1
|
Lou X, Shu W, Wang LC, Lim YT, Zhao T, Liu H, Sobota RM, Yang H. Metabolic and protein expression responses of Shewanella baltica in golden pomfret broths to slightly acidic electrolysed water. Food Chem 2025; 462:140991. [PMID: 39208721 DOI: 10.1016/j.foodchem.2024.140991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Shewanella baltica is a specific spoilage organism of golden pomfret. This study aims to explore the antibacterial mechanism of slightly acidic electrolysed water (SAEW) against S. baltica (strains ABa4, ABe2 and BBe1) in golden pomfret broths by metabolomics, proteomics and bioinformatics analyses. S. baltica was decreased by at least 3.94 log CFU/mL after SAEW treatment, and strain ABa4 had the highest resistance. Under SAEW stress, amino acids and organic acids in S. baltica decreased, and nucleotide related compounds degraded. Furthermore, 100 differentially expressed proteins (DEPs) were identified. Most DEPs of strains ABe2 and BBe1 were down-regulated, while some DEPs of strain ABa4 were up-regulated, especially those oxidative stress related proteins. These results suggest that the modes of SAEW against S. baltica can be traced to the inhibition of amino acid, carbon, nucleotide and sulphur metabolisms, and the loss of functional proteins for temperature regulation, translation, motility and protein folding.
Collapse
Affiliation(s)
- Xiaowei Lou
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Weichen Shu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Tianyun Zhao
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Hang Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Hongshun Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Mahato DK, Kamle M, Pandhi S, Pandey S, Gupta A, Paul V, Kalsi R, Agrawal S, Islam D, Khare S, Singh A, Kumar P, Rab SO, Saeed M. Foodomics: A sustainable approach for the specific nutrition and diets for human health. Food Chem X 2024; 24:101872. [PMID: 39483356 PMCID: PMC11525469 DOI: 10.1016/j.fochx.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Foodomics is an interdisciplinary field that integrates various omics technologies to explore the complex relationship between food and human health in depth. This approach offers valuable insights into the biochemical, molecular, and cellular composition of food by employing advanced omics techniques. Its applications span the food industry and human health, including efforts to combat malnutrition, provide dietary recommendations, and ensure food safety. This paper critically examines the successful applications of foodomics across areas such as food safety, quality, traceability, processing, and bioactivity. It highlights the crucial role of metabolomics, proteomics, and transcriptomics in achieving a comprehensive understanding of food components, their functions, and their interactions with human biology.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North-Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India
| | - Shikha Pandhi
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Surabhi Pandey
- Department of Food Technology, Harcourt Butler Technical University, Kanpur, 208002, India
| | - Akansha Gupta
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Veena Paul
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Rhythm Kalsi
- School of Agriculture, Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Swati Agrawal
- Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Dawrul Islam
- World Food Programme, Trust for India, New Delhi 110029, India
| | - Shubhra Khare
- Department of Applied Sciences & Humanities, Invertis University, Bareilly, India
| | - Ajey Singh
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
- College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
3
|
Chung WH, Chaklader MR, Howieson J. Efficacy Evaluation of Chlorine Dioxide and Hypochlorous Acid as Sanitisers on Quality and Shelf Life of Atlantic Salmon ( Salmo salar) Fillets. Foods 2024; 13:3156. [PMID: 39410191 PMCID: PMC11475980 DOI: 10.3390/foods13193156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Microbial contamination during seafood processing can often lead to a reduction in shelf life and the possibility of food-borne illnesses. Sanitisation with chlorine-based products during seafood processing is therefore sometimes undertaken. This study compared the effects of two sanitisers, chlorine dioxide (ClO2) and hypochlorous acid (HOCl) at their suggested concentration (5 ppm and 10 ppm; 50 ppm and 100 ppm respectively), on physical, chemical, and microbial qualities of Atlantic salmon (Salmo salar) fillets throughout 7 days of simulated retail display refrigeration. Parameters used for assessment included quality index (QI), drip loss, colour, texture, histology, total volatile base nitrogen (TVB-N), lipid oxidation (malonaldehyde, MDA), pH, and total viable count changes. Results indicated that whilst drip loss increased over the storage time, day 4 and 7 drip loss in both sanitisers decreased significantly compared with the control. There was a linear relationship (R > 0.70) between QI and storage time in all treatments, particularly in regard to skin brightness, flesh odour, and gaping parameters, but treatment differences were not present. Texture parameters including gumminess, chewiness, and hardness increased over time in the control whilst both sanitiser treatments seemed to provide protective effects against texture hardening during storage. The observed softening effects from the sanitiser treatments were aligned with microstructural and cytological changes in the histology results, as evidenced by a reduced fibre-fibre adhesion, myodigeneration, and an increase in interfibrillar space over storage time. Colour, especially chroma (C*), was shown to decrease over time in control, whereas insignificant protective effects were observed in both sanitiser treatments at day 7. Irrespective of treatment and storage time, MDA levels exceeded the acceptable limit on all days, whilst TVB-N levels were below the critical limit. Although pH was influenced by treatment and storage time, the pH was within the normal range. Microbiological results showed that with sanitiser addition, TVC was below the permissible level (106 CFU/g) until day 4 but ClO2 ice (5 ppm), ClO2 (10 ppm), and HOCl (100 ppm) treated fillets all exceeded the limit on day 7. The mixed results on the effect of sanitiser addition on fillet quality and shelf life suggested that further investigation on pathogen reduction, sanitiser introductory method, as well as testing the same treatments in low-fat fish models would be recommended.
Collapse
Affiliation(s)
- Wing H. Chung
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia; (M.R.C.); (J.H.)
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia; (M.R.C.); (J.H.)
