1
|
Lou X, Shu W, Wang LC, Lim YT, Zhao T, Liu H, Sobota RM, Yang H. Metabolic and protein expression responses of Shewanella baltica in golden pomfret broths to slightly acidic electrolysed water. Food Chem 2025; 462:140991. [PMID: 39208721 DOI: 10.1016/j.foodchem.2024.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Shewanella baltica is a specific spoilage organism of golden pomfret. This study aims to explore the antibacterial mechanism of slightly acidic electrolysed water (SAEW) against S. baltica (strains ABa4, ABe2 and BBe1) in golden pomfret broths by metabolomics, proteomics and bioinformatics analyses. S. baltica was decreased by at least 3.94 log CFU/mL after SAEW treatment, and strain ABa4 had the highest resistance. Under SAEW stress, amino acids and organic acids in S. baltica decreased, and nucleotide related compounds degraded. Furthermore, 100 differentially expressed proteins (DEPs) were identified. Most DEPs of strains ABe2 and BBe1 were down-regulated, while some DEPs of strain ABa4 were up-regulated, especially those oxidative stress related proteins. These results suggest that the modes of SAEW against S. baltica can be traced to the inhibition of amino acid, carbon, nucleotide and sulphur metabolisms, and the loss of functional proteins for temperature regulation, translation, motility and protein folding.
Collapse
Affiliation(s)
- Xiaowei Lou
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Weichen Shu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Tianyun Zhao
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Hang Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Hongshun Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Malahlela HK, Belay ZA, Mphahlele RR, Sigge GO, Caleb OJ. Recent advances in activated water systems for the postharvest management of quality and safety of fresh fruits and vegetables. Compr Rev Food Sci Food Saf 2024; 23:e13317. [PMID: 38477217 DOI: 10.1111/1541-4337.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Over the last three decades, decontamination management of fresh fruits and vegetables (FFVs) in the packhouses and along the supply chains has been heavily dependent on chemical-based wash. This has resulted in the emergence of resistant foodborne pathogens and often the deposition of disinfectant byproducts on FFVs, rendering them unacceptable to consumers. The management of foodborne pathogens, microbial contaminants, and quality of FFVs are a major concern for the horticultural industries and public health. Activated water systems (AWS), such as electrolyzed water, plasma-activated water, and micro-nano bubbles, have gained significant attention from researchers over the last decade due to their nonthermal and nontoxic mode of action for microbial inactivation and preservation of FFVs quality. The aim of this review is to provide a comprehensive summary of recent progress on the application of AWS and their effects on quality attributes and microbial safety of FFVs. An overview of the different types of AWS and their properties is provided. Furthermore, the review highlights the chemistry behind generation of reactive species and the impact of AWS on the quality attributes of FFVs and on the inactivation/reduction of spoilage and pathogenic microbes (in vivo or in vitro). The mechanisms of action of microorganism inactivation are discussed. Finally, this work highlights challenges and limitations for commercialization and safety and regulation issues of AWS. The synergistic prospect on combining AWS for maximum microorganism inactivation effectiveness is also considered. AWS offers a potential alternative as nonchemical interventions to maintain quality attributes, inactivate spoilage and pathogenic microorganisms, and extend the shelf-life for FFVs.
Collapse
Affiliation(s)
- Harold K Malahlela
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | | | - Gunnar O Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Shi H, Li C, Lu H, Zhu J, Tian S. Synergistic effect of electrolyzed water generated by sodium chloride combined with dimethyl dicarbonate for inactivation of Listeria monocytogenes on lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7905-7913. [PMID: 37490703 DOI: 10.1002/jsfa.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Electrolyzed water (EW) is recognized as an effective way to control and reduce pathogens in vegetables. However, the disinfection efficacy of EW alone is limited. In this work, the bactericidal activity and biofilm removal capability of EW, generated by adding NaCl to a portable EW generator, were investigated with special reference to Listeria monocytogenes. Furthermore, the impact of EW in combination with dimethyl dicarbonate (DMDC) in reducing the microbial load and improving the overall quality of lettuce during refrigerated storage was evaluated. RESULTS EW with 0.3% NaCl (SEW) had the highest bactericidal activity against L. monocytogenes. The pathogen treated with SEW exhibited lower superoxide dismutase activity and more leakage of proteins and nucleic acids than in the case of EW. Furthermore, the use of SEW resulted in changes in the cell permeability and morphology of L. monocytogenes. A decrease in adhesion and collapse of the biofilm architecture were also observed, indicating that SEW was more effective for inactivating L. monocytogenes cells compared to EW. For untreated lettuce, the populations of the total plate count and inoculated L. monocytogenes decreased by 2.47 and 2.35 log CFU g-1 , respectively, after the combined SEW/DMDC treatment for 3 min. The use of SEW alone or combined with DMDC did not negatively impact the lettuce color values, titratable acid, ascorbic acid and soluble solids compared to the control group. CONCLUSION SEW in combination with DMDC can be used as a novel and potentially effective disinfection strategy for ensuring the safety of vegetable consumption. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honghui Shi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chunliu Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Haixia Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shiyi Tian
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Deng H, Zhu J, Li L, Meng X. A multi-omics analysis strategy reveals the molecular mechanism of the inhibition of Escherichia coli O157:H7 by anthocyanins from Aronia melanocarpa and its application. Food Funct 2023; 14:8575-8585. [PMID: 37664957 DOI: 10.1039/d3fo00406f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Water pollution causes the propagation of pathogenic microorganisms, which poses a serious threat to human life. Escherichia coli O157:H7, as a representative organism that can directly exhibit molecular response to stress, was selected as the indicator bacteria for the study. Tandem mass tag (TMT) quantitative proteomics and non-targeted metabolomics were used to study the response of Escherichia coli O157:H7 to Aronia melanocarpa anthocyanin (AMA) treatment. The results showed that 628 proteins and 1338 metabolites changed significantly after treatment with AMAs. According to bioinformatics analysis, integrated proteomics and metabolomics analysis differentially expressed proteins (DEPs) and metabolites participate in pyruvate metabolism, glycolysis/gluconeogenesis, alanine, aspartate and glutamate metabolism and the pentose phosphate pathway. This study preliminarily proposed the inhibition mechanism of AMAs on Escherichia coli O157:H7 from the perspective of multi-omics, providing a theoretical basis for the application of natural preservatives in fresh cut vegetables.
