1
|
Villarreal-Otalvaro C, Gupta S, Dorn RW, Delaney JT, Koppolu B, Coburn JM. Formulation and characterization of ionically crosslinked gellan gum hydrogels using trilysine at low temperatures for antibody delivery. Colloids Surf B Biointerfaces 2024; 242:114069. [PMID: 39018916 DOI: 10.1016/j.colsurfb.2024.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Research of the nontraditional polysaccharide gellan gum (GG) is a growing space for the development of novel drug delivery systems due to its tunable physic-mechanical properties, biocompatibility, and stability in a wide range of environments. Unfortunately, high temperature crosslinking is often required, representing a limiting factor for the incorporation of thermosensitive therapeutic agents. Here, we demonstrated that GG can be crosslinked at a low temperature (38 °C) using a simple fabrication process that utilizes trilysine as an alternative to traditional mono- or divalent ion crosslinkers. While elevated temperature mixing is still required to form a clear GG solution, crosslinking of 0.5 - 1 % GG (w/v) in the presence of trilysine (0.03 % - 0.05 % w/v) was achieved at 38 °C resulting in hydrogels with suitable working formulations to facilitate syringe loading. Low injection forces (< 20 N), and biocompatibility was evaluated with normal human dermal fibroblast (cell viability > 90 %). Frequency sweep showed a transition from purely liquid-like behavior to gel-like behavior with increased trilysine concentration. A temperature dependent behavior was lost with higher trilysine concentrations, indicating stable hydrogel formation. NMR results suggest that trilysine participates in gelation via both ionic interactions between the primary amines of trilysine and the carboxylate residues of glucuronic acid and hydrogen bonding. Released studies showed that GG hydrogels can entrap and provide sustained release of IgG in relation to the crosslinker, and antibody concentration used, with a burst release within the first 24 h (∼80 % cumulative released) followed by a sustained released for up to 5 days. Overall, findings demonstrate a promising nontoxic injectable hydrogel that requires lower crosslinking temperatures, is simple to manufacture and serves as a carrier of thermosensitive therapeutic agents.
Collapse
Affiliation(s)
- Carolina Villarreal-Otalvaro
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA; Boston Scientific, Marlborough, MA, USA
| | - Shivank Gupta
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | | | | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
2
|
Guillaumin S, Gurdal M, Zeugolis DI. Gums as Macromolecular Crowding Agents in Human Skin Fibroblast Cultures. Life (Basel) 2024; 14:435. [PMID: 38672707 PMCID: PMC11051389 DOI: 10.3390/life14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Even though tissue-engineered medicines are under intense academic, clinical, and commercial investigation, only a handful of products have been commercialised, primarily due to the costs associated with their prolonged manufacturing. While macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition in eukaryotic cell culture, possibly offering a solution in this procrastinating tissue-engineered medicine development, there is still no widely accepted macromolecular crowding agent. With these in mind, we herein assessed the potential of gum Arabic, gum gellan, gum karaya, and gum xanthan as macromolecular crowding agents in WS1 skin fibroblast cultures (no macromolecular crowding and carrageenan were used as a control). Dynamic light scattering analysis revealed that all macromolecules had negative charge and were polydispersed. None of the macromolecules affected basic cellular function. At day 7 (the longest time point assessed), gel electrophoresis analysis revealed that all macromolecules significantly increased collagen type I deposition in comparison to the non-macromolecular crowding group. Also at day 7, immunofluorescence analysis revealed that carrageenan; the 50 µg/mL, 75 µg/mL, and 100 µg/mL gum gellan; and the 500 µg/mL and 1000 µg/mL gum xanthan significantly increased both collagen type I and collagen type III deposition and only carrageenan significantly increased collagen type V deposition, all in comparison to the non-macromolecular crowding group at the respective time point. This preliminary study demonstrates the potential of gums as macromolecular crowding agents, but more detailed biological studies are needed to fully exploit their potential in the development of tissue-engineered medicines.