- Department of Primary Industries and Regional Development, Fleet Street, Fremantle, WA 6160, Australia
| | - Janet Howieson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia; (M.R.C.); (J.H.)
| |
Collapse
|
4
|
Zhang Q, Zhou Y, He Q, Zhao H, Zhou F, Chi P, Li Q. Effects of modified-BHI medium on the growth and metabolites of Akkermansia muciniphila. Food Sci Biotechnol 2024; 33:1921-1930. [PMID: 38752110 PMCID: PMC11091034 DOI: 10.1007/s10068-023-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 05/18/2024] Open
Abstract
Akkermansia muciniphila (Akk) has recently become popular due to its therapeutic effect on various diseases. However, Akk's high-density cultivation is difficult due to its anaerobic characteristics. Therefore, Akk was cultured with modified brain-heart infusion (M-BHI) to reach 1011 CFU/mL. 1H-NMR determined the metabolites of Akk and validated them by an amino acid analyzer. Compared to the BHI, Akk significantly up-regulated lactate, histidine, fumaric acid, cytidine, threonine, arginine, and hydroxyproline in the M-BHI and significantly down-regulated methionine, trimethylamine, and sarcosine. Regarding pathway enrichment analysis, histidine metabolism, arginine and proline metabolism, cysteine and methionine metabolism mainly regulate differential metabolites. In addition, M-BHI alters the metabolic profile by affecting Akk's involvement in amino acid metabolism remodeling. Changed metabolites showed that Akk fermentation in M-BHI may play a physiological role in regulating immune homeostasis and reducing risk factors related to diseases. Therefore, M-BHI provides a promising reference for Akk cultivation in future industrial preparation. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01492-x.
Collapse
Affiliation(s)
- Qinren Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Yupan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Qianzu He
- Guangxi University Hospital, Guangxi University, Nanning, 530004 China
| | - Haiyan Zhao
- Guangxi University Hospital, Guangxi University, Nanning, 530004 China
| | - Fan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Pengcheng Chi
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| |
Collapse
|
5
|
Chen L, Teng X, Liu Y, Shi H, Li Z, Xue C. The dynamic change of flavor characteristics in Pacific oyster (Crassostrea gigas) during depuration uncovered by mass spectrometry-based metabolomics combined with gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem 2024; 434:137277. [PMID: 37774638 DOI: 10.1016/j.foodchem.2023.137277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023]
Abstract
The flavor of Pacific oyster (Crassostrea gigas) significantly changed during the depuration process. This work aimed to explore the mechanism of flavor changes during the 72 h depuration by metabolomics combined with gas chromatography-ion mobility spectrometry (GC-IMS). The metabolomics analysis indicated that carbohydrate metabolism was more affected in the early stage of depuration, including the citrate cycle, glyoxylae and dicarboxylate metabolism, etc. After 72 h depuration, it affected mainly the metabolism of global and overview maps and nucleoside metabolism, etc. The equivalent umami concentration (EUC) value was calculated and exhibited a gradual increase following a 48 h depuration. The GC-MS results revealed that the content of furans was the highest, and the content of aldehydes, ketones, and alcohols was the lowest after 48 h depuration, while the content of aldehydes, ketones, and alcohols increased after 72 h depuration. All these results suggested the depuration period was recommended to be controlled within 48 h.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiaoyu Teng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yu Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Haohao Shi
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; College of Food Science and Technology, Hainan University, Hainan 570228, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
6
|
Jia S, Shen H, Wang D, Liu S, Ding Y, Zhou X. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms: A comprehensive review. Food Chem 2024; 431:137142. [PMID: 37591146 DOI: 10.1016/j.foodchem.2023.137142] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Sodium chloride (NaCl) confers a unique flavor and quality in meat products, however, due to growing concerns about the adverse effects of excessive NaCl consumption, how to reduce NaCl content while ensuring quality and safety has become a research hotspot in this field. This review mainly discusses the role of NaCl in dry-cured meat, as well as novel salt-reducing substances that can substitute for the effects of NaCl to achieve sodium reduction objectives. New technologies, such as vacuum curing, ultrahigh pressure curing, ultrasonic curing, pulsed electric field curing, and gamma irradiation, to facilitate the development of low-sodium products are also introduced. The majority of current salt reduction technologies function to enhance salt diffusion and decrease curing time, resulting in a decrease in NaCl content. Notably, future studies should focus on implementing multiple strategies to compensate for the deficiencies in flavor and safety caused by NaCl reduction.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hanrui Shen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Dong Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Shi H, Li C, Lu H, Zhu J, Tian S. Synergistic effect of electrolyzed water generated by sodium chloride combined with dimethyl dicarbonate for inactivation of Listeria monocytogenes on lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7905-7913. [PMID: 37490703 DOI: 10.1002/jsfa.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Electrolyzed water (EW) is recognized as an effective way to control and reduce pathogens in vegetables. However, the disinfection efficacy of EW alone is limited. In this work, the bactericidal activity and biofilm removal capability of EW, generated by adding NaCl to a portable EW generator, were investigated with special reference to Listeria monocytogenes. Furthermore, the impact of EW in combination with dimethyl dicarbonate (DMDC) in reducing the microbial load and improving the overall quality of lettuce during refrigerated storage was evaluated. RESULTS EW with 0.3% NaCl (SEW) had the highest bactericidal activity against L. monocytogenes. The pathogen treated with SEW exhibited lower superoxide dismutase activity and more leakage of proteins and nucleic acids than in the case of EW. Furthermore, the use of SEW resulted in changes in the cell permeability and morphology of L. monocytogenes. A decrease in adhesion and collapse of the biofilm architecture were also observed, indicating that SEW was more effective for inactivating L. monocytogenes cells compared to EW. For untreated lettuce, the populations of the total plate count and inoculated L. monocytogenes decreased by 2.47 and 2.35 log CFU g-1 , respectively, after the combined SEW/DMDC treatment for 3 min. The use of SEW alone or combined with DMDC did not negatively impact the lettuce color values, titratable acid, ascorbic acid and soluble solids compared to the control group. CONCLUSION SEW in combination with DMDC can be used as a novel and potentially effective disinfection strategy for ensuring the safety of vegetable consumption. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honghui Shi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chunliu Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Haixia Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shiyi Tian
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
8
|
Wang Y, Chen Z, Zhao F, Yang H. Metabolome shifts triggered by chlorine sanitisation induce Escherichia coli on fresh produce into the viable but nonculturable state. Food Res Int 2023; 171:113084. [PMID: 37330837 DOI: 10.1016/j.foodres.2023.113084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Facing the increasing occurrence of "big six" Escherichia coli outbreaks linked to fresh produce, chlorine-based sanitisers are widely used for fresh produce decontamination in recent years. However, latest finding that chlorine may induce E. coli cells into a viable not nonculturable (VBNC) state is bringing a new challenge to the fresh produce industry. VBNC cells are undetectable by the plate count test, and yet they retain pathogenicity and are more antibiotic-resistant than culturable cells. As a result, their eradication is critical to ensure the safety of fresh produce. Understanding VBNC cells at the metabolic level may provide a breakthrough for their eradication. Therefore, this study was carried out to collect the VBNC pathogenic E. coli (O26:H11, O121:H19, and O157:H7) cells from chlorine-treated pea sprouts and characterise them using NMR-based metabolomics. From the globally increased metabolite contents detected in the VBNC E. coli cells as compared to the culturable cells, mechanisms underlying E. coli's VBNC induction were elucidated. These include rendering the energy generation scheme to become more compatible with the lowered energy needs, disaggregating protein aggregates to release amino acids for osmoprotection and later resuscitation, as well as increasing cAMP content to downregulate RpoS. These identified metabolic characteristics can inspire future development of targeted measures for VBNC E. coli cell inhibition. Our methods can also be applied to other pathogens to help lower the risk of overall foodborne diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Zihui Chen
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Fengnian Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang, 312000, China.
