used as food additives.
Collapse
|
46
|
Memariani H, Memariani M, Ghasemian A. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 2019; 35:143. [PMID: 31493142 DOI: 10.1007/s11274-019-2719-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023]
Abstract
Bacterial biofilms are multicellular aggregates enclosed in a self-created biopolymer matrix. Biofilm-producing bacteria have become a great public health problem worldwide because biofilms enable these microorganisms to evade several clearance mechanisms produced by host and synthetic sources. Over the past years, different flavonoids including quercetin have engrossed considerable interest among researchers owing to their potential anti-biofilm properties. To our knowledge, there is no review regarding effects of quercetin towards bacterial biofilms, prompting us to summarize experimental evidence on its anti-biofilm properties. Quercetin inhibits biofilm development by a diverse array of bacterial pathogens such as Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Pseudomonas aeruginosa. Prevention of bacterial adhesion, suppression of quorum-sensing pathways, disruption or alteration of plasma membrane, inhibition of efflux pumps, and blocking nucleic acid synthesis have been documented as major anti-biofilm mechanisms of quercetin. Overall, anti-biofilm activity of quercetin can open up new horizons in a wide range of biomedical areas, from food industry to medicine.
Collapse
Affiliation(s)
- Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|