Collapse
Affiliation(s)
- Salome Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
3
|
Cai Z, Guo Y, Ma A, Zhang H. NMR analysis of the side-group substituents in welan gum in comparison to gellan gum. Int J Biol Macromol 2024; 254:127847. [PMID: 37924910 DOI: 10.1016/j.ijbiomac.2023.127847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
The physicochemical properties and applications of polysaccharides are highly dependent on their chemical structures, including the monosaccharide composition, degree of substitution, and position of substituent groups in the backbone. The occurrence of side groups or side chains in the chain backbone of polysaccharides is often an essential factor influencing their conformational and physicochemical properties. Welan gum produced by the fermentation of Sphingomonas sp. ATCC 31555 microorganisms has been widely used in food, construction, and oil drilling fields. While understanding the physicochemical properties of welan gum solution has been highly developed, there is still little information about the determination strategy of the glycosyl side groups in welan gum. In this study, the NMR method was established to quantitatively determine the substituent groups in the chain backbone of welan gum. The delicate chemical structures of welan gum obtained at different fermentation conditions were clarified. The composition and content of side substituents were also identified by high-performance liquid chromatography to confirm the accuracy of NMR analysis. The quantitative determination of substituent groups in gellan gum based on NMR analysis was also elaborated for comparison. This work provides insights for profoundly understanding the structure-function relationship of welan gum.
Collapse
Affiliation(s)
- Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yalong Guo
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqin Ma
- Department of Nutrition, Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, China.
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Gelation behaviors of some special plant-sourced pectins: A review inspired by examples from traditional gel foods in China. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Descallar FBA, Wang A, Matsukawa S. The influence of iota carrageenan on water mobility and aging of agarose gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
7
|
Geonzon LC, Descallar FBA, Du L, Bacabac RG, Matsukawa S. Gelation mechanism and network structure in gels of carrageenans and their mixtures viewed at different length scales – A review. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Change of network structure in agarose gels by aging during storage studied by NMR and electrophoresis. Carbohydr Polym 2020; 245:116497. [DOI: 10.1016/j.carbpol.2020.116497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022]
|
9
|
Yamada Y, Shizuma M. Study on release suppression of cinnamaldehyde from κ-carrageenan gel by HR-MASNMR and pulsed field gradient NMR (PFG-NMR). Food Hydrocoll 2020; 110:106130. [PMID: 32834337 PMCID: PMC7347355 DOI: 10.1016/j.foodhyd.2020.106130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/01/2022]
Abstract
Aiming toward the production and characterization of delicious and functional gel foods, this communication studies the flavor release from cinnamon-containing κ-carrageenan gel. Cinnamaldehyde, which provides the flavor of cinnamon, was released in a trace amount from the gel and detected by flame ionization detector gas chromatography. The retention of cinnamaldehyde in κ-carrageenan gel and the interaction between flavor and polysaccharide were investigated by high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) and pulsed-field gradient NMR (PFG NMR). The intact cinnamaldehyde in the gel was also observed by HR-MAS NMR. The relative mobility difference of the flavor and polysaccharide molecules was observed from the diffusion-ordered NMR spectrum of PFG NMR.
Collapse
Affiliation(s)
- Yasumasa Yamada
- Department of Food Science and Human Nutrition, Faculty of Food Culture and Human Nutrition, Baika Women's University, 2-19-5 Shukunosho, Ibaraki City, Osaka, 567-8578, Japan
| | - Motohiro Shizuma
- Department of Biochemistry, Osaka Research Institute of Industrial and Scientific Technology (ORIST), 1-6-50 Morinomiya, Joto-ku, Osaka, 536-8553, Japan
| |
Collapse
|
10
|
Osmałek TZ, Froelich A, Jadach B, Krakowski M. Rheological investigation of high-acyl gellan gum hydrogel and its mixtures with simulated body fluids. J Biomater Appl 2018. [DOI: 10.1177/0885328218762361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose Most of the studies concerning gellan have been focused on its application as a food ingredient, however, gellan is often considered as a candidate for the development of novel pharmaceutical formulations. Taking into account that gellan is ion-sensitive, it can be assumed that its initial mechanical properties can change upon contact with body secretions. Therefore, the aim of the work was to investigate the rheological properties of pure high-acyl gellan gum hydrogel (0.4%) and its mixtures with selected simulated body fluids. Methods The rheological investigations were performed on rotational rheometer and included oscillatory temperature, amplitude, and frequency sweeping. The results enabled estimation of the linear viscoelastic regime, calculation of the cross-over points, and percentage of structure recovery. Results In the case of pure hydrogel no evidence of thermosensitivity was observed in the range of 20–40°C. In pH = 1.2 (NaCl/HCl) the hydrogel structure was almost entirely destroyed. Mixing with phosphate buffer (pH = 4.5) resulted in higher gel strength than after dilution with deionized water. The opposite effect was observed in the case of pH = 7.4. The studies performed for the mixture of GG hydrogel and mucin indicated interaction between the components. The hydrogel elasticity increased in the presence of simulated tear, but decreased in simulated saliva and vaginal fluid. Conclusions In this study, it was shown that the stability of a three-dimensional gellan structure may be affected by pH and the presence of mucin which most probably competed with gellan gum in divalent cations binding. The observations presented in this study may be important in terms of potential application of gellan gum as a potential carrier in drug delivery systems.