| |
Collapse
|
9
|
Xia Q, Zheng Y, Wang L, Chen X. Proposing Signaling Molecules as Key Optimization Targets for Intensifying the Phytochemical Biosynthesis Induced by Emerging Nonthermal Stress Pretreatments of Plant-Based Foods: A Focus on γ-Aminobutyric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12622-12644. [PMID: 37599447 DOI: 10.1021/acs.jafc.3c04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Emerging evidence has confirmed the role of emerging nonthermal stressors (e.g., electromagnetic fields, ultrasonication, plasma) in accumulating bioactive metabolites in plant-based food. However, the signal decoding mechanisms behind NonTt-driven phytochemical production remain unclear, hindering postharvest bioactive component intensification. This study aims to summarize the association between signaling molecules and bioactive secondary metabolite production under nonthermal conditions, demonstrating the feasibility of enhancing phytochemical accumulation through signaling molecule crosstalk manipulation. Nonthermal elicitors were found to be capable of inducing stress metabolisms and activating various signaling molecules, similar to conventional abiotic stress. A simplified pathway model for nonthermally induced γ-aminobutyric acid accumulation was proposed with reactive oxygen species and calcium signaling being versatile pathways responsive to nonthermal elicitors. Manipulating signal molecules/pathways under nonthermal conditions can intensify phytochemical biosynthesis. Further research is needed to integrate signaling molecule responses and metabolic network shifts in nonthermally stressed plant-based matrices, balancing quality modifications and intensification of food functionality potential.
Collapse
Affiliation(s)
- Qiang Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315832, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
10
|
Ramadan H, Al-Ashmawy M, Soliman AM, Elbediwi M, Sabeq I, Yousef M, Algammal AM, Hiott LM, Berrang ME, Frye JG, Jackson CR. Whole-genome sequencing of Listeria innocua recovered from retail milk and dairy products in Egypt. Front Microbiol 2023; 14:1160244. [PMID: 37234542 PMCID: PMC10206011 DOI: 10.3389/fmicb.2023.1160244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
The similarity of the Listeria innocua genome with Listeria monocytogenes and their presence in the same niche may facilitate gene transfer between them. A better understanding of the mechanisms responsible for bacterial virulence requires an in-depth knowledge of the genetic characteristics of these bacteria. In this context, draft whole genome sequences were completed on five L. innocua isolated from milk and dairy products in Egypt. The assembled sequences were screened for antimicrobial resistance and virulence genes, plasmid replicons and multilocus sequence types (MLST); phylogenetic analysis of the sequenced isolates was also performed. The sequencing results revealed the presence of only one antimicrobial resistance gene, fosX, in the L. innocua isolates. However, the five isolates carried 13 virulence genes involved in adhesion, invasion, surface protein anchoring, peptidoglycan degradation, intracellular survival, and heat stress; all five lacked the Listeria Pathogenicity Island 1 (LIPI-1) genes. MLST assigned these five isolates into the same sequence type (ST), ST-1085; however, single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed 422-1,091 SNP differences between our isolates and global lineages of L. innocua. The five isolates possessed an ATP-dependent protease (clpL) gene, which mediates heat resistance, on a rep25 type plasmids. Blast analysis of clpL-carrying plasmid contigs showed approximately 99% sequence similarity to the corresponding parts of plasmids of L. monocytogenes strains 2015TE24968 and N1-011A previously isolated from Italy and the United States, respectively. Although this plasmid has been linked to L. monocytogenes that was responsible for a serious outbreak, this is the first report of L. innocua containing clpL-carrying plasmids. Various genetic mechanisms of virulence transfer among Listeria species and other genera could raise the possibility of the evolution of virulent strains of L. innocua. Such strains could challenge processing and preservation protocols and pose health risks from dairy products. Ongoing genomic research is necessary to identify these alarming genetic changes and develop preventive and control measures.
