1
|
Zhou W, Yu J, Zhao L, Wang K, Hu Z, Wu JY, Liu X. Enhancement of chitosan-based film physicochemical and storage properties by interaction with proanthocyanidin and natural deep eutectic solvent. Int J Biol Macromol 2024; 278:134611. [PMID: 39127278 DOI: 10.1016/j.ijbiomac.2024.134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Deep eutectic solvent (DES) has been recognized as a promising plasticizer for the preparation of biodegradable food packaging films. In addition, DES-plasticized chitosan (CS) films could also serve as a favorable carrier for loading active components. In this work, a ternary composite film was fabricated by plasticizing chitosan with DES and the active ingredient proanthocyanidin (PA) was used as a cross-linking agent. The incorporation of PAs significantly enhanced the toughness, elasticity, and hydrophobicity of the ternary CS-DES-PA composite films. It achieved antioxidant and bacteriostatic functions. In particular, the ternary CS-DES-PA composite films had a thickness of 0.16 ± 0.01 μm, a tensile strength of 2.63 ± 0.48 MPa, and an elongation about 73.22 %. They also have improved water resistance, UV blocking, with a high-water contact angle of 88.4° and a low water swelling of 5 % on the surface of the film. Meanwhile, the PAs in the film could slow down the browning of litchi fruits. This ternary blended film (CS-DES-PA) achieves better compatibility of the active ingredient in the film-forming substrate. It also provides a green and biodegradable packaging material for food packaging.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
3
|
Stachowiak-Trojanowska N, Walendziak W, Douglas TEL, Kozlowska J. Whey Protein Isolate as a Substrate to Design Calendula officinalis Flower Extract Controlled-Release Materials. Int J Mol Sci 2024; 25:5325. [PMID: 38791364 PMCID: PMC11120854 DOI: 10.3390/ijms25105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The use of natural active substances and the development of new formulations are promising directions in the cosmetic and pharmacy industries. The primary purpose of this research was the production of microparticles based on whey protein isolate (WPI) and calcium alginate (ALG) containing Calendula officinalis flower extract and their incorporation into films composed of gelatin, WPI, and glycerol. Both swollen and dry microparticles were studied by optical microscopy and their sizes were measured. Water absorption by the microparticles, their loading capacity, and the release profile of flower extract were also characterized. The films were analyzed by mechanical tests (Young's modulus, tensile strength, elongation at break), swelling capacity, contact angle, and moisture content measurements. The presented data showed that the active ingredient was successfully enclosed in spherical microparticles and completely released after 75 min of incubation at 37 °C. The incorporation of the microparticles into polymer films caused a decrease in stiffness and tensile strength, simultaneously increasing the ductility of the samples. Moreover, the films containing microparticles displayed higher swelling ability and moisture content compared to those without them. Hence, the materials prepared in this study with Calendula officinalis flower extract encapsulated into polymeric microspheres can be a starting point for the development of new products intended for skin application; advantages include protection of the extract against external factors and a controlled release profile.
Collapse
Affiliation(s)
| | - Weronika Walendziak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| | | | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, ul. Gagarina 7, 87-100 Torun, Poland; (N.S.-T.); (W.W.)
| |
Collapse
|
4
|
Jieying S, Tingting L, Caie W, Dandan Z, Gongjian F, Xiaojing L. Paper-based material with hydrophobic and antimicrobial properties: Advanced packaging materials for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13373. [PMID: 38778547 DOI: 10.1111/1541-4337.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.
Collapse
Affiliation(s)
- Shi Jieying
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Tingting
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wu Caie
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhou Dandan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fan Gongjian
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Li Xiaojing
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Qin Q, Gao B, Zhang X, Han L, Sing SL, Liu X. Effects of capsaicin loads on the properties of capsicum leaf protein-based nanocellulose composite films. Int J Biol Macromol 2024; 265:130904. [PMID: 38553392 DOI: 10.1016/j.ijbiomac.2024.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/18/2024]
Abstract
This study aims to enhance the functionality of conventional protein-based nanocellulose composite films (PNCF) to meet the high demand for natural antimicrobial packaging films. Capsicum leaf protein (CLP) and cellulose nanocrystals (CNCs) extracted from capsicum leaves were used as raw materials. Capsaicin, an essential antibacterial active ingredient in the capsicum plant, was used as an additive. The influence of different capsaicin loads on PNCF physicochemical and material properties was investigated under alkaline conditions. The results show that all film-forming liquids (FFLs) are non-Newtonian fluids with shear thinning behavior. When the capsaicin loading exceeds 20 %, the surface microstructure of PNCF changes from dense lamellar to rod-like. Capsaicin did not alter the PNCF crystal structure, thermal stability or chemical bonding. Capsaicin can be loaded onto the PNCF surface by intermolecular hydrogen bonding reactions with CLP and CNC, preserving capsaicin's biological activity. With increasing capsaicin loads from 0 % to 50 %, the mechanical and hydrophobic properties of PNCF decreased, whereas the diameter of the inhibition zone increased. All PNCFs have UV-blocking properties with potential applications in developing biodegradable food packaging materials. The results of this study provide a theoretical basis for the high-value utilization of capsicum cultivation waste and the preparation of novel PNCF.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China; Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Bing Gao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Swee Leong Sing
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Goudar N, Hiremani VD, D’souza OJ, Pinto JP, Masti SP, Chougale RB. Design and fabrication of polysaccharide based excellent chemical resistant and UV barrier ternary blend films for green packaging applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:481-490. [PMID: 38327862 PMCID: PMC10844186 DOI: 10.1007/s13197-023-05856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 02/09/2024]
Abstract