Collapse
Affiliation(s)
- Haotian Deng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| | - Jinyan Zhu
- Food Inspection Monitoring Center of Zhuanghe, Dalian, Liaoning Province, 116400, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| |
Collapse
|
5
|
Ji QY, Wang W, Yan H, Qu H, Liu Y, Qian Y, Gu R. The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli. Foods 2023; 12:3011. [PMID: 37628010 PMCID: PMC10453431 DOI: 10.3390/foods12163011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Organic acids are natural antimicrobial compounds commonly used in the food industry. In this study, acetic, lactic, butyric, citric, and malic acid at minimum inhibitory concentrations and their combinations at optimal inhibition concentrations were used to treat E. coli, and the effects on the cell barrier and biofilm of E. coli were evaluated. Acetic acid showed the highest membrane-damaging effect, while citric acid and malic acid could specifically damage the cell wall of E. coli, leading to alkaline phosphatase leakage. The RT-qPCR results showed that organic acids upregulated the membrane-protein-related genes of E. coli, and the combination of organic acids had a wider range of effects than single organic acid treatment. Moreover, organic acids inhibited the formation of E. coli biofilm and cellular activity within the biofilm. This study showed that the combination of organic acids plays a synergistic inhibitory role mainly through multiple destructive effects on the cell barrier and exhibited synergistic anti-biofilm effects. The three-three combination of acetic, lactic acid, and a third organic acid (butyric, citric, or malic) can play a better synergistic antibacterial effect than the two-pair combination of acetic and lactic acid. These findings have implications for the usage, development, and optimization of organic acid combinations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Q.-Y.J.); (W.W.); (H.Y.); (H.Q.); (Y.L.); (Y.Q.)
| |
Collapse
|
6
|
Zhang Y, Qiu J, Yang K, Lu Y, Xu Z, Yang H, Xu Y, Wang L, Lin Y, Tong X, He J, Xiao Y, Sun X, Huang R, Yu X, Zhong T. Generation, mechanisms, kinetics, and effects of gaseous chlorine dioxide in food preservation. Compr Rev Food Sci Food Saf 2023; 22:3105-3129. [PMID: 37199492 DOI: 10.1111/1541-4337.13177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
Food preservation is a critical issue in ensuring food safety and quality. Growing concern around industrial pollution of food and demand for environmentally sustainable food has led to increased interest in developing effective and eco-friendly preservation techniques. Gaseous ClO2 has gained attention for its strong oxidizing properties, high efficacy in microorganism inactivation, and potential for preserving the attributes and nutritional quality of fresh food while avoiding the formation of toxic byproducts or unacceptable levels of residues. However, the widespread use of gaseous ClO2 in the food industry is limited by several challenges. These include large-scale generation, high cost and environmental considerations, a lack of understanding of its mechanism of action, and the need for mathematical models to predict inactivation kinetics. This review aims to provide an overview of the up-to-date research and application of gaseous ClO2 . It covers preparation methods, preservation mechanisms, and kinetic models that predict the sterilizing efficacy of gaseous ClO2 under different conditions. The impacts of gaseous ClO2 on the quality attributes of fresh produce and low-moisture foods, such as seeds, sprouts, and spices, are also summarized. Overall, gaseous ClO2 is a promising preservation approach, and future studies are needed to address the challenges in large-scale generation and environmental considerations and to develop standardized protocols and databases for safe and effective use in the food industry.
Collapse
Affiliation(s)
- Yujia Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Jiafan Qiu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Kewen Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Yuting Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Zixian Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Huanqi Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Yu Lin
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Junge He
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Xiuxiu Sun
- USDA, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Ran Huang
- Academy for Engineering and Applied Technology, Fudan University, Shanghai, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
7
|
Yan X, Xu Y, Shen C, Chen D. Inactivation of Staphylococcus aureus by Levulinic Acid Plus Sodium Dodecyl Sulfate and their Antibacterial Mechanisms on S. aureus Biofilms by Transcriptomic Analysis. J Food Prot 2023; 86:100050. [PMID: 36916557 DOI: 10.1016/j.jfp.2023.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
The combination of levulinic acid (LVA) and sodium dodecyl sulfate (SDS) in recent years has shown a considerable potential to use as an antimicrobial intervention. The objectives of this study were to evaluate the antimicrobial efficacy of the combination against Staphylococcus aureus in both planktonic and biofilm states and to investigate the transcriptional changes in S. aureus biofilms coincubated with sublethal concentrations of LVA and/or SDS. The minimum inhibitory concentrations (MICs) of LVA and SDS determined by the microdilution method were 3.125 and 0.039 mg/mL, respectively. An additive bacteriostatic interaction (fractional inhibitory concentration index = 1) between the two compounds was observed by the checkerboard assay, whereas a synergistic bactericidal activity was displayed by the time-kill assay. The biomass and viable cells in the biofilms were reduced by both antimicrobials either alone or in combination in a dose-dependent manner. Transcriptomics indicated that more differentially expressed (DE) genes were observed in the biofilm treated with SDS (103 up- and 205 downregulated DE genes) and LVA + SDS (187 up and 162 down) than that coincubated with LVA (34 up and 32 down). The SDS and LVA + SDS treatments mainly affected the expression of genes responsible for cell surface proteins, virulence factors, adhesins, and capsular polysaccharides. Both the antibiofilm assay and the transcriptomics indicated that SDS, not LVA, was the major chemical contributing to the antibacterial efficacy of the combination. This study reveals the behavioral responses and protective mechanisms of S. aureus to LVA and SDS applied individually or in combination.