Collapse
Affiliation(s)
- Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Maha Al-Ashmawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Animal Health Research Institute, Agriculture Research Center, Cairo, Egypt
| | - Islam Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Tukh, Qalyubia, Egypt
| | - Mona Yousef
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Mark E. Berrang
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| |
Collapse
|
11
|
Chen L, Zhang H, Shi H, Li Z, Xue C. Application of multi-omics combined with bioinformatics techniques to assess salinity stress response and tolerance mechanisms of Pacific oyster (Crassostrea gigas) during depuration. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108779. [PMID: 37120087 DOI: 10.1016/j.fsi.2023.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Depuration is a vital stage to ensure the safety of oyster consumption, and salinity had a great impact on the environmental adaptability of oysters, but the underlying molecular mechanism was poorly understood during depuration stage. Here, Crassostrea gigas was depurated for 72 h at different salinity (26, 29, 32, 35, 38 g/L, corresponding to ±20%, ±10% salinity fluctuation away from oyster's production area) and then analyzed by using transcriptome, proteome, and metabolome combined with bioinformatics techniques. The transcriptome showed that the salinity stress led to 3185 differentially expressed genes and mainly enriched in amino acid metabolism, carbohydrate metabolism, lipid metabolism, etc. A total of 464 differentially expressed proteins were screened by the proteome, and the number of up-regulated expression proteins was less than the down-regulated, indicating that the salinity stress would affect the regulation of metabolism and immunity in oysters. 248 metabolites significantly changed in response to depuration salinity stress in oysters, including phosphate organic acids and their derivatives, lipids, etc. The results of integrated omics analysis indicated that the depuration salinity stress induced abnormal metabolism of the citrate cycle (TCA cycle), lipid metabolism, glycolysis, nucleotide metabolism, ribosome, ATP-binding cassette (ABC) transport pathway, etc. By contrast with Pro-depuration, more radical responses were observed in the S38 group. Based on the results, we suggested that the 10% salinity fluctuation was suitable for oyster depuration and the combination of multi-omics analysis could provide a new perspective for the analysis of the mechanism changes.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, 266237, PR China
| | - Haohao Shi
- College of Food Science and Technology, Hainan University, Hainan, 570228, PR China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
12
|
Yu M, Jiang C, Meng Y, Wang F, Qian J, Fei F, Yin Z, Zhao W, Zhao Y, Liu H. Effect of low temperature on the resistance of Listeria monocytogenes and Escherichia coli O157:H7 to acid electrolyzed water. Food Res Int 2023; 168:112776. [PMID: 37120223 DOI: 10.1016/j.foodres.2023.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Low temperature can affect the resistance of pathogenic bacteria to other external stress. The present study was envisaged to assess the tolerance of L. monocytogenes and E. coli O157:H7 to acidic electrolyzed water (AEW) under low temperature stress. AEW treatment caused a damage to cell membrane of the pathogenic bacteria, which led to protein leakage and DNA damage. Compared with the pathogenic bacteria cultured at 37 °C (pure culture), the L. monocytogenes and E. coli O157:H7 cells cultivated at low temperature presented a less damage and had a higher survival rate when exposed to AEW. Therefore, 4 °C or 10 °C grown bacteria were less susceptible to AEW than those cultured at 37 °C. And this phenomenon was verified when AEW was used to treat the pathogenic bacteria inoculated in salmon. In addition, transcriptomic sequencing technology (RNA-seq) was used to reveal the mechanism of AEW tolerance of L. monocytogenes under low temperature stress. Transcriptomic analysis showed the expression of the cold shock protein, regulation of DNA-templated transcription, ribosome pathway, phosphotransferase system (PTS), bacteria chemotaxis, SOS response and DNA repair were involved in the resistance of L. monocytogenes to AEW. We speculated that the direct modulation of the expression of cold shock protein CspD, the indirect effect on the expression of cspD by inhibiting the expression of Crp/Fnr family transcriptional regulator or enhancing the level of cAMP by regulating PTS could reduce the resistance of L. monocytogenes cultivated at 4 °C to AEW. Our study contributes to solving the problem of the reduced bacteriostatic effect in cold storage environment.
Collapse
|
13
|
Zhao L, Chen MH, Bi X, Du J. Physicochemical properties, structural characteristics and in vitro digestion of brown rice–pea protein isolate blend treated by microbial transglutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Cheng JH, Zou S, Ma J, Sun DW. Toxic reactive oxygen species stresses for reconfiguring central carbon metabolic fluxes in foodborne bacteria: Sources, mechanisms and pathways. Crit Rev Food Sci Nutr 2023; 63:1806-1821. [PMID: 36688292 DOI: 10.1080/10408398.2023.2169245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The toxic reactive oxygen species (toxROS) is the reactive oxygen species (ROS) beyond the normal concentration of cells, which has inactivation and disinfection effects on foodborne bacteria. However, foodborne bacteria can adapt and survive by physicochemical regulation of antioxidant systems, especially through central carbon metabolism (CCM), which is a significant concern for food safety. It is thus necessary to study the antioxidant regulation mechanisms of CCM in foodborne bacteria under toxROS stresses. Therefore, the purpose of this review is to provide an update and comprehensive overview of the reconfiguration of CCM fluxes in foodborne bacteria that respond to different toxROS stresses. In this review, two key types of toxROS including exogenous toxROS (exo-toxROS) and endogenous toxROS (endo-toxROS) are introduced. Exo-toxROS are produced by disinfectants, such as H2O2 and HOCl, or during food non-thermal processing such as ultraviolet (UV/UVA), cold plasma (CP), ozone (O3), electrolyzed water (EW), pulsed electric field (PEF), pulsed light (PL), and electron beam (EB) processing. Endo-toxROS are generated by bioreagents such as antibiotics (aminoglycosides, quinolones, and β-lactams). Three main pathways for CCM in foodborne bacteria under the toxROS stress are also highlighted, which are glycolysis (EMP), pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA). In addition, energy metabolisms throughout these pathways are discussed. Finally, challenges and future work in this area are suggested. It is hoped that this review should be beneficial in providing insights for future research on bacterial antioxidant CCM defence under both exo-toxROS stresses and endo-toxROS stresses.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Sang Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