The development of green materials for active packaging applications is a research hotspot due to setbacks of petrochemical derived plastics. Thus, the present study aims to develop ternary blend films by doping different wt% of Tragacanth gum (TG) to Poly(vinyl alcohol)/Chitosan (PC) blend using solvent evaporation technique. Further, their various physicochemical properties were evaluated systematically. Differential scanning calorimetry studies revealed excellent compatibility and thermal stability of PC blend was significantly reinforced with 15 wt% of TG. UV-visible spectroscopy study demonstrated the excellent shielding efficacy of UV radiation by ternary blend films. Moreover, overall migration results confirmed the limited release of film constituents into food simulants and swelling ratio analysis indicated the good swelling resistance at higher wt% of TG. The ternary films exhibited tremendous chemical resistance against extreme acidic and basic environments and these green biofilms could be considered for active packaging applications. Graphical abstract
Collapse
Affiliation(s)
- Naganagouda Goudar
- Department of Studies in Chemistry, Karnatak University, Dharwad, 580 003 India
| | - Vishram D. Hiremani
- Department of Chemistry, Tungal School of Basic and Applied Sciences, Jamkhandi, 587301 India
| | | | - Jennifer P. Pinto
- Department of Studies in Chemistry, Karnatak University, Dharwad, 580 003 India
| | - Saraswati P. Masti
- Department of Chemistry, Karnatak Science College, Dharwad, 580 001 India
| | | |
Collapse
|
7
|
Sethulakshmi AG, Saravanakumar MP. Sustainable papaya plant waste and green tea residue composite films integrated with starch and gelatin for active food packaging applications. Int J Biol Macromol 2024; 260:129153. [PMID: 38228198 DOI: 10.1016/j.ijbiomac.2023.129153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
This study explores the sustainable utilization of wastes from a papaya plant (papaya peels (PP), papaya seeds (PS), leaf-stem (PL)) and dried green tea residues (GTR) for the synthesis of bioplastics. The dried GTR were individually blended with each papaya waste extract and then boiled in water to get three composite papaya plant waste-green tea supernatants. Potato starch and gelatin-based functional films were prepared by integrating each with the composite papaya waste-green tea supernatant liquid. This work introduces a dissolved organic matter (DOM) study to the field of bioplastics, with the goal of identifying the organic components and macromolecules inherent in the PW supernatants. When compared with the films prepared solely from papaya waste (PW) supernatants, PW-GTR composite supernatant films prevent UV light transmission with superior antioxidant and mechanical properties. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and atomic force microscopy (AFM) were utilized to characterize the starch and gelatin PW-GTR films. Owing to the exceptional antioxidant, UV barrier, and remarkable biodegradable properties of the starch/PW/GTR and gelatin/PW/GTR composite films, make them ideal for use in food packaging applications.
Collapse
Affiliation(s)
- A G Sethulakshmi
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nādu, India
| | - M P Saravanakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nādu, India.
| |
Collapse
|
8
|
Lv Y, Li P, Cen L, Wen F, Su R, Cai J, Chen J, Su W. Gelatin/carboxymethylcellulose composite film combined with photodynamic antibacterial: New prospect for fruit preservation. Int J Biol Macromol 2024; 257:128643. [PMID: 38061514 DOI: 10.1016/j.ijbiomac.2023.128643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Plastic packaging causes environmental pollution, and the development of simple and effective biodegradable active packaging remains a challenge. In this study, gelatin (G) and sodium carboxymethylcellulose (CMC) were used as film materials, with the addition of curcumin (Cur), a photosensitive substance, to investigate the changes in the physical and chemical properties of the film and its application in fruit preservation. The results demonstrated that Cur was compatible with the film. With the addition of Cur, the thickness of the film increased up to 1.3 times, while the moisture content was reduced to 12.10 %. The tensile strength (TS) and elongation at break (EAB) of the film can reach 8.84 MPa and 19.33 %, respectively. The photodynamic antibacterial experiment revealed that the film containing 0.5 % Cur exhibited the highest antibacterial rate, reaching 99.99 % against Staphylococcus aureus (S. aureus) and 95 % against Escherichia coli (E. coli). During storage, the grapes remained unspoiled for up to 9 days after being phototreated with the film and the microbial content of the skin was much lower than that of the control group. In addition, Cur provided antioxidant activity for the film, with a scavenging activity of 39.54 % against the 2,2-diphenyl-1-picrind radical (DPPH). Bananas exposed to the film-forming solution for a short period of time remained fresh for up to 6 days. During preservation, the weight of the treated bananas decreased more slowly than that of the control group. In addition, the activity of SOD on the 7th day was approximately 20 U/g higher than that of the control group, which helped to reduce oxidative stress during banana preservation. In summary, G-CMC/Cur film is an optional fruit-cling film that can be used in food packaging.
Collapse
Affiliation(s)
- Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
9
|
Zhang W, Liu J, Zhang T, Teng B. A High-Performance Food Package Material Prepared by the Synergistic Crosslinking of Gelatin with Polyphenol-Titanium Complexes. Antioxidants (Basel) 2024; 13:167. [PMID: 38397765 PMCID: PMC10885897 DOI: 10.3390/antiox13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
This study aims to enhance gelatin film performance in the food industry by incorporating polyphenol-titanium complexes (PTCs) as crosslinkers. PTCs introduce multiple linkages with gelatin, including coordination and hydrogen bonds, resulting in synergistic crosslinking effects. This leads to an increased hydrodynamic volume, particle size, and thermal stability of the gelatin films. Compared to films crosslinked solely by polyphenols or titanium, PTC-crosslinked gelatin films exhibit significant improvements. They show enhanced mechanical properties with a tensile strength that is 1.7 to 2.6 times higher than neat gelatin films. Moreover, these films effectively shield UV light (from 82% to 99%), providing better protection for light-sensitive food ingredients and preserving lutein content (from 74.2% to 78.1%) under light exposure. The incorporation of PTCs also improves film hydrophobicity, as indicated by water contact angles ranging from 115.3° to 131.9° and a water solubility ranging from 31.5% to 33.6%. Additionally, PTC-enhanced films demonstrate a superior antioxidant ability, with a prolonged polyphenol release (up to 18 days in immersed water) and a higher free radical scavenging ability (from 22% to 25.2%). Overall, the improved characteristics of gelatin films enabled by PTCs enhance their performance, making them suitable for various food packaging applications.