Collapse
Affiliation(s)
- Tomasz Zbigniew Osmałek
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań, Poland
| | - Anna Froelich
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań, Poland
| | - Barbara Jadach
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań, Poland
| | - Marek Krakowski
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań, Poland
| |
Collapse
|
11
|
Zia KM, Tabasum S, Khan MF, Akram N, Akhter N, Noreen A, Zuber M. Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int J Biol Macromol 2017; 109:1068-1087. [PMID: 29157908 DOI: 10.1016/j.ijbiomac.2017.11.099] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023]
Abstract
Gellan gum (GG), a linear negatively charged exopolysaccharide,is biodegradable and non-toxic in nature. It produces hard and translucent gel in the presence of metallic ions which is stable at low pH. However, GG has poor mechanical strength, poor stability in physiological conditions, high gelling temperature and small temperature window.Therefore,it is blended with different polymers such as agar, chitosan, cellulose, sodium alginate, starch, pectin, polyanaline, pullulan, polyvinyl chloride, and xanthan gum. In this article, a comprehensive overview of combination of GG with natural and synthetic polymers/compounds and their applications in biomedical field involving drug delivery system, insulin delivery, wound healing and gene therapy, is presented. It also describes the utilization of GG based materials in food and petroleum industry. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan.
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Muhammad Faris Khan
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan; Department of Allied Health Sciences, Government College University, Faisalabad, 38030, Pakistan
| | - Nadia Akram
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Naheed Akhter
- Department of Allied Health Sciences, Government College University, Faisalabad, 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, 38030, Pakistan
| |
Collapse
|
12
|
Hu B, Lu Y, Zhao Q, Matsukawa S. A study on the gelation behavior of solutions of native gellan, deacylated gellan, and their mixture by water 1H T2 measurements. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Mazzuca C, Poggi G, Bonelli N, Micheli L, Baglioni P, Palleschi A. Innovative chemical gels meet enzymes: A smart combination for cleaning paper artworks. J Colloid Interface Sci 2017; 502:153-164. [PMID: 28478222 DOI: 10.1016/j.jcis.2017.04.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS Due to their highly retentive properties, innovative recently developed, semi-interpenetrated hydrogels made up of poly(vinyl pyrrolidone) (PVP) chains embedded in a poly(2-hydroxyethyl methacrylate) (p(HEMA)) network should be efficiently used as cleaning material for fragile and degraded paper artworks. In restoration practice, indeed the wet cleaning of these artworks is usually performed by immersion of paper in water, a procedure which may lead to several drawbacks, including paper fibers swelling and dissolution of water-soluble original components. EXPERIMENTS This class of gels were yet presented in literature, but their interactions with paper materials and ability to be spiked with active enzymes (as cleaning agents), have not been analyzed. To establish the suitability of these hydrogels as paper cleaning materials, first, a rheological and microstructural characterization of the gels was performed. Moreover, diffusion of macromolecules inside gels was studied using fluorescence microscopy, to check if these innovative hydrogels can be used as carriers for hydrolytic enzymes. Indeed, pastes and glues are usually found in old paper artworks, and their removal is a very delicate operation that requires a selective action, which is granted by specific hydrolytic enzymes. At the same time, spectroscopic analyses on paper samples under investigation before and after cleaning treatment has been performed, thus assessing the capabilty of these gels as cleaning materials. FINDINGS With the aim of demonstrating the versatility of these hydrogels, several case studies, i.e., the removal of grime and water-soluble cellulose degradation byproducts, the removal of animal glue and the removal of starch paste from real samples, are presented. Results obtained with these gels have been compared to those obtained by using another gel used for paper artworks cleaning, i.e., Gellan gel.
Collapse
Affiliation(s)
- Claudia Mazzuca
- Department of Chemical Sciences and Technologies & CSGI, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Giovanna Poggi
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019 Florence, Italy
| | - Nicole Bonelli
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019 Florence, Italy
| | - Laura Micheli
- Department of Chemical Sciences and Technologies & CSGI, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Piero Baglioni
- Department of Chemistry & CSGI, University of Florence, Via della Lastruccia 3 - Sesto Fiorentino, 50019 Florence, Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies & CSGI, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
14
|
Kamerlin N, Elvingson C. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:475101. [PMID: 27662260 DOI: 10.1088/0953-8984/28/47/475101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.