Collapse
Affiliation(s)
- Xiaoxue Yan
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Yiwei Xu
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Dong Chen
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China.
| |
Collapse
|
8
|
Zhao L, Chen MH, Bi X, Du J. Physicochemical properties, structural characteristics and in vitro digestion of brown rice–pea protein isolate blend treated by microbial transglutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
The influences of acidic electrolyzed water on quality and bacteria community of fresh-cut jackfruit in storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
This study evaluated the effects of acidic electrolyzed oxidizing water (AEW) on the quality and bacterial communities of fresh-cut jackfruit during storage. The result showed that AEW treatment, as compared to the CK group (without AEW treatment), could effectively inhibit the browning, maintain higher firmness and higher amounts of total titratable acidity (TTA) (0.21%), sugars (58.30 g/kg), ascorbic acids (28.72 mg/kg) and total phenolics (35.47 mg/kg) of fresh-cut jackfruits, and suppress the decrease of antioxidant ability during 4–8 days of storage. Additionally, the bacterial communities were significantly affected by AEW during storage. In particular, the AEW treated samples showed lower abundance of Pseudomonas and Lactobacillus than the CK group after storage of 8 day. And energy metabolism, nucleotide metabolism has the significantly lower (p < 0.05) relative abundance in the AEW group than in CK group. These results suggested that AEW (pH: 4.2–4.5, ACC: 35–38 mg/L) treatment could maintain the quality of fresh-cut jackfruit during storage. It could be attributed to that AEW treatment affect the growth and metabolism of bacterial communities, resulting in the decrease of nutrients consumption.
Collapse
|
10
|
Chen L, Li X, Lou X, Shu W, Hai Y, Wen X, Yang H. NMR-based metabolomics reveals the antibacterial effect of electrolysed water combined with citric acid on Aeromonas spp. in barramundi (Lates calcarifer) fillets. Food Res Int 2022; 162:112046. [DOI: 10.1016/j.foodres.2022.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
|
11
|
Environmental factors drive microbial succession and huangjiu flavor formation during raw wheat qu fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Liu S, Jiang Z, Ma D, Liu X, Li Y, Ren D, Zhu Y, Zhao H, Qin H, Huang M, Zhang S, Mao J. Distance decay pattern of fermented-related microorganisms in the sauce-flavor Baijiu producing region. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Dual-Species Biofilms Formed by Escherichia coli and Salmonella Enhance Chlorine Tolerance. Appl Environ Microbiol 2022; 88:e0148222. [PMID: 36300924 PMCID: PMC9680634 DOI: 10.1128/aem.01482-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of
Escherichia coli
and
Salmonella
in food might be associated with the cross-contamination of biofilms on food-contact surfaces. The knowledge of the sanitization of mono-species biofilm on the food-contact surface is well established, while mixed-species biofilm occurs more naturally, which could profoundly affect the efficacy of sanitizer.
Collapse
|
14
|
Ji F, Sun J, Sui Y, Qi X, Mao X. Microbial inactivation of milk by low intensity direct current electric field: Inactivation kinetics model and milk characterization. Curr Res Food Sci 2022; 5:1906-1915. [PMID: 36300164 PMCID: PMC9589170 DOI: 10.1016/j.crfs.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Microbial inactivation by pulsed electric field (PEF) has been studied widely although with high operational risk, while few studies on the potential of low intensity electric fields for microbial inactivation have been reported. In this study, the feasibility of inactivating microorganisms in milk by low intensity direct current (DC) electric field was investigated. Then a kinetics model was proposed based on the inactivation curves. Finally, the effect of electric field on the microflora and physicochemical properties of milk was analyzed. Results showed that the bacterial reduction >5 log CFU/mL could be achieved at 50–55°C, 0.3 A–0.6 A, and with 5 min starting intensity of 5 V/cm-9 V/cm. The inactivation kinetics consisted of three stages, therein, the middle stage, main part of the inactivation curve, followed 1st-order reaction kinetics, and the effect of temperature on it was consistent with the Arrhenius Law, which implied that the electric field itself can inactivate bacteria without thermal inactivating effect. The microflora analysis showed that naturally occurring bacteria in the milk contained typical potential pathogenic bacteria (e.g., 56.9% of Acinetobacter spp.) and spoilage bacteria (e.g., 27.5% of Pseudomonas spp.), and the electric field can inactivate them. Moreover, the inactivation chemically preserved the milk's fresh-like characteristics (according to indexes of whey protein denaturation rate, furosine content), and physical stability (turbidity, zeta potential, particle size, color and so on). Therefore, a promising approach is provided for microbial inactivation in dairy industry. Microbial inactivation of milk in low intensity direct current electric field was verified. The bacteria (7.5 log CFU/mL) in milk were completely inactivated. The main part, middle stage, of inactivation followed 1st-order reaction kinetics. For Acinetobacter spp. and Pseudomonas spp., inactivation of the electric field was non-selective. Inactivation on the physicochemical properties of milk was at an acceptable level.
Collapse
Affiliation(s)
- Feihong Ji
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jing Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yiming Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiangming Qi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China,Shandong Meijia Group Co. Ltd., Rizhao, 276826, China,Corresponding author. College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
15
|
Yan Q, Mei J, Li D, Xie J. Application of sonodynamic technology and sonosensitizers in food sterilization: a review of developments, trends and challenges. Crit Rev Food Sci Nutr 2022; 64:740-759. [PMID: 35950483 DOI: 10.1080/10408398.2022.2108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety and food waste have always been hot topics of discussion in recent years. However, the infection of human pathogenic bacteria and the waste of food resources caused by microbial-contaminated food remains common. Although traditional sterilization technology has been very mature, it causes changes in food flavor and excessive energy consumption to a certain extent. Moreover, the widespread bacterial resistance has also sounded a warning for researchers and finding a new alternative to antibiotics is urgently needed. The application of sonodynamic sterilization technology in medical treatment has aroused the interest of researchers. It provides ideas for new food sterilization technology. As a new non-thermal sterilization technology, sonodynamic sterilization technology has strong penetration, safety, less residue and by-products, and will less change the quality of the food itself. Therefore, sonodynamic sterilization technology has great potential applied in food sterilization technology. This review describes the concept of sonodynamic sterilization technology, the sterilization mechanism of sonodynamic sterilization and the inactivation mechanism of various pathogens, the classification and application of sonosensitizers, and the ultrasonic technology in sonodynamic sterilization in the application over the recent years. It provides a scientific reference for the application of sonodynamic sterilization technology in the field of food sterilization.