Collapse
Affiliation(s)
- Wanqin Zhang
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
| | - Jiaman Liu
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Bo Teng
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
10
|
Mohamad EA, Shehata AM, Abobah AM, Kholief AT, Ahmed MA, Abdelhakeem ME, Dawood NK, Mohammed HS. Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging. Int J Biol Macromol 2023; 253:127045. [PMID: 37776934 DOI: 10.1016/j.ijbiomac.2023.127045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
This study aims to address the issue of environmental pollution caused by non-biodegradable petroleum-based food packaging by exploring the application of biodegradable films. Film casting was employed to fabricate food packaging films from chitosan (CS) and polyvinyl alcohol (PVA) polymers blended with moringa extract (MoE) and various concentrations of magnesium oxide nanoparticles (MgO NPs). The films were characterized through multiple techniques, including UV spectroscopy, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR). The study investigated the physicomechanical properties, water solubility, water vapor transmission rate, oxygen permeability, migration test, biodegradability, contact angle, anti-fogging, antibacterial and antifungal activity, and application of the films for food packaging. The results showed that blending CS/PVA films with MoE and MgO NPs significantly improved their mechanical properties. The highest tensile strength of 98 MPa was observed in the CPMMgO-0.5 film. The solubility of the films was low, with CPMMgO-0 and CPMMgO-0.25 demonstrating the lowest solubility as weight decreased by 3.41 % and 3.47 %, respectively. The water vapor transmission rate and oxygen permeability decreased with increasing MgO NP concentrations, with the CPMMgO-0.5 film exhibiting the lowest values. The films also demonstrated good biodegradability, anti-fogging ability, antibacterial and antifungal activity, and low water solubility, enabling bead encapsulation over 14 days in good condition. Moreover, the thermal stability of the films was improved, extending the shelf life of bread. Therefore, the fabricated films provide a promising alternative to non-degradable plastic packaging, which heavily contributes to environmental pollution.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia; Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Asmaa M Shehata
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aya M Abobah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aya T Kholief
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Manar A Ahmed
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mariam E Abdelhakeem
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nour K Dawood
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Fang M, Wang J, Fang S, Zuo X. Fabrication of carboxymethyl chitosan films for cheese packaging containing gliadin-carboxymethyl chitosan nanoparticles co-encapsulating natamycin and theaflavins. Int J Biol Macromol 2023; 246:125685. [PMID: 37406906 DOI: 10.1016/j.ijbiomac.2023.125685] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In this study, gliadin-carboxymethyl chitosan composite nanoparticles (GC NPs) co-encapsulated natamycin (Nata) and theaflavins (TFs) were constructed and added as an antioxidant, antifungal, and structural enhancer to carboxymethyl chitosan (CMCS) films. The stabilized GC NPs with a particle size of 160.7 ± 2.8 nm, a zeta potential of -29.0 ± 0.9 mV, and a protein content in the supernatant of 96 ± 1 % could be fabricated. Tests of pH and salt ions showed that the stability of NPs dispersion was based on electrostatic repulsion. Co-encapsulation of TFs enhanced the photostability of Nata and the antioxidant activity of the NPs dispersion. The interactions between gliadin with Nata and TFs were studied by molecular simulations. As a functional additive, the addition of Nata/TFs-GC NPs could improve the optical properties, mechanical properties, water-blocking capability, and antifungal and antioxidant activities of the CMCS films. The in-vivo test showed that the functional film could be used to inhibit the growth of Aspergillus niger on cheese.
Collapse
Affiliation(s)
- Meihan Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jialu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xiaobo Zuo
- Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou Tea Research Institute, CHINA COOP, Hangzhou 310016, China.
| |
Collapse
|
12
|
Yahaya WAW, Chik SMST, Azman NAM, Nor AM, Abd. Hamid KH, Ajit A. Mechanical properties and antioxidant activity of carrageenan-cellulose nanofiber incorporated butylated hydroxyanisole as active food packaging. MATERIALS TODAY: PROCEEDINGS 2023. [DOI: 10.1016/j.matpr.2023.08.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Pažarauskaitė A, Noriega Fernández E, Sone I, Sivertsvik M, Sharmin N. Combined Effect of Citric Acid and Polyphenol-Rich Grape Seed Extract towards Bioactive Smart Food Packaging Systems. Polymers (Basel) 2023; 15:3118. [PMID: 37514506 PMCID: PMC10385157 DOI: 10.3390/polym15143118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Alginate films (2% w·v-1) were prepared with varying concentrations (5-20% w/w) of citric acid and aqueous grape seed extract (GSE) filtrate (11.66 ± 1.32 g GAE/L) using the solvent-evaporation method. Crosslinking alginate via ester bonds (FTIR analysis) with citric acid up to 10% (w/w) led to a 33% increase in tensile strength, a 34% reduction in water vapor transmission rate (WVTR), and had no impact on elongation at break. Crosslinking alginate with citric acid in the presence of GSE increased the tensile strength by 17%, decreased WVTR by 21%, and significantly improved DPPH scavenging activity. Moreover, after incubation for 24 h at 37 °C, the film-forming solutions exhibited increased antimicrobial activity, resulting in 0.5- and 2.5-log reductions for Escherichia coli and Staphylococcus aureus, respectively, compared to the values obtained without the addition of GSE. The stronger inhibitory effect observed against Gram-positive bacteria can be attributed to the unique composition and structure of their cell walls, which creates a barrier that restricts the penetration of polyphenols into the cells. The pH adjustment of the GSE film-forming solution from 2.0 to 10.0 shifted the UV/VIS absorption spectra, resulting in a colour change from yellow to red. The findings of this study have showcased the potential of combining GSE and citric acid to enhance the functionality and bioactivity of alginate films for applications in smart food packaging.
