1
|
Liu J, Zhu J, Hao H, Bi J, Hou H, Zhang G. Transcriptomic and Molecular Docking Analysis Reveal Virulence Gene Regulation-Mediated Antibacterial Effects of Benzyl Isothiocyanate Against Staphylococcus aureus. Appl Biochem Biotechnol 2024; 196:8239-8253. [PMID: 38709426 DOI: 10.1007/s12010-024-04938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.
Collapse
Affiliation(s)
- Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Junya Zhu
- Jinkui Food Science and Technology (Dalian) Co., Ltd, Dalian, 116000, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
2
|
Pereira Batista AF, Coelho Trevisan DA, Rodrigues Dos Santos A, Silva AF, Zanetti Campanerut-Sá PA, Alves de Abreu Filho B, Junior MM, Graton Mikcha JM. Synergistic inhibition of Salmonella Typhimurium and Staphylococcus aureus in apple jam by cinnamaldehyde and potassium sorbate. FOOD SCI TECHNOL INT 2024; 30:384-394. [PMID: 36974393 DOI: 10.1177/10820132231165541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The objective of this study was to evaluate the antimicrobial effectiveness of cinnamaldehyde (CIN) and potassium sorbate (P.S.), alone and in combination, against Salmonella Typhimurium and Staphylococcus aureus in vitro and in apple jam. Antimicrobial activity in vitro was investigated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), time-kill assay and determination of fractional inhibitory concentration index. CIN MIC and MBC was 312 μg/mL. P.S. MIC and MBC were 2500 and 5000 μg/mL, respectively, against S. Typhimurium; and 10,000 and 20,000 μg/mL, respectively, against S. aureus. The compounds combined exhibited a synergistic effect (FIC < 0.5), inhibiting S. Typhimurium growth after 12 h and S. aureus after 24 h. The effect of CIN and P.S., at sub-inhibitory concentrations, against bacterial strains in apple jam was evaluated during storage. Physicochemical and sensory analyses were also performed. No cultivable S. Typhimurium or S. aureus cells were recovered in apple jam supplemented with CIN + P.S. on the third day of storage. The addition of CIN and P.S. did not affect the physicochemical properties and sensory evaluation showed a score above 7.0. CIN and P.S. association at sub-inhibitory concentrations was effective in controlling foodborne pathogens and improved the shelf life of apple jam.
Collapse
Affiliation(s)
- Andreia Farias Pereira Batista
- Center for Agricultural Sciences, Postgraduate Program of Food Science, State University of Maringá, Maringá, PR, Brazil
| | - Daliah Alves Coelho Trevisan
- Center for Health Sciences, Postgraduate Program in Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Adriele Rodrigues Dos Santos
- Center for Agricultural Sciences, Postgraduate Program of Food Science, State University of Maringá, Maringá, PR, Brazil
| | - Alex Fiori Silva
- Center for Health Sciences, Postgraduate Program in Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Benício Alves de Abreu Filho
- Center for Agricultural Sciences, Postgraduate Program of Food Science, State University of Maringá, Maringá, PR, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Miguel Machinski Junior
- Center for Agricultural Sciences, Postgraduate Program of Food Science, State University of Maringá, Maringá, PR, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Jane Martha Graton Mikcha
- Center for Agricultural Sciences, Postgraduate Program of Food Science, State University of Maringá, Maringá, PR, Brazil
- Center for Health Sciences, Postgraduate Program in Health Sciences, State University of Maringá, Maringá, PR, Brazil
- Department of Clinical Analyses and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
3
|
Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa. Foods 2023; 12:foods12020392. [PMID: 36673482 PMCID: PMC9857705 DOI: 10.3390/foods12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a typical Gram-negative bacterium that can cause the spoilage of catered food products. Using a luminescent reporter gene (luxCDABE), this study sought to construct a cell-based biosensor (PAO1-CE) to rapidly screen antibacterial substances against P. aeruginosa. A total of six antibiotics belonging to five categories were used as the model test substances. The results of the bioluminescence detection method were verified using traditional antibacterial research assessments. The correlation coefficient of the regression equation fitting the data generated using this method was greater than 0.98, supporting the credibility of this approach. Additionally, the EC50 of each of the antibiotics assessed in this study was lower than the 1/2 MIC determined by conventional means. All six of the antibiotics caused varying degrees of damage to the cell membrane and cell wall of P. aeruginosa. Importantly, this novel method helped shorten the time necessary for active-compound detection and could be used for high-throughput detection, which would also help improve the detection efficiency. The application of this method towards the discovery of novel antibacterial compounds targeting P. aeruginosa holds substantial promise for greatly improving the efficiency of compound discovery.