Collapse
Affiliation(s)
- Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
16
|
Li L, Baima C, Jiang J, Liu Z, Wang J, Chen XD, Wu P. In vitro gastric digestion and emptying of tsampa under simulated elderly and young adult digestive conditions using a dynamic stomach system. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Li L, Zhou P, Wang Y, Pan Y, Chen M, Tian Y, Zhou H, Yang B, Meng H, Zheng J. Antimicrobial activity of cyanidin-3-O-glucoside-lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chem 2022; 383:132410. [PMID: 35182879 DOI: 10.1016/j.foodchem.2022.132410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic acylation of anthocyanin with fatty acid improves its lipophilic solubility and application potential. Nevertheless, evaluation of functional properties of product is premise for application. This study investigated the antimicrobial potential and the underlying mechanisms of an acylated anthocyanin, namely, cyanidin-3-O-glucoside-lauric acid ester (C3G-LA), to provide guidelines for its application. C3G-LA exhibited outstanding antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC) = 0.3125 mg/mL] and modest activity against Escherichia coli (MIC = 5 mg/mL). Moreover, C3G-LA manifested bactericide ability against S. aureus at 0.625 mg/mL. Decreases in membrane integrity (by 96% and 92% at MIC in S. aureus and E. coli, respectively), intracellular ATP concentration (by 96% and 92%) and intracellular pH (by 11% and 9%) and changes in cellular morphology altogether indicated the dysfunction of cell membrane under C3G-LA treatment. These findings demonstrated that C3G-LA could be adopted as an alternative food preservative against foodborne pathogens.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; InnoStar Bio-Tech Nantong Site, Nantong 226133, Jiangsu, China
| | - Yidi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Ying Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Min Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; Zhongshan Hongli Health Food Industry Research Institute Co., Ltd, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
18
|
Liu CY, Tsai GJ, Pan CL, Shang KC, Tseng HJ, Chai HJ, Hsiao HI. Dual bacterial strains TTI for monitoring fish quality in food cold chain. J Food Sci 2022; 87:3562-3572. [PMID: 35789483 DOI: 10.1111/1750-3841.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022]
Abstract
Most microbial time-temperature indicators (TTIs) considered only one spoilage strain. This research compared single and dual spoilage strains-based microbial TTI for quality changes of chilled grouper fish (Epinephelus fuscoguttatus x E. lanceolatus) fillet products during distribution. The next-generation sequencing (NGS) and traditional plate count approach showed that Pseudomonas fragi and Vibrio parahaemolyticus were specific spoilage bacteria at 7 and 15°C. A dual-strain TTI response provides more accurate results than a single-strain TTI and provides an irreversible color change from yellow to reddish-brown, showing levels of fish freshness. The microbial TTI comprises fish spoilage bacteria strains with 3 log CFU/ml, a nutrient broth supplemented with 2% NaCl as a medium, and phenol red with 0.25 mg/ml as a pH indicator. Overall, this study points to the applicability of a dual-strain microbial TTI as a valuable tool for monitoring fish quality changes during cold chain break condition.
Collapse
Affiliation(s)
- Chia-Yu Liu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Chorng-Liang Pan
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Kuo-Chung Shang
- Department of Transportation Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsiang-Jung Tseng
- Research and Development Department, Plastic Industry Development Center, Taichung, Taiwan
| | - Huey-Jine Chai
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| |
Collapse
|
19
|
NMR-based metabolomic investigation on antimicrobial mechanism of Salmonella on cucumber slices treated with organic acids. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Lin Z, Chen T, Zhou L, Yang H. Effect of chlorine sanitizer on metabolic responses of Escherichia coli biofilms "big six" during cross-contamination from abiotic surface to sponge cake. Food Res Int 2022; 157:111361. [PMID: 35761623 DOI: 10.1016/j.foodres.2022.111361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
Abstract
The effect of chlorine on Escherichia coli biofilm O157:H7 are well established; however, the effect on biofilm adhesion to food as well as the six emerging E. coli serotypes ("big six") have not been fully understood. Chlorine sanitization with 1-min 100 mg/L was applied against seven pathogenic E. coli (O111, O121:H19, O45:H2, O26:H11, O103:H11, O145, and O157:H7) biofilms on high-density polyethylene (HDPE) and stainless steel (SS) coupons, respectively. Using sponge cake as a food model, the adhesion behavior was evaluated by comparison of bacteria transfer rate before and after treatment. Besides, the metabolic profiles of biofilms were analyzed by nuclear magnetic resonance (NMR) spectrometer. A significant decrease in transfer rate (79% decline on SS and 33% decline on HDPE) was recorded as well as the distinctive pattern between SS and HDPE coupons was also noticed, with a low population (6-7 log CFU/coupon) attached and low survivals (0-3 log CFU/coupon) upon chlorine on SS, while high population (7-8 log CFU/coupon) attached and high survivals (5-7 log CFU/coupon) on HDPE. Moreover, O121:H19 and O26:H11 demonstrated the highest resistance to chlorine with the least metabolic status and pathways affected. O103:H11, O145, and O111 followed similar metabolic patterns on both surfaces. Distinct metabolic patterns were found in O45:H2 and O157:H7, where the former had more affected metabolic status and pathways on SS but less on HDPE, whereas the latter showed an opposite trend. Overall, a potential contamination source of STEC infection in flour products was demonstrated and metabolic changes induced by chlorine were revealed by NMR-based metabolomics, which provides insights to avoid "big six" biofilms contamination in food.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Tong Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lehao Zhou
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
21
|
Lu L, Guo H, Kang N, He X, Liu G, Li J, He X, Yan X, Yu H. Application of electrolysed water in the quality and safety control of fruits and vegetables: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hongyan Guo
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoguang He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Guishan Liu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Juan Li
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
22
|
Effects of electrolysed water and levulinic acid combination on microbial safety and polysaccharide nanostructure of organic strawberry. Food Chem 2022; 394:133533. [PMID: 35752125 DOI: 10.1016/j.foodchem.2022.133533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to better understand the effects of acidic electrolysed water (AEW, 4 mg/L) and levulinic acid (LA, food grade, 2%) combination on organic strawberry over 7 days. This combined method reduced the population of strawberry's natural microbiota by 1-2 log CFU/g and kept the level of inoculated Escherichia coli O157:H7 and Salmonella below the detection limit (2 log CFU/g) during the whole storage period. Meanwhile, AEW + LA did not affect the physicochemical qualities of strawberries significantly, maintaining most texture and biochemical attributes at an acceptable level (e.g., firmness, colour, soluble solids content and organic acid content). Atomic force microscopy further revealed that the treatment containing LA preserved the sodium carbonate soluble pectin (SSP) nanostructure best by maintaining their length and height, and slowed the breakdown of SSP chains by promoting acid-induced bonding and soluble pectin precipitation. These results demonstrated that low concentration AEW and LA combination is a promising sanitising approach for organic strawberry preservation.