15
|
Wang F, Lin YN, Xu Y, Ba YB, Zhang ZH, Zhao L, Lam W, Guan FL, Zhao Y, Xu CH. Mechanisms of acidic electrolyzed water killing bacteria. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Chen L, Li X, Lou X, Shu W, Hai Y, Wen X, Yang H. NMR-based metabolomics reveals the antibacterial effect of electrolysed water combined with citric acid on Aeromonas spp. in barramundi (Lates calcarifer) fillets. Food Res Int 2022; 162:112046. [DOI: 10.1016/j.foodres.2022.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
|
17
|
Creydt M, Fischer M. Food metabolomics: Latest hardware-developments for nontargeted food authenticity and food safety testing. Electrophoresis 2022; 43:2334-2350. [PMID: 36104152 DOI: 10.1002/elps.202200126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022]
Abstract
The analytical requirements for food testing have increased significantly in recent years. On the one hand, because food fraud is becoming an ever-greater challenge worldwide, and on the other hand because food safety is often difficult to monitor due to the far-reaching trade chains. In addition, the expectations of consumers on the quality of food have increased, and they are demanding extensive information. Cutting-edge analytical methods are required to meet these demands. In this context, non-targeted metabolomics strategies using mass and nuclear magnetic resonance spectrometers (mass spectrometry [MS]) have proven to be very suitable. MS-based approaches are of particular importance as they provide a comparatively high analytical coverage of the metabolome. Accordingly, the efficiency to address even challenging issues is high. A variety of hardware developments, which are explained in this review, have contributed to these advances. In addition, the potential of future developments is highlighted, some of which are currently not yet commercially available or only used to a comparatively small extent but are expected to gain in importance in the coming years.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Wang Y, Yang H. Metabolomics elucidating the effect of water activity on the thermal resistance of Salmonella in wheat flour. Food Res Int 2022; 162:112203. [DOI: 10.1016/j.foodres.2022.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
19
|
Wen C, Song D, Zhuang L, Liu G, Liang L, Zhang J, Liu X, Li Y, Xu X. Isolation and identification of polyphenol monomers from celery leaves and their structure-antioxidant activity relationship. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Nanoemulsified clove essential oils-based edible coating controls Pseudomonas spp.-causing spoilage of tilapia (Oreochromis niloticus) fillets: Working mechanism and bacteria metabolic responses. Food Res Int 2022; 159:111594. [DOI: 10.1016/j.foodres.2022.111594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
|
21
|
Yin H, Yuanrong Z, Li Y, Zijing X, Yongli J, Yun D, Danfeng W, Yu Z. Optimization of antibacterial and physical properties of chitosan/citronella oil film by electrostatic spraying and evaluation of its preservation effectiveness on salmon fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Wang XY, Xie J. Response to Cold Adaption in Acinetobacter johnsonii XY27 from Spoiled Bigeye Tuna ( Thunnus obesus): Membrane Protein Composition and Protein Biomarker Identification by Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10000-10010. [PMID: 35919963 DOI: 10.1021/acs.jafc.2c03303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acinetobacter johnsonii is one of the major food-spoilage bacteria and can survive under cold stress. In this study, the membrane composition, membrane permeability, and energy transduction of A. johnsonii XY27 cultured at 4 and 30 °C were examined comparatively by flow cytometry combined with liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The Na+/K+ATPase activity, alkaline phosphatase and ATPase activity, fluorescence intensity, and cell viability in A. johnsonii XY27 increased with the decrease in cultivation temperature. The polyunsaturated fatty acid and monounsaturated fatty acids have a higher content in A. johnsonii XY27 cultured at 4 °C compared to that cultured at 30 °C, in which the contents of methyl palmitoleate, methyl myristoleate, and methyl oleate increased dramatically with decreasing temperature. Comparative proteomics analysis revealed that 31 proteins were downregulated and 4 proteins were upregulated, in which catalase-peroxidase 1 and cold shock proteins as biomarker proteins could effectively control A. johnsonii during cold adaptation.
Collapse
Affiliation(s)
- Xin-Yun Wang
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
23
|
Yan Q, Mei J, Li D, Xie J. Application of sonodynamic technology and sonosensitizers in food sterilization: a review of developments, trends and challenges. Crit Rev Food Sci Nutr 2022; 64:740-759. [PMID: 35950483 DOI: 10.1080/10408398.2022.2108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food safety and food waste have always been hot topics of discussion in recent years. However, the infection of human pathogenic bacteria and the waste of food resources caused by microbial-contaminated food remains common. Although traditional sterilization technology has been very mature, it causes changes in food flavor and excessive energy consumption to a certain extent. Moreover, the widespread bacterial resistance has also sounded a warning for researchers and finding a new alternative to antibiotics is urgently needed. The application of sonodynamic sterilization technology in medical treatment has aroused the interest of researchers. It provides ideas for new food sterilization technology. As a new non-thermal sterilization technology, sonodynamic sterilization technology has strong penetration, safety, less residue and by-products, and will less change the quality of the food itself. Therefore, sonodynamic sterilization technology has great potential applied in food sterilization technology. This review describes the concept of sonodynamic sterilization technology, the sterilization mechanism of sonodynamic sterilization and the inactivation mechanism of various pathogens, the classification and application of sonosensitizers, and the ultrasonic technology in sonodynamic sterilization in the application over the recent years. It provides a scientific reference for the application of sonodynamic sterilization technology in the field of food sterilization.