Collapse
|
4
|
Zhang S, Xu X, Yang J, Ren J. Impact of Emulsifier Structure and Concentration on Lipolysis Dynamics and Curcumin Bioaccessibility in the Nanoemulsions Stabilized by Polyglycerol Fatty Acid Esters. FOOD BIOPHYS 2022; 17:575-585. [PMID: 35645654 PMCID: PMC9128773 DOI: 10.1007/s11483-021-09681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/18/2021] [Indexed: 11/04/2022]
|
5
|
Bahrami A, Delshadi R, Cacciotti I, Faridi Esfanjani A, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Capanoglu Guven E, Williams L, Jafari SM. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interface Sci 2022; 302:102622. [PMID: 35248971 DOI: 10.1016/j.cis.2022.102622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The incorporation of antibiotics and bioactive compounds into non-toxic nanoparticles has been popularly used to produce effective antimicrobial nanocarriers against foodborne pathogens. These systems can protect antimicrobials against harsh environments, control their release, and increase their antimicrobial activities; however, their functions can be decreased by some major barriers. Intracellular localization of bacteria protects them from the host immune system and antimicrobial agents. Also, bacteria can cause constant infection by nestling in professional phagocytic cells. In the last years, surface functionalization of nanocarriers by passive and active modification methods has been applied for their protection against clearance from the blood, increasing both circulation time and uptake by target cells. For achieving this objective, different functional agents such as specifically targeted peptides internalize ligands, saccharide ligands, or even therapeutic molecules (e.g., antibodies or enzymes) are used. In this review, techniques for functionalizing the surface of antimicrobial-loaded nanocarriers have been described. This article offers a comprehensive review of the potential of functional nanoparticles to increase the performance of antimicrobials against foodborne pathogens through targeting delivery.
Collapse
|
6
|
ZHANG J, GAO M, LUO J, GUO Y, BAO Y, YANG T. Antibacterial activity and mechanism of phillyrin against selected four foodborne pathogens. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.32922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Yang GUO
- Northeast Forestry University, China
| | - Yihong BAO
- Northeast Forestry University, China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, China
| | | |
Collapse
|
7
|
Mahdi AA, Al-Maqtari QA, Mohammed JK, Al-Ansi W, Cui H, Lin L. Enhancement of antioxidant activity, antifungal activity, and oxidation stability of Citrus reticulata essential oil nanocapsules by clove and cinnamon essential oils. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Chen W, Wang L, Yang F, Chen C. Development of active poly(butylene adipate‐co‐terephthalate) films incorporated with sodium benzoate and its application in white mushroom (
Agaricus bisporus
) packaging. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjun Chen
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Lei Wang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Fuxin Yang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| | - Chenwei Chen
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & Preservation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| |
Collapse
|
9
|
Zhao F, Wang W, Zhang G, Zhang J, Liu C, Xu B. In vitro Antibacterial Effect of Polyglycerol Monolaurates against Gram-Bacteria and Understanding the Underlying Mechanism. J Oleo Sci 2021; 70:571-580. [PMID: 33692238 DOI: 10.5650/jos.ess20274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyglycerol monolaurates are generally recognized as safe food additives and are commonly used as food emulsifiers. In this study, the antimicrobial effect of four polyglycerol monolaurates on two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative bacteria (Escherichia. coli and Pseudomonas aeruginosa) were investigated. The minimum inhibitory concentration (MIC) of diglycerol monolaurate (PG2ML), triglycerol monolaurate (PG3ML), hexaglycerol monolaurate (PG6ML), and decaglycerol monolaurate (PG10ML) against S. aureus was 0.16, 0.32, 0.63, and 1.25 mg/mL, respectively. The MIC of PG2ML, PG3ML, PG6ML, and PG10ML against B. subtilis was 0.32, 0.63, 1.25, and 3.75 mg/mL, respectively. No apparent antimicrobial effect of these four polyglycerol monolaurates on E. coli and P. aeruginosa was observed even up to 10.00 mg/mL. The underlying mechanism was investigated by assessing cell membrane permeability, the integrity of cell membrane, and morphology. We concluded that polyglycerol monolaurates might eliminate Gram-positive bacteria by disrupting the cell membrane, thereby increasing cell membrane permeability, releasing the cellular contents, and altering the cell morphology.