Collapse
|
23
|
Zhao X, Lan W, Yang X, Xie J. Inactivation effect and protective barriers damage caused to
Shewanella putrefaciens
by stable chlorine dioxide combined with slightly acidic electrolyzed water. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
| | - Xin Yang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
24
|
Yoshino N, Ikeda T, Nakao R. Dual Inhibitory Activity of Petroselinic Acid Enriched in Fennel Against Porphyromonas gingivalis. Front Microbiol 2022; 13:816047. [PMID: 35663901 PMCID: PMC9161081 DOI: 10.3389/fmicb.2022.816047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence has shown that a major periodontal pathobiont, Porphyromonas gingivalis, triggers oral dysbiosis leading to deterioration not only of periodontal health, but also of several systemic conditions. In the present study we identified remarkable anti-P. gingivalis activity of Foeniculum vulgare (fennel), an herbal plant used in Asian cuisine as well as in traditional medicine, by screening of 92 extracts prepared from 23 edible plants. The n-hexane-extracted fennel (HEF) showed a rapid lethal action toward P. gingivalis, while it was rather ineffective with a wide range of other oral commensal bacterial species. Morphological analysis using both high-speed atomic force microscopy and field emission scanning electron microscopy revealed that a low concentration of HEF (8 μg/mL) resulted in formation of protruding nanostructures composed of outer membrane vesicle (OMV)-like particles, while a high concentration of HEF (64 μg/mL) induced bacteriolysis with overproduction of OMVs with unusual surface properties. Interestingly, HEF treatment resulted in deprivation of two outer membrane transporter proteins, RagA and RagB, which is essential for nutrient acquisition in P. gingivalis, by extracellularly releasing RagA/RagB-enriched OMVs. Furthermore, HEF showed gingipain-inhibitory activity toward both arginine-specific (Rgps) and lysine-specific (Kgp) gingipains, resulting in blocking oral epithelial cell rounding and the subsequent detachment from culture dishes. Finally, we isolated petroselinic acid as a major bactericide as well as a gingipain inhibitor through a bioassay-guided fractionation of HEF. Taken together, our findings suggest clinical applicability of HEF and petroselinic acid for periodontitis therapy to eliminate P. gingivalis and its major virulence factors on the basis of the dual anti-P. gingivalis activity, i.e., rapid bacteriolysis and gingipain inhibition.
Collapse
Affiliation(s)
- Nanami Yoshino
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Research and Analysis Center, S&B Foods Inc., Tokyo, Japan
| | - Tsuyoshi Ikeda
- Department of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Ryoma Nakao
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Ryoma Nakao,
| |
Collapse
|
25
|
Stearns R, Xue J, Freshour N, Matak K, Luo Y, Shen C. The Efficacy of Conventional Spray, Electrostatic Spray, and Dip with a Combination of Hydrogen Peroxide and Peroxyacetic Acid To Inactivate Listeria monocytogenes on Apples. J Food Prot 2022; 85:828-834. [PMID: 35146513 DOI: 10.4315/jfp-21-448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study aimed to evaluate the efficacy of a hydrogen peroxide (H2O2) and peroxyacetic acid (PAA) mixer delivered by conventional garden spray (GS), electrostatic spray (ES), and dip methods to inactivate Listeria monocytogenes on apples. Organic Honeycrisp, Fuji, and Pink Lady apples were dip inoculated with L. monocytogenes (two strains, serotype 1/2b), which were then kept untreated (control), sprayed with water only, or treated with the H2O2-PAA mixer (0.0064, 0.1, 0.25, and 0.50%) for 20 s via GS, ES, or dip, followed by draining (for 2 min) on aluminum foil. Surviving bacteria were recovered on modified Oxford agar. Atomic force microscopy was used to detect the structural changes of inactivation of L. monocytogenes in broth medium by the H2O2-PAA mixer solution. Data (two replicates, with six samples per replicate) were analyzed using the mixed model procedure of SAS (P = 0.05). Initial counts of L. monocytogenes on untreated apples were 6.80 to 6.90 log CFU per apple. The dip method was the most effective treatment (P < 0.05) for pathogen reductions (2.31 to 2.41 log CFU per apple), followed by GS (1.44 to 1.70 log CFU per apple) and then ES (0.84 to 1.20 log CFU per apple). Reductions of L. monocytogenes were greatest (P < 0.05) when apples were treated with H2O2-PAA mixer -0.25 and -0.50%. Atomic force microscopy analyses indicated that inactivation of L. monocytogenes cells in H2O2-PAA mixer solutions resulted from disruption of the outer membrane. The H2O2-PAA mixer-treated cells had increased width and height and decreased roughness compared with the untreated cells. Results suggested that applying a H2O2-PAA mixer by dip or GS methods is better for pathogen reduction than ES on apples. HIGHLIGHTS
Collapse
Affiliation(s)
- Rebecca Stearns
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Nettie Freshour
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
26
|
Heat shock in Cronobacter sakazakii induces direct protection and cross-protection against simulated gastric fluid stress. Food Microbiol 2022; 103:103948. [DOI: 10.1016/j.fm.2021.103948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022]
|
27
|
Song MG, Jeon EB, Kim JY, Park SY. Effects of sodium hypochlorite on the potential infectivity of human norovirus
GII
.4 using propidium monoazide with
RT‐qPCR
and quality assessments in Manila clams (
Ruditapes philippinarum
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Gyu Song
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Ji Yoon Kim
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| |
Collapse
|
28
|