Collapse
Affiliation(s)
- Qi Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Dapeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
24
|
Ran X, Yang Z, Chen Y, Yang H. Konjac glucomannan decreases metabolite release of a plant-based fishball analogue during in vitro digestion by affecting amino acid and carbohydrate metabolic pathways. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Yu X, Zou Y, Zhang Z, Wei T, Ye Z, Yuk HG, Zheng Q. Recent advances in antimicrobial applications of curcumin-mediated photodynamic inactivation in foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Liu CY, Tsai GJ, Pan CL, Shang KC, Tseng HJ, Chai HJ, Hsiao HI. Dual bacterial strains TTI for monitoring fish quality in food cold chain. J Food Sci 2022; 87:3562-3572. [PMID: 35789483 DOI: 10.1111/1750-3841.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022]
Abstract
Most microbial time-temperature indicators (TTIs) considered only one spoilage strain. This research compared single and dual spoilage strains-based microbial TTI for quality changes of chilled grouper fish (Epinephelus fuscoguttatus x E. lanceolatus) fillet products during distribution. The next-generation sequencing (NGS) and traditional plate count approach showed that Pseudomonas fragi and Vibrio parahaemolyticus were specific spoilage bacteria at 7 and 15°C. A dual-strain TTI response provides more accurate results than a single-strain TTI and provides an irreversible color change from yellow to reddish-brown, showing levels of fish freshness. The microbial TTI comprises fish spoilage bacteria strains with 3 log CFU/ml, a nutrient broth supplemented with 2% NaCl as a medium, and phenol red with 0.25 mg/ml as a pH indicator. Overall, this study points to the applicability of a dual-strain microbial TTI as a valuable tool for monitoring fish quality changes during cold chain break condition.
Collapse
Affiliation(s)
- Chia-Yu Liu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Chorng-Liang Pan
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| | - Kuo-Chung Shang
- Department of Transportation Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsiang-Jung Tseng
- Research and Development Department, Plastic Industry Development Center, Taichung, Taiwan
| | - Huey-Jine Chai
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (ROC)
| |
Collapse
|
27
|
Wang Y, Gao X, Yang H. Integrated metabolomics of "big six" Escherichia coli on pea sprouts to organic acid treatments. Food Res Int 2022; 157:111354. [PMID: 35761617 DOI: 10.1016/j.foodres.2022.111354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Naturally occurring organic acids (OAs) have demonstrated satisfactory effects in inhibiting common pathogens on fresh produce; however, their effectiveness on "big six" Escherichia coli serotypes, comprised of E. coli O26:H11, O45:H2, O103:H11, O111, O121:H19 and O145, remained unaddressed. Regarding this, using nuclear magnetic resonance (NMR) spectroscopy and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), the sanitising efficacy and the underlying antimicrobial mechanisms of 10-min treatments with 0.2 mol/L ascorbic acid (AA), citric acid (CA) and malic acid (MA) against the "big six" strains on pea sprouts were thoroughly investigated in this study. Despite the varying antimicrobial efficacy (AA: 0.12-0.99, CA: 0.36-1.72, MA: 0.75-3.28 log CFU/g reductions), the three OAs induced consistent metabolic changes in the E. coli strains, particularly in the metabolism of membrane lipids, nucleotide derivatives and amino acids. Comparing all strains, the most OA-resistant strain, O26 (0.36-1.12 log CFU/g reductions), had the largest total amino acids accumulated to resist osmotic stress; its ulteriorly suppressed cell activity further strengthened its endurance. In contrast, the lowest OA-resistance of O121 (0.99-3.28 log CFU/g reductions) might be explained by the depletion of putrescine, an oxidative stress regulator. Overall, the study sheds light on the effectiveness of a dual-platform metabolomics investigation in elucidating the metabolic responses of "big six" E. coli to OAs. The manifested antimicrobial effects of OAs, especially MA, together with the underlying metabolic perturbations detected in the "big six" strains, provided scientific basis for applying OA treatments to future fresh produce sanitisation.
Collapse
Affiliation(s)
- Yue Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xianfu Gao
- Shanghai Profleader Biotech Co., Ltd, Jiading District, Shanghai 201805, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
28
|
NMR-based metabolomic investigation on antimicrobial mechanism of Salmonella on cucumber slices treated with organic acids. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Lin Z, Chen T, Zhou L, Yang H. Effect of chlorine sanitizer on metabolic responses of Escherichia coli biofilms "big six" during cross-contamination from abiotic surface to sponge cake. Food Res Int 2022; 157:111361. [PMID: 35761623 DOI: 10.1016/j.foodres.2022.111361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
Abstract
The effect of chlorine on Escherichia coli biofilm O157:H7 are well established; however, the effect on biofilm adhesion to food as well as the six emerging E. coli serotypes ("big six") have not been fully understood. Chlorine sanitization with 1-min 100 mg/L was applied against seven pathogenic E. coli (O111, O121:H19, O45:H2, O26:H11, O103:H11, O145, and O157:H7) biofilms on high-density polyethylene (HDPE) and stainless steel (SS) coupons, respectively. Using sponge cake as a food model, the adhesion behavior was evaluated by comparison of bacteria transfer rate before and after treatment. Besides, the metabolic profiles of biofilms were analyzed by nuclear magnetic resonance (NMR) spectrometer. A significant decrease in transfer rate (79% decline on SS and 33% decline on HDPE) was recorded as well as the distinctive pattern between SS and HDPE coupons was also noticed, with a low population (6-7 log CFU/coupon) attached and low survivals (0-3 log CFU/coupon) upon chlorine on SS, while high population (7-8 log CFU/coupon) attached and high survivals (5-7 log CFU/coupon) on HDPE. Moreover, O121:H19 and O26:H11 demonstrated the highest resistance to chlorine with the least metabolic status and pathways affected. O103:H11, O145, and O111 followed similar metabolic patterns on both surfaces. Distinct metabolic patterns were found in O45:H2 and O157:H7, where the former had more affected metabolic status and pathways on SS but less on HDPE, whereas the latter showed an opposite trend. Overall, a potential contamination source of STEC infection in flour products was demonstrated and metabolic changes induced by chlorine were revealed by NMR-based metabolomics, which provides insights to avoid "big six" biofilms contamination in food.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Tong Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lehao Zhou
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
30
|
Wen Y, Li W, Su R, Yang M, Zhang N, Li X, Li L, Sheng J, Tian Y. Multi-Target Antibacterial Mechanism of Moringin From Moringa oleifera Seeds Against Listeria monocytogenes. Front Microbiol 2022; 13:925291. [PMID: 35756047 PMCID: PMC9213813 DOI: 10.3389/fmicb.2022.925291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate] is an isothiocyanate from Moringa oleifera seeds. It is the bioactivated form of the glucosinolate precursor glucomoringin with various health benefits. However, few studies have examined the antibacterial activity of moringin. This study aimed to investigate the antimicrobial activity and mechanism of moringin against Listeria monocytogenes. The minimum inhibitory concentration (MIC), and growth curves were used to evaluate the bacteriostatic effect of moringin against L. monocytogenes. Transcriptome analysis by RNA sequencing was performed to elucidate the underlying mechanism of moringin against L. monocytogenes. The transcriptome results were validated. The results showed that moringin inhibited the growth of L. monocytogenes with a MIC of 400 μM. RNA sequencing results showed that the differences in the expression of genes related to the cell wall and membrane biosynthesis, phosphotransferase system (PTS), oxidative stress, energy metabolism, and DNA binding were significantly affected. As with the transcriptome results, the results of the mechanism verification found that moringin damaged the integrity of the cell wall and cell membrane, stimulated oxidative stress, interfered with energy metabolism and DNA replication, and finally led to the death of L. monocytogenes. The present study provides evidence that moringin exhibits strong antimicrobial activity against L. monocytogenes and insight into its potential mechanism.