Collapse
Affiliation(s)
- Akvilė Pažarauskaitė
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Richard Johnsensgate 4, 4021 Stavanger, Norway
| | - Estefanía Noriega Fernández
- Department of Processing Technology, Nofima AS, Richard Johnsensgate 4, 4021 Stavanger, Norway
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Izumi Sone
- Department of Processing Technology, Nofima AS, Richard Johnsensgate 4, 4021 Stavanger, Norway
| | - Morten Sivertsvik
- Department of Processing Technology, Nofima AS, Richard Johnsensgate 4, 4021 Stavanger, Norway
| | - Nusrat Sharmin
- Department of Food Safety and Quality, Nofima AS, Osloveien 1, 1430 Ås, Norway
| |
Collapse
|
14
|
Eelager MP, Masti SP, Chougale RB, Hiremani VD, Narasgoudar SS, Dalbanjan NP, S K PK. Evaluation of mechanical, antimicrobial, and antioxidant properties of vanillic acid induced chitosan/poly (vinyl alcohol) active films to prolong the shelf life of green chilli. Int J Biol Macromol 2023; 232:123499. [PMID: 36736522 DOI: 10.1016/j.ijbiomac.2023.123499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs. The tensile strength of active films increased from 32 to 59 MPa as the amount of vanillic acid increased and the obtained values are more significant than reported polyethylene (2231 MPa) and polypropylene (31-38 MPa) films, widely utilized in food packaging. Active film's UV, water, and oxygen barrier properties exhibited excellent results with the incorporation of vanillic acid. Around 40 % of degradation commences within 15 days. Synergistic impact against S. aureus, E. coli, and C. albicans pathogens caused the expansion of the inhibition zone, evidenced by the excellent antimicrobial activity. The highest antioxidant capacity, 73.65 % of CPV-4 active film, proved that active films could prevent the spoilage of food from oxidation. Green chillies packaging was carried out to examine the potential of prepared active films as packaging material results in successfully sustaining carotenoid accumulation and prolonging the shelf life compared to conventional polyethylene (PE) packaging.
Collapse
Affiliation(s)
- Manjunath P Eelager
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India.
| | - Ravindra B Chougale
- PG Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Vishram D Hiremani
- Department of Chemistry, Tungal School of Basic and Applied Sciences, Jamkhandi 587301, Karnataka, India
| | | | | | - Praveen Kumar S K
- PG Department of Studies in Biochemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| |
Collapse
|
15
|
Alves JDS, Canabarro NI, Boeira CP, Melo PTS, Aouada MRDM, da Rosa CS. Design of Biodegradable Films Using Pecan Nut Cake Extracts for Food Packing. Foods 2023; 12:foods12071405. [PMID: 37048226 PMCID: PMC10093672 DOI: 10.3390/foods12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The excessive consumption of plastic packaging and its consequent disposal and accumulation in the environment have aroused the interest of researchers in developing packaging that can cause less harm to nature. In this sense, this article presents research on the addition of antioxidant extracts from pecan nut cake in biodegradable packaging made with a polymeric mixture of gelatin and corn starch. The films produced were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thickness, mechanical properties, water vapor permeability (WVP), solubility, water contact angle, optical properties, in vitro bioactive activity, and biodegradability. A higher concentration of total phenolic compounds (101.61 mg GAE/g) was found for the condition where alcohol content and extraction time were 65% and 20 min, respectively. Pecan nut cake (PNC( extracts did not influence the film’s tensile strength, and elongation at break was tightly increased by adding 10–20% extracts. The film’s characterization pointed to more than 67% solubility, and adding PNC extract implied more hydrophilic surfaces (contact angles lower than 65°). Furthermore, the film opacity showed a linear relation with PNC extract concentration, and a higher luminosity (L*) was observed for the film without extract. Furthermore, the antioxidant activity of the films was enhanced with the addition of PNC extracts, and complete biodegradation was observed until the ninth day. Therefore, biodegradable films prepared from a mixture of gelatin starch and enriched with PNC extracts showed excellent mechanical properties and potential as carriers of antioxidant compounds, allowing us to propose their use as active packing.
Collapse
Affiliation(s)
- Jamila dos Santos Alves
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
- Correspondence: (J.d.S.A.); (M.R.d.M.A.)
| | | | - Caroline Pagnossim Boeira
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Pamela Thais Sousa Melo
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Marcia Regina de Moura Aouada
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira 15385-000, SP, Brazil
- Correspondence: (J.d.S.A.); (M.R.d.M.A.)