Shi F, He P, Li Z, Wei W, Meng H, Wang D, Wang Y. Effect of cold water and cold electrolyzed functional water treatments on the postharvest quality of cold stored jujube fruit (
Ziziphus jujuba
Mill. ‘Hupingzao’). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fei Shi
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Ping He
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Zhigang Li
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Wei Wei
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Huifang Meng
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Dingxian Wang
- Pomology Institute Shanxi Agricultural University Shanxi Taigu 030801 PR China
| | - Yu Wang
- College of Food Science and Engineering Shanxi Agricultural University Shanxi Taigu 030801 PR China
| |
Collapse
|
29
|
Zhao L, Poh CN, Wu J, Zhao X, He Y, Yang H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Tan J, Cui P, Ge S, Cai X, Li Q, Xue H. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit: Modeling, optimization, purification, and characterization. ULTRASONICS SONOCHEMISTRY 2022; 84:105966. [PMID: 35247682 PMCID: PMC8897718 DOI: 10.1016/j.ultsonch.2022.105966] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 05/24/2023]
Abstract
Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit was modeled by response surface methodology (RSM) and artificial neural network (ANN), and optimized using genetic algorithm coupled with ANN (GA-ANN). Statistical analysis showed that the models obtained by RSM and ANN could accurately predict the Cornus officinalis polysaccharides (COPs) yield. However, ANN prediction was more accurate than RSM. The optimum extraction parameters to achieve the highest COPs yield (7.85 ± 0.09)% was obtained at the ultrasound power of 350 W, extraction temperature of 51 ℃, liquid-to-solid ratio of 17 mL/g, and extraction time of 38 min. Subsequently, the crude COPs were further purified via DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous fraction (COPs-4-SG, 33.64 kDa) that contained galacturonic acid, arabinose, mannose, glucose, and galactose in a molar ratio of 34.82:14.19:6.75:13.48:12.26. The structure of COPs-4-SG was also characterized with UV-vis, fourier-transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), Congo-red test, and circular dichroism (CD). The findings provide a feasible way for the extraction, purification, and optimization of polysaccharides from plant resources.
Collapse
Affiliation(s)
- Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengshan Cui
- College of Quality and Technical Supervision, Hebei University, No. 2666 Qiyi East Road, Lianchi District, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
31
|
Cao Y, Shen C, Yang Z, Cai Z, Deng Z, Wu D. Polycaprolactone/polyvinyl pyrrolidone nanofibers developed by solution blow spinning for encapsulation of chlorogenic acid. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Study on the application of nanofibers in food active packaging has been a research hotspot in recent years. In this work, the solution blow spinning (SBS) was applied to rapidly fabricate the polycaprolactone (PCL), polyvinyl pyrrolidone (PVP), and PCL/PVP nanofibrous films to encapsulate chlorogenic acid (CGA). All the films showed uniform and smooth nanofibers, and the FTIR and XRD proved the success of mixed spinning of PCL and PVP. With the increase of PVP content, the thermal stability of the PCL/PVP nanofibrous films improved. The PCL/PVP (4:1) film possessed better mechanical properties than PCL and PVP films because of the stronger fiber-fiber interactions. The addition of PCL endowed the hydrophobic surfaces to the PCL/PVP films, and the PCL/PVP films had better water vapor barrier ability. The PCL/PVP (4:1) film exhibited the best long-term continuous release of CGA during 72 h. The PVP nanofibrous film exhibited no inhibition against S. aureus and E. coli due to the low encapsulation efficiency, but the PCL and PCL/PVP films exhibited good antimicrobial activity. The above results suggested that the nanofibrous films developed by SBS possessed the promising prospects in food packaging.
Collapse
|
32
|
Development of Ultrasound-Assisted Extraction to Produce Skin-Whitening and Anti-Wrinkle Substances from Safflower Seed. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041296. [PMID: 35209083 PMCID: PMC8876410 DOI: 10.3390/molecules27041296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022]
Abstract
In this study, ultrasound-assisted extraction (UAE) was applied to extract bioactive substances with skin-whitening, anti-wrinkle, and antioxidant effects from safflower seeds, and the extraction conditions were optimized by a central composite design. The independent variables, including extraction time (5.0~55.0 min), extraction temperature (26.0~94.0 °C), and ethanol concentration (0.0~100%), were optimized to increase tyrosinase activity inhibitory (TAI), collagenase activity inhibitory (CAI), and radical scavenging activity (RSA), which are indicators of skin-whitening, anti-wrinkle, and antioxidant effects. An extraction time of 26.4 min, extraction temperature of 52.1 °C, and ethanol concentration of 50.7% were found to be optimum conditions of UAE, under which TAI, CAI, and RSA were 53.3%, 91.5%, and 27.7%, respectively. The extract produced by UAE was analyzed by LC-MS/MS, and maleic acid and levulinic acid were identified as the main substances. Therefore, UAE is evaluated as an effective process to extract skin-whitening, anti-wrinkle, and antioxidant substances from safflower seeds at lower temperatures and shorter extraction times compared to the conventional extraction methods. Overall, safflower seeds extract can be used as a material for value-added cosmetics, including maleic acid and levulinic acid, which have bioactive functions.