Collapse
Affiliation(s)
- Feifei Zhao
- School of Light Industry, Beijing Technology and Business University
| | - Wenyue Wang
- School of Light Industry, Beijing Technology and Business University.,China Rural Technology Development Center
| | - Guiju Zhang
- School of Light Industry, Beijing Technology and Business University
| | - Jieying Zhang
- School of Light Industry, Beijing Technology and Business University
| | - Changyao Liu
- School of Light Industry, Beijing Technology and Business University
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University
| |
Collapse
|
10
|
Cui H, Yang H, Abdel-Samie MA, Siva S, Lin L. Controlled-release casein/cinnamon essential oil nanospheres for the inactivation of Campylobacter jejuni in duck. Int J Food Microbiol 2021; 341:109074. [PMID: 33508583 DOI: 10.1016/j.ijfoodmicro.2021.109074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/09/2021] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni (C. jejuni) is one of the most common foodborne pathogens that cause human sickness mostly through the poultry food chain. Cinnamon essential oil (CEO) has excellent antibacterial ability against C. jejuni growth. This study investigated the antibacterial mechanism of CEO against C. jejuni primarily through metabolism, energy metabolism of essential enzymes (AKPase, β-galactosidase, and ATPase), and respiration metabolism. Results showed that the hexose monophosphate pathway (HMP) was inhibited, and that the enzyme activity of G6DPH substantially decreased upon treatment with CEO. Analysis of the effect of CEO on the expression of toxic genes was performed by the real-time PCR (RT-PCR). The expression levels of the toxic genes cadF, ciaB, fliA, and racR under CEO treatment were determined. Casein/CEO nanospheres were further prepared for the effective inhibition of C. jejuni and characterized by particle-size distribution, zeta-potential distribution, fluorescence, TEM, and GC-MS methods. Finally, the efficiency of CEO and casein/CEO nanospheres in terms of antibacterial activity against C. jejuni was verified. The casein/CEO nanospheres displayed high antibacterial activity on duck samples. The population of the test group decreased from 4.30 logCFU/g to 0.86 logCFU/g and 4.30 logCFU/g to 2.46 logCFU/g at 4 °C and at 25 °C for C. jejuni, respectively. Sensory evaluation and texture analysis were also conducted on various duck samples.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongying Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and Technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Subramanian Siva
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Gao W, Jiang L, Wan Z, Zeng XA. Antibacterial and probiotic promotion potential of a new soluble soybean polysaccharide‑iron(III) complex. Int J Biol Macromol 2020; 163:2306-2313. [PMID: 32941899 DOI: 10.1016/j.ijbiomac.2020.09.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
In this study soluble soybean polysaccharide‑iron(III) (SSPS-Fe(III)) was synthesized to investigate the effects on the growth of Escherichia coli, Staphylococcus aureus and Bacillus licheniformis. Two new detection methods of real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and microcalorimetry were used to evaluate the effects of different concentrations of SSPS-Fe(III) on the growth of three bacteria. The copy numbers of three bacteria showed that SSPS-Fe(III) had different impacts on the growth of E. coli, S. aureus and B. licheniformis. E. coli growth was inhibited by SSPS-Fe(III) in the higher concentration range and S. aureus growth was inhibited at any concentration, however B. licheniformis growth was promoted. The thermogenic curves for growth metabolism of E. coli and S. aureus presented peak shapes while those of B. licheniformis did platform shapes. As SSPS-Fe(III) concentration increased, the peak heights lowered for E. coli and S. aureus, and the time reaching stationary phase advanced for B. licheniformis. These findings demonstrate that SSPS-Fe(III) has an inhibitory effect on the foodborne pathogens of E. coli and S. aureus, and an enhancement on the probiotics of B. licheniformis.