| | - Claudia Severo da Rosa
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
16
|
Zhuang H, Li X, Wu S, Wang B, Yan H. Fabrication of grape seed proanthocyanidin-loaded W/O/W emulsion gels stabilized by polyglycerol polyricinoleate and whey protein isolate with konjac glucomannan: Structure, stability, and in vitro digestion. Food Chem 2023; 418:135975. [PMID: 36965393 DOI: 10.1016/j.foodchem.2023.135975] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
In this work, the effects of konjac glucomannan (KGM) concentrations on microstructure, gel properties, stability and digestibility of water-in-oil-in-water emulsion gels stabilized by polyglycerol polyricinoleate and whey protein isolate were investigated. Visual appearance indicated that a non-layered double emulsion gel was formed when KGM increased to 0.75%. Emulsion gels with 1.5% KGM showed the highest encapsulation, freeze-thaw and photochemical stability due to the formation of the smallest droplets, which were supported by microscopic observations. Moreover, the addition of KGM improved water holding capacity, rheological and texture properties of emulsion gels. Particularly, at 1.5% or 1.75% KGM, color and potential of hydrogen showed the most stable level after 14 days of storage. During in vitro digestion, KGM delayed the hydrolysis of protein and oil droplets, and then improved the bioavailability of grape seed proanthocyanidin. These results promoted the application of KGM in emulsion gels and the encapsulation of nutraceuticals.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xueqian Li
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Bing Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
17
|
Łupina K, Kowalczyk D, Lis M, Basiura-Cembala M. Antioxidant polysaccharide/gelatin blend films loaded with curcumin - A comparative study. Int J Biol Macromol 2023; 236:123945. [PMID: 36924870 DOI: 10.1016/j.ijbiomac.2023.123945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Curcumin (CUR; 0, 0.005, 0.01, 0.02 %) was loaded into binary 75/25 blend films based on polysaccharides (carboxymethyl cellulose (CMC), gum Arabic (GAR), octenyl succinic anhydride modified starch (OSA), water-soluble soy polysaccharides (WSSP)) and gelatin (GEL). The GAR-based system was the least rough and, consequently, the most transparent of the films. An opposite result was found for the WSSP-based film. Despite the phase separation, the CMC75/GEL25 film exhibited excellent mechanical strength and stiffness. CUR improved the UV/VIS light-barrier characteristics of the films, but did not affect most of other physiochemical properties. X-ray diffractograms revealed that CUR provoked the rearrangement of the triple helical structure of GEL. As highly erodible, the CMC75/GEL25 carrier ensured the fastest and the most complete release of CUR. The OSA75/GEL25 system exhibited an opposite behavior. The kinetic profiles of the antiradical activity of the films did not reflect CUR release. A comparison of 2,2-diphenyl-1-picrylhydrazyl (DPPH*) scavenging on the plateau revealed that the CUR-supplemented films had quite comparable antiradical potential. The CMC75/GEL25 system exhibited the highest colorimetric stability, likely as a result of complete encapsulation of CUR in the GEL-rich microspheres. Weak symptoms of physical aging (enthalpy relaxation) were found in the films.
Collapse
Affiliation(s)
- Katarzyna Łupina
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Dariusz Kowalczyk
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Faculty of Natural Sciences and Health, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Monika Basiura-Cembala
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| |
Collapse
|
18
|
Kaynarca GB, Kamer DDA, Gumus T, Sagdıc O. Characterization of Poly(vinyl alcohol)/gelatin films made with winery solid by-product (vinasse) extract. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Bikiaris ND, Koumentakou I, Samiotaki C, Meimaroglou D, Varytimidou D, Karatza A, Kalantzis Z, Roussou M, Bikiaris RD, Papageorgiou GZ. Recent Advances in the Investigation of Poly(lactic acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and their Properties and Applications. Polymers (Basel) 2023; 15:1196. [PMID: 36904437 PMCID: PMC10007491 DOI: 10.3390/polym15051196] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Poly(lactic acid) (PLA) is considered the most promising biobased substitute for fossil-derived polymers due to its compostability, biocompatibility, renewability, and good thermomechanical properties. However, PLA suffers from several shortcomings, such as low heat distortion temperature, thermal resistance, and rate of crystallization, whereas some other specific properties, i.e., flame retardancy, anti-UV, antibacterial or barrier properties, antistatic to conductive electrical characteristics, etc., are required by different end-use sectors. The addition of different nanofillers represents an attractive way to develop and enhance the properties of neat PLA. Numerous nanofillers with different architectures and properties have been investigated, with satisfactory achievements, in the design of PLA nanocomposites. This review paper overviews the current advances in the synthetic routes of PLA nanocomposites, the imparted properties of each nano-additive, as well as the numerous applications of PLA nanocomposites in various industrial fields.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Meimaroglou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Varytimidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Karatza
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Zisimos Kalantzis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Magdalini Roussou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Rizos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z. Papageorgiou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece
| |
Collapse
|
20
|
Stefanowska K, Woźniak M, Dobrucka R, Ratajczak I. Chitosan with Natural Additives as a Potential Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1579. [PMID: 36837209 PMCID: PMC9962944 DOI: 10.3390/ma16041579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
21
|
Anean HA, Mallasiy LO, Bader DMD, Shaat HA. Nano Edible Coatings and Films Combined with Zinc Oxide and Pomegranate Peel Active Phenol Compounds Has Been to Extend the Shelf Life of Minimally Processed Pomegranates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1569. [PMID: 36837201 PMCID: PMC9965157 DOI: 10.3390/ma16041569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 06/18/2023]
Abstract
Edible coating and film from chitosan and incorporating it with the action of ZnONPs on active phenol compounds from extracts of pomegranate peel (PPE) The physical and chemical properties of edible films composed of zinc oxide ZnONPs and active phenol compounds extracted from pomegranate peel (PPE) were investigated. Adding ZnONPs with active phenol compounds from extracted pomegranate peel(PPE) to chitosan films can provide safe edible films, decrease microbial growth and consequently prolong the shelf life of pomegranates, as well as improve the physiochemical stability of the pomegranate. The substances used in this experiment were film with a (A) extract of pomegranate peels (PPE), 5% (0.1%), (B)ZnONPs 1% (0.02%), (C) ZnONPs 2% (0.04%), (D) ZnONPs 3% (0.06%), (E) ZnONPs 1%/PPE1% (0.02%), (F) ZnONPs 2%/PPE2% (0.04%), (G) ZnONPs 3%/PPE3% (0.06%) wt% of chitosan on quality attributes and prolonging the shelf life of pomegranates were stored in plastic containers at 2 °C and 90-95% relative humidity for 20 days. The treatments of (G) ZnONPs 3%/PPE3% (0.06%) loaded on chitosan as well as chitosan and (D) ZnONPs 3% (0.06%) reduced the weight loss, had excellent microbial count until 20 days of storage, and recorded the lowest microbial count and mould & yeast colonies. Other chemical properties, such as total soluble solids content, acidity, anthocyanin content, firmness, and ascorbic acid, were investigated. Results indicated that ZnONPs 3%/PPE3% (0.06%) loaded on chitosan or ZnONPs 3% (0.06%) are the best treatments for preserving pomegranate arils. It was found that the best measurements were that the film-forming nan emulsion solutions decreased by E% 110 nm and B% 134 nm. Nano followed treatment, F% 188.7 nm, compared to nano edible films, which were A 0% 1312 nm.