Collapse
|
33
|
Chaudhary R, Singh R, Singh M, Mogha NK, Kumari P, Paliwal G, Singh PP, Das M. LC-MS/MS method for the simultaneous quantification of pyriproxyfen and bifenthrin and their dissipation kinetics under field conditions in chili and brinjal. J Food Sci 2022; 87:1331-1341. [PMID: 35170049 DOI: 10.1111/1750-3841.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Bifenthrin, a synthetic pyrethroid, and pyriproxyfen, a plant growth regulator, are used extensively in agriculture for controlling the different insect pests. The present study was undertaken to examine the dissipation behavior of a formulation with a combination of pyriproxyfen and bifenthrin on chili and brinjal under field conditions at four different locations. Dissipation study of combination of pyriproxyfen and bifenthrin revealed swift degradation in both crops with a half-life of 2.5-2.6 and 2.0-2.1 days in brinjal and chili, respectively. Also, a simple method for simultaneous quantification of pyriproxyfen and bifenthrin was developed and validated using modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique on liquid chromatography with tandem mass spectrometry (LC-MS/MS). Recovery of the method was found to be under an acceptable range of 90.0%-93.5% and 88.7%-94.3% in chili and 92.4%-96.6% and 97.4%-100.9% in brinjal for pyriproxyfen and bifenthrin, respectively. At harvest time, the terminal residues of bifenthrin and pyriproxyfen were below the maximum residue limits set by European Union in chili and brinjal, respectively, suggesting that the use of this pesticide formulation is safe and does not impose harmful effects on human health. PRACTICAL APPLICATION: In this paper, dissipation behavior of a pesticide formulation with a combination of pyriproxyfen and bifenthrin was undertaken under field conditions at four different locations on chili and brinjal in India. The simultaneous quantification of pyriproxyfen and bifenthrin using LC-MS/MS technique has been validated incorporating modified QuEChERS extraction method with limit of detection at 0.005 µg/g and limit of quantification at 0.01 µg/g, which is well below the EU-MRLs (European Union legislation Maximum Residue Level) of pyriproxyfen and bifenthrin in both chili and brinjal. Furthermore, dissipation kinetics of a formulation undertaken under field conditions at four different locations on chili and brinjal suggested that the terminal residues of both bifenthrin and pyriproxyfen were below the maximum residue limits set by European Union in chili and brinjal, respectively, at the time of harvest and that the use of this pesticide formulation is safe.
Collapse
Affiliation(s)
- Reema Chaudhary
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Rakhi Singh
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Monica Singh
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Navin Kumar Mogha
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | - Premlata Kumari
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| | | | | | - Mukul Das
- Bio-Analytical Division, Shriram Institute for Industrial Research, Delhi, India
| |
Collapse
|
34
|
Ren G, He Y, Liu C, Ni F, Luo X, Shi J, Song Y, Li T, Huang M, Shen Q, Xie H. Encapsulation of curcumin in ZEIN-HTCC complexes: Physicochemical characterization, in vitro sustained release behavior and encapsulation mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Su Y, Jiang L, Chen D, Yu H, Yang F, Guo Y, Xie Y, Yao W. In vitro and in silico approaches to investigate antimicrobial and biofilm removal efficacies of combined ultrasonic and mild thermal treatment against Pseudomonas fluorescens. ULTRASONICS SONOCHEMISTRY 2022; 83:105930. [PMID: 35114554 PMCID: PMC8818575 DOI: 10.1016/j.ultsonch.2022.105930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 05/16/2023]
Abstract
A combined ultrasonic and thermal (US-TM) treatment was developed in this study to achieve a high efficacy of P. fluorescens biofilm control. The present study demonstrated that combined a moderate ultrasound treatment (power ≥ 80 W) and a mild heat (up to 50 °C) largely destroyed biofilm structure in 15 min and removed>65.63% of biofilm from a glass slide where cultivated the P. fluorescens biofilm. Meanwhile, the viable cell count was decreased from 10.72 to 6.48 log10CUF/mL. Differences in biofilm removal and lethal modes of US-TM treatment were confirmed through microscopies analysis in vitro. The ultrasound first contributed to releasing the bacteria in the biofilm to the environment and simultaneously exposing inner bacteria at the deep layer of biofilm depending on shear force, shock waves, acoustic streaming, etc. When the biofilm structure was destroyed, US-TM treatment would synergistically inactivate P. fluorescens cells. In silico studies adopted COMSOL to simulate acoustic pressure and temperature distribution in the bioreactor; both of them were significantly influenced by various factors, such as input power, sonotrode position, materials and volume of container, etc. Facing the biofilm issue existing on the surface of container, boundary conditions were exported and thereby pointing out potential "dead ends" where the ultrasound may not be effectively transduced. Both in vitro and in silico results may inspire the food industry to adopt US-TM treatment to achieve biofilm control.
Collapse
Affiliation(s)
- Ying Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Lin Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Danying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
36
|
Sun J, Jiang X, Chen Y, Lin M, Tang J, Lin Q, Fang L, Li M, Hung YC, Lin H. Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control. Food Chem 2022; 369:130873. [PMID: 34479004 DOI: 10.1016/j.foodchem.2021.130873] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/27/2022]
Abstract
With the growing demand for safe and nutritious foods, some novel food nonthermal sterilization technologies were developed in recent years. Electrolyzed oxidizing water (EOW) has the characteristics of strong antimicrobial ability, wide sterilization range, and posing no threat to the humans and environment. Furthermore, EOW can be used as a green disinfectant to replace conventional production water used in the food industry since it can be converted to the ordinary water after sterilization. This review summarizes recent developments of the EOW technology in food industry. It also reviews the preparation principles, physical and chemical characteristics, antimicrobial mechanisms of EOW, and inactivation of toxins using EOW. In addition, this study highlights the applications of EOW in food preservation and safety control, as well as the future prospects of this novel technology. EOW is a promising nonthermal sterilization technology that has great potential for applications in the food industry.