Collapse
Affiliation(s)
- Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Wenyun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Rongzhen Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Nan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ximing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
31
|
Zhao X, Lan W, Yang X, Xie J. Inactivation effect and protective barriers damage caused to
Shewanella putrefaciens
by stable chlorine dioxide combined with slightly acidic electrolyzed water. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinyu Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
| | - Xin Yang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
32
|
Song MG, Jeon EB, Kim JY, Park SY. Effects of sodium hypochlorite on the potential infectivity of human norovirus
GII
.4 using propidium monoazide with
RT‐qPCR
and quality assessments in Manila clams (
Ruditapes philippinarum
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Gyu Song
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Ji Yoon Kim
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science and Technology Gyeongsang National University Tongyeong Republic of Korea
| |
Collapse
|
33
|
Yu X, Zheng P, Zou Y, Ye Z, Wei T, Lin J, Guo L, Yuk HG, Zheng Q. A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2022; 63:7692-7707. [PMID: 35369810 DOI: 10.1080/10408398.2022.2049201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.
Collapse
Affiliation(s)
- Xinpeng Yu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
34
|
Xu M, Zou J, Zhao X, Feng Y, Duan R, Yang B. Effect of lactobacteria fermentation on structure and physicochemical properties of Chinese yam starch (Dioscorea opposita Thunb.). Food Chem 2022; 387:132873. [PMID: 35390605 DOI: 10.1016/j.foodchem.2022.132873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Biotransformation is an effective technique to modify the structure and physicochemical properties of carbohydrates. In this work, Chinese yam (Dioscorea opposita Thunb.) starch was fermented by lactobacteria. The effect of fermentation time (6, 12, 30, 42 and 72 h) on structure and physicochemical properties of Chinese yam starch were investigated. The microstructure was destroyed after lactobacteria fermentation for 42 and 72 h. The X-ray diffraction pattern of Chinese yam starch indicated a transformed A to A + V crystalline type. → 4)-α-d-glucose-(1 → from backbone and unreduced terminal α-d-glucose-(1 → 4 from branch were identified by NMR spectra, and free glucose was only detected in fermented starch at 72 h. With the extension of fermentation time, the crystallinity and thermal parameters increased within 42 h and thereafter decreased. Mw, Mw/Mn, long chains of DP25-36 and DP ≥ 37, peak viscosity, trough viscosity, finally viscosity and setback presented a reverse trend.
Collapse
Affiliation(s)
- Meijuan Xu
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Jian Zou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Xiaodong Zhao
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430000, China
| | - Yongting Feng
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China; School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430000, China
| | - Ruoyu Duan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100000, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
35
|
Metabolic Responses of "Big Six" Escherichia coli in Wheat Flour to Thermal Treatment Revealed by Nuclear Magnetic Resonance Spectroscopy. Appl Environ Microbiol 2022; 88:e0009822. [PMID: 35285244 DOI: 10.1128/aem.00098-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli outbreaks linked to wheat flour consumption have kept emerging in recent years, which necessitated an antimicrobial step being incorporated into the flour production process. The objectives of this in vivo study were to holistically evaluate the sanitizing efficacy of thermal treatment at 60 and 70°C against the "big six" E. coli strains (O26:H11, O45:H2, O103:H11, O111, O121:H19, and O145) in wheat flour and to assess the strain-specific metabolic responses using nuclear magnetic resonance (NMR) spectroscopy. The 70°C treatment temperature indiscriminatingly inactivated all strains by over 4.3-log CFU/g within 20 min, suggesting the high sanitization effectiveness of this treatment temperature, whereas the treatment at 60°C inactivated the strains to various degrees during the 1-h process. The most resistant strains at 60°C, O26 and O45, were characterized by amino acid and sugar depletion, and their high resistance was attributed to the dual effects of activated heat shock protein (HSP) synthesis and promoted glycolysis. O121 also demonstrated these metabolic changes, yet its thermal resistance was largely impaired by the weakened membrane structure and diminished osmotic protection due to phosphorylcholine exhaustion. In contrast, O111, O145, and O103 presented a substantial elevation of metabolites after stress at 60°C; their moderate thermal resistance was mainly explained by the accumulation of amino acids as osmolytes. Overall, the study enhanced our understanding of the metabolic responses of big six E. coli to heat stress and provided a model for conducting NMR-based metabolomic studies in powdered food matrices. IMPORTANCE "Big six" Escherichia coli strains have caused several outbreaks linked to wheat flour consumption in the last decade, revealing the vital importance of adopting an antimicrobial treatment during the flour production process. Therefore, the present study was carried out to evaluate the efficacy of a typical sanitizing approach, thermal treatment, against the big six strains in wheat flour along with the underlying antimicrobial mechanisms. Findings showed that thermal treatment at 60 and 70°C could markedly mitigate the loads of all strains in wheat flour. Moreover, activated heat shock protein synthesis combined with expedited glycolysis and enhanced osmotic protection were identified as two major metabolic alteration patterns in the E. coli strains to cope with the heat stress. With the responses of big six in wheat flour to thermal treatment elucidated, scientific basis for incorporating a thermal inactivation step in wheat flour production was provided.