Collapse
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| | - Liyuan Jiang
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | | | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
12
|
Yosief HO, Hussain SA, Sarker MI, Annous BA. Efficacy of Fatty Acid Amide Derivatives against
Listeria monocytogenes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hailemichael O. Yosief
- U.S. Department of Agriculture Agricultural Research Service Eastern Regional Research Center Sustainable Biofuels and Co-Products Research Unit 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| | - Syed A. Hussain
- U.S. Department of Agriculture Agricultural Research Service Eastern Regional Research Center Sustainable Biofuels and Co-Products Research Unit 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| | - Majher I. Sarker
- U.S. Department of Agriculture Agricultural Research Service Eastern Regional Research Center Sustainable Biofuels and Co-Products Research Unit 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| | - Bassam A. Annous
- U.S. Department of Agriculture Agricultural Research Service Eastern Regional Research Center Food Safety Intervention Technologies Research Unit 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| |
Collapse
|
13
|
Identification and antimicrobial mechanisms of a novel peptide derived from egg white ovotransferrin hydrolysates. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Inhibition of Cronobacter sakazakii in reconstituted infant formula using triglycerol monolaurate and its effect on the sensory properties of infant formula. Int J Food Microbiol 2020; 320:108518. [DOI: 10.1016/j.ijfoodmicro.2020.108518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
|
15
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Antifungal Effect of Triglycerol Monolaurate Synthesized by Lipozyme 435-Mediated Esterification. J Microbiol Biotechnol 2020; 30:561-570. [PMID: 31986567 PMCID: PMC9728257 DOI: 10.4014/jmb.1910.10043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was designed to synthesize triglycerol monolaurate (TGML) with Lipozyme 435 as the catalyst, and explore its effects on the growth of Aspergillus parasiticus (A. parasiticus) and Aspergillus flavus (A. flavus) and the secretion of aflatoxin b1. The highest content of TGML (49.76%) was obtained at a molar ratio of triglycerol to lauric acid of 1.08, a reaction temperature of 84.93°C, a reaction time of 6 h and an enzyme dosage of 1.32%. After purification by molecular distillation combined with the washes with ethyl acetate and water, the purity of TGML reached 98.3%. Through characterization by electrospray-ionization mass spectrometry, infrared spectrum and nuclear magnetic resonance, the structure of TGML was identified as a linear triglycerol combined with lauroyl at the end. Finally, the inhibitory effects of TGML on the growths of A. parasiticus and A. flavus and the secretion of aflatoxin b1 were evaluated by measuring the colony diameter, the inhibition rate of mycelial growth and the content of mycotoxin in the media. The results indicated that TGML had a stronger inhibitory effects on colony growth and mycelial development of both toxic molds compared to sodium benzoate and potassium sorbate, and the secretions of toxins from A. parasiticus and A. flavus were completely suppressed when adding TGML at 10 and 5 mM, respectively. Based on the above results, TGML may be used as a substitute for traditional antifungal agents in the food industry.