Collapse
Affiliation(s)
- Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Xuanjing Jiang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211-5160, United States
| | - Jinyan Tang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qin Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Ling Fang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Meiling Li
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
37
|
Antibacterial chitosan-Dioscorea alata starch film enriched with essential oils optimally prepared by following response surface methodology. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Distribution of chlorine sanitizer in a flume tank: Numerical predictions and experimental validation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Kobayashi F, Aoki H, Kamagata J, Odake S. Effect of electrolyzed water and carbon dioxide microbubbles on removal of diazinon and diazoxon. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fumiyuki Kobayashi
- Faculty of Applied Life Science Nippon Veterinary and Life Science University Tokyo Japan
| | - Hitoshi Aoki
- Research & Development Department Nichirei Foods Inc. Chiba Japan
| | - Junichi Kamagata
- Research & Development Department Nichirei Foods Inc. Chiba Japan
| | - Sachiko Odake
- Faculty of Applied Life Science Nippon Veterinary and Life Science University Tokyo Japan
| |
Collapse
|
40
|
Comparison of the metabolic responses of eight Escherichia coli strains including the “big six” in pea sprouts to low concentration electrolysed water by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108458] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
42
|
Zhang X, Sun J, Li P, Zeng F, Wang H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Rivera J, Phebus RK, Doddabematti Prakash S, Siliveru K. Effects of acidic water tempering and heat treatment on the Shiga toxin‐producing
Escherichia coli
(O121 and O26) load of wheat during tempering and its impact on wheat flour quality. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jared Rivera
- Department of Grain Science and Industry Kansas State University Manhattan Kansas USA
| | | | | | - Kaliramesh Siliveru
- Department of Grain Science and Industry Kansas State University Manhattan Kansas USA
| |
Collapse
|
44
|
Wei MP, Yu H, Guo YH, Cheng YL, Xie YF, Yao WR. Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiol Res 2021; 254:126912. [PMID: 34742105 DOI: 10.1016/j.micres.2021.126912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Sapindus saponins extracted from Sapindus mukorossi Gaertn. have been reported to exert antibacterial activity against Cutibacterium acnes (C. acnes). However, there are no reports about their potentials against its biofilm, which is a major contributor to the antibiotic resistance of C. acnes. This study aimed to investigate the synergistic antibiofilm activity and action of the combination of Sapindoside A and B (SAB) against C. acnes. SAB with sub-MICs significantly inhibited the early-formed and mature biofilm of C. acnes and decreased the adhesion and cell surface hydrophobicity (p < 0.05). Also, SAB greatly reduced the production of exopolysaccharide and lipase (p < 0.05), and the binding mode of SAB and lipase was predicted by molecular docking, via hydrogen bonds and hydrophobic interactions. Biofilm observed with electron microscopies further confirmed the high antibiofilm activity of SAB against C. acnes. Furthermore, a significant down-regulation of biofilm biosynthesis-associated genes was observed. The combination index explained the synergistic effects of SAB leading to the above results, and the contribution of SA was greater than that of SB. The current results showed that SAB had synergistic antibiofilm activity against C. acnes, and the Sapindoside A played a major role, indicating that SAB could be a natural antiacne additive against C. acnes biofilm-associated infections.
Collapse
Affiliation(s)
- Min-Ping Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yu-Liang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
45
|
Zhou J, Sheng L, Lv R, Liu D, Ding T, Liao X. Application of a 360-Degree Radiation Thermosonication Technology for the Inactivation of Staphylococcus aureus in Milk. Front Microbiol 2021; 12:771770. [PMID: 34803991 PMCID: PMC8602915 DOI: 10.3389/fmicb.2021.771770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Milk is easy to be contaminated by microorganisms due to its abundant nutrients. In this study, a 360-degree radiation thermosonication (TS) system was developed and utilized for the inactivation of Staphylococcus aureus in milk. The 360-degree radiation TS system-induced inactivation kinetics of S. aureus was fitted best by the Weibull model compared with biphasic and linear models. The treatment time, the exposure temperature, and the applied ultrasound power was found to affect the bactericidal efficacy of the 360-degree radiation TS system. Additionally, the TS condition of 200 W and 63°C for 7.5 min was successfully applied to achieve complete microbial inactivation (under the limit of detection value) in raw milk. The treatment of 360-degree radiation TS can enhance the zeta potential and decrease the average particle size of milk. It also exhibited better retainment of the proteins in milk compared with the ultrahigh temperature and conventional pasteurization processing. Therefore, the 360-degree radiation TS system developed in this study can be used as an alternative technology to assure the microbiological safety and retain the quality of milk, and the Weibull model could be applied for the prediction of the inactivation levels after exposure to this technology.
Collapse
Affiliation(s)
- Jianwei Zhou
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
| | - Lele Sheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ruiling Lv
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xinyu Liao
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Yu H, Liu Y, Yang F, Xie Y, Guo Y, Cheng Y, Yao W. Combined an acoustic pressure simulation of ultrasonic radiation and experimental studies to evaluate control efficacy of high-intensity ultrasound against Staphylococcus aureus biofilm. ULTRASONICS SONOCHEMISTRY 2021; 79:105764. [PMID: 34601447 PMCID: PMC8496304 DOI: 10.1016/j.ultsonch.2021.105764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
This study evaluated efficacy of high-intensity ultrasound (HIU) on controlling or stimulating Staphylococcus aureus biofilm. Acoustic pressure distribution on the surface of glass slide cultivated S. aureus biofilm was first simulated as a standardized parameter to reflect sono-effect. When the power of HIU was 240 W with acoustic pressure of -1.38×105 Pa, a reasonably high clearance rate of S. aureus biofilm was achieved (96.02%). As an all-or-nothing technique, the HIU did not cause sublethal or injury of S. aureus but inactivate the cell directly. A further evaluation of HIU-induced stimulation of biofilm was conducted at a low power level (i.e. 60 W with acoustic pressure of -6.91×104 Pa). The low-power-long-duration HIU treatment promoted the formation of S. aureus biofilm and enhanced its resistance as proved by transcriptional changes of genes in S. aureus, including up-regulations of rbf, sigB, lrgA, icaA, icaD, and down-regulation of icaR. These results indicate that the choose of input power is determined during the HIU-based cleaning and processing. Otherwise, the growth of S. aureus and biofilm formation are stimulated when treats by an insufficiently high power of HIU.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
47
|
Wang R, Fang M, Hu X, Yu Y, Xiao X. Kojic acid and tea polyphenols inactivate
Escherichia coli
O157:H7
in vitro
and on salmon fillets by inflicting damage on cell membrane and binding to genomic DNA. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ruifei Wang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Meimei Fang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinyi Hu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Yigang Yu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| |
Collapse
|
48
|
Shen C, Rao J, Wu Q, Wu D, Chen K. The effect of indirect plasma-processed air pretreatment on the microbial loads, decay, and metabolites of Chinese bayberries. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
|
50
|
Muley AB, Kedia P, Pegu K, Kausley SB, Rai B. Analyzing the physical and biochemical changes in strawberries during storage at different temperatures and the development of kinetic models. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|