Collapse
Affiliation(s)
- Hosam Aboul Anean
- Food Engineering and Packaging Department, Food Technology Research Institute (FTRI), Agriculture Research Center (ARC), Giza 12619, Egypt
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil Asir 61913, Saudi Arabia
| | - Dina M. D. Bader
- Chemistry Department, Muhayil College of Science and Arts, King Khalid University, Muhayil Asir 61913, Saudi Arabia
| | - Heba A. Shaat
- Food Science and Technology Department, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| |
Collapse
|
22
|
Zhu J, Chen X, Huang T, Tian D, Gao R. Characterization and antioxidant properties of chitosan/ethyl-vanillin edible films produced via Schiff-base reaction. Food Sci Biotechnol 2023; 32:157-167. [PMID: 36647524 PMCID: PMC9839923 DOI: 10.1007/s10068-022-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023] Open
Abstract
In this paper, chitosan/ethyl-vanillin (CS-EV) Schiff-base edible films with CS and EV at different concentrations and ratios were successfully prepared. The optical barrier properties, water contact angle, mechanical performance, water vapor transmission, antioxidant properties, thermal properties, and morphological structure of the films were compared. The results suggested that the tensile strength (TS) attained a maximum value of 64.63 MPa at a concentration of 4% EV. Moreover, water diffusion was prevented through the compact structure of the CS-EV edible film. Additionally, the two sides of the CS-EV film show different textures due to their different hydrophilicity/hydrophobicity. In particular, the films of CS possessed superior thermal stability, while those of CS-EV exhibited higher antioxidant activity.
Collapse
Affiliation(s)
- Jianfei Zhu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 China
| | - Xiaomei Chen
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Tingting Huang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Dongling Tian
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Ruiping Gao
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 China
| |
Collapse
|
23
|
Shan P, Wang K, Yu F, Yi L, Sun L, Li H. Gelatin/sodium alginate multilayer composite film crosslinked with green tea extract for active food packaging application. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Hematian F, Baghaei H, Mohammadi Nafchi A, Bolandi M. Preparation and characterization of an intelligent film based on fish gelatin and Coleus scutellarioides anthocyanin to monitor the freshness of rainbow trout fish fillet. Food Sci Nutr 2023; 11:379-389. [PMID: 36655065 PMCID: PMC9834858 DOI: 10.1002/fsn3.3068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 01/21/2023] Open
Abstract
In this study, a pH-sensitive indicator based on fish gelatin and Coleus scutellarioides anthocyanin extract (CSAE) was prepared and characterized. Films were prepared using the solvent casting method and different levels of CSAE, including 10 ml (CSG1), 20 ml (CSG2), and 30 ml (CSG3), and 0 ml (CSG0) as a control sample. The mechanical, optical, and pH sensing of active films and the release of anthocyanins from the films were investigated. The relationship between the total volatile basic nitrogen (TVB-N) of fish fillets and a* color index of films was studied. By incorporation of CSAE, the flexibility of films increased, while the tensile strength and UV-Vis light transmittance through the films decreased (p < .05). The films containing the CSAE had a darker, yellowish, and reddish color than the control film. There was a significant relationship between the pH variation and the film color. The films had a purple color at acidic pH, and their color changed to green at an alkaline pH, indicating the sensitivity of the produced films to pH changes. There was a significant relationship between the TVB-N value of fish fillets and the a* index of the film during the 16 h storage time. The results showed that by increasing TVB-N values of the fillets, the a* color index decreased, and the films' color changed from purple to colorless. In summary, the active films prepared with fish gelatin and CSAE could be used as pH-sensitive intelligent packaging to display the freshness of fishery products.