Collapse
Affiliation(s)
- Song Zhang
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Jian Xiong
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Zhengxiang Ning
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Denghui Zhang
- Innovation Center of Bioactive Molecule Development and Application, South China Institute of Collaborative Innovation, Xuefu Road, Dongguan 221116, P.R. China
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China,Corresponding author Phone: +86-13560396620 Fax: +86-0769-38822110 E-mail:
| |
Collapse
|
16
|
Hou Y, Wang F, Tan Z, Cui J, Jia S. Antifungal mechanisms of ε-poly-L-Lysine with different molecular weights on Saccharomyces cerevisiae. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0466-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Antibacterial activity and action mechanism of microencapsulated dodecyl gallate with methyl-β-cyclodextrin. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Downregulated Expression of Virulence Factors Induced by Benzyl Isothiocyanate in Staphylococcus Aureus: A Transcriptomic Analysis. Int J Mol Sci 2019; 20:ijms20215441. [PMID: 31683671 PMCID: PMC6862589 DOI: 10.3390/ijms20215441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a common foodborne pathogen that leads to various diseases; therefore, we urgently need to identify different means to control this harmful pathogen in food. In this study, we monitored the transcriptional changes of S. aureus by RNA-seq analysis to better understand the effect of benzyl isothiocyanate (BITC) on the virulence inhibition of S. aureus and determined the bacteriostatic effect of BITC at subinhibitory concentrations. Our results revealed that, compared with the control group (SAC), the BITC-treated experimental group (SAQ_BITC) had 708 differentially expressed genes (DEGs), of which 333 genes were downregulated and the capsular polysaccharide (cp) was significantly downregulated. Furthermore, we screened five of the most virulent factors of S. aureus, including the capsular polysaccharide biosynthesis protein (cp5D), capsular polysaccharide synthesis enzyme (cp8F), thermonuclease (nuc), clumping factor (clf), and protein A (spa), and verified the accuracy of these significantly downregulated genes by qRT-PCR. At the same time, we used light microscopy, scanning electron microscopy (SEM) and inverted fluorescence microscopy (IFM) to observe changes in biofilm associated with the cp5D and cp8F. Therefore, these results will help to further study the basis of BITC for the antibacterial action of foodborne pathogenic bacteria.
Collapse
|
19
|
Fang S, Zhou Q, Hu Y, Liu F, Mei J, Xie J. Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea bass (Lateolabrax maculatus) during Cold Storage. Molecules 2019; 24:molecules24183292. [PMID: 31509981 PMCID: PMC6766946 DOI: 10.3390/molecules24183292] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/24/2023] Open
Abstract
The objective of this research was to explore the antimicrobial activity and mechanism of carvacrol against Vibrio Parahemolyticus, Shewanella putrefaciens, Staphylococcus aureus and Pseudomonas fluorescens and evaluate the effect of the addition of carvacrol/β-cyclodextrin emulsions to flaxseed gum (FSG)-sodium alginate (SA) edible films on the preservation of Chinese sea bass (Lateolabrax maculatus) fillets during refrigerated storage. The minimum inhibitory concentration (MIC) of carvacrol against V. parahemolyticus, S. putrefaciens, S. aureus and P. fluorescens were 0.5, 0.5, 0.125, and 0.5 mg/mL, respectively. Alkaline phosphatase activity assay, nucleotide and protein leakage, and scanning electron microscope demonstrated that carvacrol damaged the external structure of the tested bacterial cells causing leakage of cytoplasmic components. At the same time, when FSG-SA films containing carvacrol used as coating agents for Chinese sea bass fillets cold storage, FSG-SA films containing 1.0 or 2.0 mg/mL carvacrol could significantly reduce TVB-N content, K-value, the degree of microbial deterioration and maintain quality of sea bass fillets according to organoleptic evaluation results.
Collapse
Affiliation(s)
- Shiyuan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Qianqian Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yan Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Feng Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|