Collapse
Affiliation(s)
- Natasha Kamerlin
- Department of Chemistry-Ångström Laboratory, Physical chemistry, Uppsala University, Box 523, S-751 20 Uppsala, Sweden. Department of Mathematics, Uppsala University, Box 480, S-751 06 Uppsala, Sweden
| | | |
Collapse
|
15
|
NMR study on the network structure of a mixed gel of kappa and iota carrageenans. Carbohydr Polym 2016; 150:57-64. [DOI: 10.1016/j.carbpol.2016.04.112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 11/18/2022]
|
16
|
Einhorn-Stoll U, Drusch S. Methods for investigation of diffusion processes and biopolymer physics in food gels. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Lorenzo G, Zaritzky N, Califano A. Mechanical and optical characterization of gelled matrices during storage. Carbohydr Polym 2015; 117:825-835. [DOI: 10.1016/j.carbpol.2014.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022]
|
18
|
Brenner T, Tuvikene R, Fang Y, Matsukawa S, Nishinari K. Rheology of highly elastic iota-carrageenan/kappa-carrageenan/xanthan/konjac glucomannan gels. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Matsukawa S, Ding Y, Zhao Q, Mogi A, Tashiro Y, Ogawa H. Effect of solvent transfer in agar gels on stress relaxation under large deformation. Carbohydr Polym 2014; 109:166-70. [DOI: 10.1016/j.carbpol.2014.03.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
20
|
Brenner T, Shimizu M, Nantarajit P, Matsukawa S. Side-by-side aggregation number of network-forming gellan aggregates as inferred from gradient NMR measurements. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Application of gellan gum in pharmacy and medicine. Int J Pharm 2014; 466:328-40. [DOI: 10.1016/j.ijpharm.2014.03.038] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 01/01/2023]
|
22
|
Zhao Q, Brenner T, Matsukawa S. Molecular mobility and microscopic structure changes in κ-carrageenan solutions studied by gradient NMR. Carbohydr Polym 2013; 95:458-64. [PMID: 23618293 DOI: 10.1016/j.carbpol.2013.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/21/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
Abstract
Changes in the molecular mobility of κ-carrageenan were observed by the pulsed field gradient stimulated echo (PGSTE) and Carr-Purcell-Meiboom-Gill (CPMG) methods for elucidating the molecular aspect of the sol-to-gel transition. The echo signal intensity of κ-carrageenan without a gradient, Ikap(0), decreased steeply near the sol-to-gel temperature (Tsg), suggesting that κ-carrageenan chains formed aggregates and a network structure. Below Tsg, the spin-spin relaxation time T2 and the diffusion coefficient of κ-carrageenan (Dkap) increased with decreasing temperature, indicating that the solute κ-carrageenan chains have a lower molecular weight Mw than chains involved in the aggregation. The diffusion coefficient of pullulan (Dpul) added as a probe molecule in κ-carrageenan solutions was measured, and the characteristic hydrodynamic screening length, ξ, was then estimated from the degree of diffusion restriction. Below a certain temperature, Dkap reached a higher value than that of Dpul, suggesting that the Mw of solute κ-carrageenan became lower than that of pullulan. GPC measurements confirmed the presence of κ-carrageenan chains with a lower Mw than that of pullulan. A simple physical model of the structural change in κ-carrageenan solution was proposed with a bimodal distribution of κ-carrageenan with higher and lower Mw than the pullulan probe. The higher Mw chains form the gel network restricting the probe's diffusion, and the lower Mw chains increase the effective viscosity. The concentration of the high Mw solute κ-carrageenan chains in 1%, 2% and 4% κ-carrageenan solutions was estimated from Ikap(0) and the total κ-carrageenan concentration, and the relation with pullulan diffusion was studied.
Collapse
Affiliation(s)
- Qiuhua Zhao
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Tokyo 108-8477, Japan
| | | | | |
Collapse
|
23
|
Dai B, Matsukawa S. Elucidation of gelation mechanism and molecular interactions of agarose in solution by 1H NMR. Carbohydr Res 2013. [DOI: 10.1016/j.carres.2012.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
|
25
|
Zhao Q, Matsukawa S. Estimation of the hydrodynamic screening length in κ-carrageenan solutions using NMR diffusion measurements. Polym J 2012. [DOI: 10.1038/pj.2012.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|