Collapse
Affiliation(s)
- Fahimeh Hematian
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
- Food Technology Division, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Marzieh Bolandi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
25
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
26
|
Characterization of chitosan edible coatings made with natural extracts of Solanum lycopersicum and Moringa oleifera for preserving fresh pork tenderloin. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Rashidi MJ, Nasiraie LR, Zomorrodi S, Jafarian S. Development and characterization of novel active opopanax gum and gelatin bio-nanocomposite film containing zinc oxide nanoparticles and peppermint essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Hamann D, Puton BMS, Comin T, Colet R, Valduga E, Zeni J, Steffens J, Junges A, Backes GT, Cansian RL. Active edible films based on green tea extract and gelatin for coating of fresh sausage. Meat Sci 2022; 194:108966. [PMID: 36126391 DOI: 10.1016/j.meatsci.2022.108966] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
The objective of this work was to develop, characterize and evaluate the application of active edible films based on gelatin and green tea extract in coating of fresh sausages. The green tea extract showed IC50 of 0.088 mg/mL and minimum inhibitory concentrations of 0.05 mg/mL for Listeria monocytogenes, 0.025 mg/mL for Staphylococcus aureus, 0.04 mg/mL for Escherichia coli, and >1.0 mg/mL for Salmonella enterica serovar Choleraesuis. The formulation with 15% (w/v) of gelatin and 30% (w/w) of glycerol showed better adhesion and appearance in the coating of the product. When using 1.0% of green tea extract, the lowest IC50, was obtained and the antioxidant activity was maintained for 35 days. There was a more accentuated decrease in pH and an increase in acidity and peroxide index in fresh sausages without film compared to those coated with the active film (1.0% of green tea extract) during storage. In addition, it was found that the use of active gelatin film (1.0% of green tea extract) kept the TBARS indexes of fresh sausage samples lower than the standard (without coating) and of films containing only gelatin, after 48 days of storage.
Collapse
Affiliation(s)
- Daniele Hamann
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Bruna Maria Saorin Puton
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Thais Comin
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Rosicler Colet
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Eunice Valduga
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Jamile Zeni
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Juliana Steffens
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Alexander Junges
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Geciane Toniazzo Backes
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | - Rogério Luis Cansian
- Food Engineering Department, URI Campus of Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| |
Collapse
|
29
|
Azman N, Khairul WM, Sarbon N. A comprehensive review on biocompatible film sensor containing natural extract: Active/intelligent food packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Physical, mechanical and antioxidant properties of chicken skin gelatin films incorporated with virgin coconut oil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Kowalczyk D, Szymanowska U, Skrzypek T, Basiura-Cembala M, Bartkowiak A, Łupina K. A Comprehensive Study on Gelatin- and Whey Protein Isolate-Based Edible Films as Carriers of Fireweed (Epilobium angustifolium L.) Extract. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractGelatin (GEL) and whey protein isolate (WPI) are often taken into account as carriers of phytoantioxidants for developing active packaging. The materials obtained, however, have not yet been systematically compared to demonstrate their potential benefits and drawbacks. Fireweed extract (FE) is a rich source of polyphenols with high antioxidant activity. Therefore, in this study, the structural, physicochemical, and antiradical properties of GEL and WPI films incorporated with freeze-dried fireweed extract (FE; 0, 0.0125, 0.025, 0.05%) were simultaneously evaluated. As verified by X-ray diffraction, the GEL-based films were more crystalline and, consequently, mechanically stronger (~ 9–11 vs. ~ 6 MPa) and less permeable to water vapor than the WPI films (44.95–52.02 vs. 61.47–70.49 g mm m−2 day−1 kPa−1). Furthermore, GEL offered a bit more transparent, less yellow, and more stretchable films (~ 50–59% vs. ~ 26%). In turn, the WPI films had superior UV-protective potential. The higher FE concentration yielded more yellow films with improved UV-blocking ability. The FE (0.05%) made the GEL cryogel denser. Based on the half-time reduction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (tABTS50%), the 0.025, and 0.05% FE-supplemented WPI films exhibited ~ 1.6 and ~ 1.9 times better antiradical potential than the GEL counterparts. This result implies that the WPI-based films, being more soluble (35.12–36.74 vs. 31.51–33.21%) and less swellable (192.61–205.88 vs. 1056.93–2282.47%), ensured faster release of FE into aqueous medium. The slower building up of the antiradical activity of the FE-supplemented GEL films suggests that GEL could be more useful in the development of slow/less migratory active packaging systems for high moisture food.
Collapse
|
33
|
Al-Harrasi A, Bhatia S, Al-Azri MS, Ullah S, Najmi A, Albratty M, Meraya AM, Mohan S, Aldawsari MF. Effect of Drying Temperature on Physical, Chemical, and Antioxidant Properties of Ginger Oil Loaded Gelatin-Sodium Alginate Edible Films. MEMBRANES 2022; 12:862. [PMID: 36135881 PMCID: PMC9500894 DOI: 10.3390/membranes12090862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The drying temperature is one of the crucial parameters that impacts the physical, chemical, and biological properties of edible films (EFs). This parameter determines the degree of crystallinity, which can further impact the film's mechanical, barrier, and optical properties. The present work is designed to investigate the effect of different drying temperature conditions (25 °C and 45 °C) on ginger essential oil (GEO) loaded Gelatin-sodium alginate composite films over their physical, chemical, and antioxidant properties. Results indicated that drying of films at 25 °C had a positive effect on certain properties of the EFs, such as the moisture content (MC), water solubility (S), swelling degree (SD), water vapor permeability (WVP), and mechanical and optical properties. SEM analysis showed that films dried at 25 °C presented more uniform surface properties with fewer cracks and pores compared to films dried at 45 °C. TGA analysis demonstrated the higher thermal stability of the films when dried at 25 °C. Findings obtained from X-ray diffraction (XRD) and fourier-transform infrared spectroscopy (FTIR) showed film crystallinity and electrostatic interactions between GE, SA, and GEO. Results obtained from antioxidant assays revealed that films dried at 25 °C showed comparable antioxidant capacity to that of butylated hydroxytoluene (BHT). Furthermore, it was found that the addition of SA and GEO to the blank GE films improved their physical, chemical, and antioxidant properties. The present work suggests that GEO loaded GE-SA based films showed better physical, chemical, and antioxidant potential when dried at a lower temperature. These novel materials can be utilized as potential packaging materials in the food industry.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
| | - Mohammed Said Al-Azri
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sana Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45124, Saudi Arabia
| | - Syam Mohan
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed F. Aldawsari
- College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
34
|
Valorization of agro-industrial byproducts: Extraction and analytical characterization of valuable compounds for potential edible active packaging formulation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Developing active and intelligent films through the incorporation of grape skin and seed tannin extracts into gelatin. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Iglesias-Montes ML, Soccio M, Siracusa V, Gazzano M, Lotti N, Cyras VP, Manfredi LB. Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers (Basel) 2022; 14:polym14153177. [PMID: 35956691 PMCID: PMC9370966 DOI: 10.3390/polym14153177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fully bio-based poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends plasticized with tributyrin (TB), and their nanocomposite based on chitin nanoparticles (ChNPs) was developed using melt mixing followed by a compression molding process. The combination of PHB and ChNPs had an impact on the crystallinity of the plasticized PLA matrix, thus improving its oxygen and carbon dioxide barrier properties as well as displaying a UV light-blocking effect. The addition of 2 wt% of ChNP induced an improvement on the initial thermal degradation temperature and the overall migration behavior of blends, which had been compromised by the presence of TB. All processed materials were fully disintegrated under composting conditions, suggesting their potential application as fully biodegradable packaging materials.