Collapse
|
36
|
Zhao L, Poh CN, Wu J, Zhao X, He Y, Yang H. Effects of electrolysed water combined with ultrasound on inactivation kinetics and metabolite profiles of Escherichia coli biofilms on food contact surface. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102917] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
He R, Chen W, Chen H, Zhong Q, Zhang H, Zhang M, Chen W. Antibacterial mechanism of linalool against L. monocytogenes, a metabolomic study. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Yi Z, Xie J. Assessment of spoilage potential and amino acids deamination & decarboxylation activities of Shewanella putrefaciens in bigeye tuna (Thunnus obesus). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Ibáñez E, Cifuentes A. Foodomics: Analytical Opportunities and Challenges. Anal Chem 2022; 94:366-381. [PMID: 34813295 PMCID: PMC8756396 DOI: 10.1021/acs.analchem.1c04678] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| |
Collapse
|
40
|
Kobayashi F, Aoki H, Kamagata J, Odake S. Effect of electrolyzed water and carbon dioxide microbubbles on removal of diazinon and diazoxon. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fumiyuki Kobayashi
- Faculty of Applied Life Science Nippon Veterinary and Life Science University Tokyo Japan
| | - Hitoshi Aoki
- Research & Development Department Nichirei Foods Inc. Chiba Japan
| | - Junichi Kamagata
- Research & Development Department Nichirei Foods Inc. Chiba Japan
| | - Sachiko Odake
- Faculty of Applied Life Science Nippon Veterinary and Life Science University Tokyo Japan
| |
Collapse
|
41
|
Emetic toxin production of Bacillus cereus in a biofilm. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Comparison of the metabolic responses of eight Escherichia coli strains including the “big six” in pea sprouts to low concentration electrolysed water by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Zhou J, Sheng L, Lv R, Liu D, Ding T, Liao X. Application of a 360-Degree Radiation Thermosonication Technology for the Inactivation of Staphylococcus aureus in Milk. Front Microbiol 2021; 12:771770. [PMID: 34803991 PMCID: PMC8602915 DOI: 10.3389/fmicb.2021.771770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Milk is easy to be contaminated by microorganisms due to its abundant nutrients. In this study, a 360-degree radiation thermosonication (TS) system was developed and utilized for the inactivation of Staphylococcus aureus in milk. The 360-degree radiation TS system-induced inactivation kinetics of S. aureus was fitted best by the Weibull model compared with biphasic and linear models. The treatment time, the exposure temperature, and the applied ultrasound power was found to affect the bactericidal efficacy of the 360-degree radiation TS system. Additionally, the TS condition of 200 W and 63°C for 7.5 min was successfully applied to achieve complete microbial inactivation (under the limit of detection value) in raw milk. The treatment of 360-degree radiation TS can enhance the zeta potential and decrease the average particle size of milk. It also exhibited better retainment of the proteins in milk compared with the ultrahigh temperature and conventional pasteurization processing. Therefore, the 360-degree radiation TS system developed in this study can be used as an alternative technology to assure the microbiological safety and retain the quality of milk, and the Weibull model could be applied for the prediction of the inactivation levels after exposure to this technology.
Collapse
Affiliation(s)
- Jianwei Zhou
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
| | - Lele Sheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ruiling Lv
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xinyu Liao
- School of Mechanical and Energy Engineering, Ningbotech University, Ningbo, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Wang R, Fang M, Hu X, Yu Y, Xiao X. Kojic acid and tea polyphenols inactivate
Escherichia coli
O157:H7
in vitro
and on salmon fillets by inflicting damage on cell membrane and binding to genomic DNA. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ruifei Wang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Meimei Fang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinyi Hu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Yigang Yu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| |
Collapse
|
45
|
Pan Y, Cheng JH, Sun DW. Metabolomic analyses on microbial primary and secondary oxidative stress responses. Compr Rev Food Sci Food Saf 2021; 20:5675-5697. [PMID: 34601780 DOI: 10.1111/1541-4337.12835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Food safety is veryimportant in our daily life. In food processing or disinfection, microorganisms are commonly exposed to oxidative stress perturbations. However, microorganisms can adapt and respond to physicochemical interventions, leading to difficulty and complexity for food safety assurance. Therefore, understanding the response mechanisms of microbes and providing an overview of the responses under oxidative stress conditions are beneficial for ensuring food safety for the industry. The current review takes the metabolomics approach to reveal small metabolite signatures and key pathway alterations during oxidative stress at the molecular and technical levels. These alterations are involved in primary oxidative stress responses due to inactivation treatments such as using hypochlorite (HOCl), hydrogen peroxide (H2 O2 ), electrolyzed water (EW), irradiation, pulsed light (PL), electron beam (EB), and secondary oxidative stress responses due to exposures to excessive conditions such as heat, pressure, acid, and alkaline. Details on the putative origin of exogenous or endogenous reactive oxygen species (ROS) are discussed, with particular attention paid to their effects on lipid, amino acid, nucleotide, and carbohydrate metabolism. In addition, mechanisms on counteracting oxidative stresses, stabilization of cell osmolality as well as energy provision for microbes to survive are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin, Ireland
| |
Collapse
|
46
|
Shen C, Rao J, Wu Q, Wu D, Chen K. The effect of indirect plasma-processed air pretreatment on the microbial loads, decay, and metabolites of Chinese bayberries. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
He Y, Zhao X, Chen L, Zhao L, Yang H. Effect of electrolysed water generated by sodium chloride combined with sodium bicarbonate solution against Listeria innocua in broth and on shrimp. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108134] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|