Collapse
Affiliation(s)
- Magdalena L. Iglesias-Montes
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, National Research Council, 40129 Bologna, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40126 Bologna, Italy
| | - Viviana P. Cyras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Liliana B. Manfredi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| |
Collapse
|
37
|
Amaregouda Y, Kamanna K, Gasti T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int J Biol Macromol 2022; 218:799-815. [PMID: 35905759 DOI: 10.1016/j.ijbiomac.2022.07.174] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The present work describes the natural anthocyanin from Jacaranda cuspidifolia (JC) flower immobilized within a biopolymer matrix composed of chitosan (CS) and polyvinyl alcohol (PVA) gave novel intelligent/active packaging films (CPC). We introduced microwave irradiation to prepare polymeric composite films noticed faster mixing of the polymers and extract take place than the conventional method. The prepared composite films are characterized by various analytical and spectroscopic techniques. The smooth SEM images demonstrated CS/PVA matrix miscibility and compatibility with anthocyanin for the film formation. The addition of anthocyanin to the CS/PVA films significantly reduced UV-Vis light transmission, while causing a slight decrease in the films transparency. An increased anthocyanin concentration on polymer films showed improved oxygen permeability (77.09 %), moisture retention capacity (11.64 %), and water vapor transmission rate (43.10 %) substantially. Additionally, the prepared CPC smart films exhibited strong antioxidant (97.92 %) as well as antibacterial activities against common foodborne pathogens such as S. aureus, and E. coli. Furthermore, the prepared smart films demonstrated pink color in acidic, while grey to yellowish in basic solvent. Further, the color response of the freshness label was consistent with the spoilage Total Volatile Basic-Nitrogen (TVB-N) content determined in the fish samples with varied time period. The CPC smart films also showed promising application in terms of monitoring freshness of the fish fillets at room temperature. The obtained results suggested that, the prepared CPC smart films have potential to be used as quality indicator in the marine food packaging system.
Collapse
Affiliation(s)
- Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India.
| | - Tilak Gasti
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
38
|
Gan J, Guan C, Zhang X, Sun L, Zhang Q, Pan S, Zhang Q, Chen H. The Preparation of Anti-Ultraviolet Composite Films Based on Fish Gelatin and Sodium Alginate Incorporated with Mycosporine-like Amino Acids. Polymers (Basel) 2022; 14:polym14152980. [PMID: 35893944 PMCID: PMC9330497 DOI: 10.3390/polym14152980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) are ultraviolet-absorbing compounds and have antioxidant functions. In this paper, MAAs were added into fish gelatin/sodium alginate films as an anti-ultraviolet additive. The effects of 0–5% MAAs (w/w, MAAs/fish gelatin) on the physical properties, antioxidant properties, antibacterial properties and anti-ultraviolet properties of fish gelatin/sodium alginate films were investigated. The results suggest that the content of the MAAs influenced the mechanical properties. The water content, swelling and water vapor permeability of the films were not altered with the addition of MAAs. In addition, the composite films showed effective antioxidant activity and antimicrobial activity. The incorporation of MAAs significantly improved the DPPH radical scavenging activity of the films from 35.77% to 46.61%. Moreover, the block ultraviolet rays’ ability was also greatly improved when the film mixed with the MAAs and when the value of the light transmission was 0.6% at 350 nm. Compared with the pure composite film, the growth of E. coli covered by the composite film with 3.75% and 5% MAAs exhibited the best survival rate. These results reveal that MAAs are a good film-forming substrate, and MAAs have good potential to prepare anti-ultraviolet active films and antioxidant active films for applications. Overall, this project provides a theoretical basis for the study of active composite films with anti-ultraviolet activities, and it provides new ideas for the application of MAAs.
Collapse
Affiliation(s)
- Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China;
| | - Chenxia Guan
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Xiaoyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Lirong Sun
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Qinling Zhang
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Shihui Pan
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
| | - Hao Chen
- Marine College, Shandong University, Weihai 264209, China; (C.G.); (X.Z.); (L.S.); (Q.Z.); (S.P.); (Q.Z.)
- Correspondence: ; Tel.: +86-0631-5688079
| |
Collapse
|
39
|
Estrella-Osuna DE, Tapia-Hernández JA, Ruíz-Cruz S, Márquez-Ríos E, Ornelas-Paz JDJ, Del-Toro-Sánchez CL, Ocaño-Higuera VM, Rodríguez-Félix F, Estrada-Alvarado MI, Cira-Chávez LA. Nanoencapsulation of Eggplant (Solanum melongena L.) Peel Extract in Electrospun Gelatin Nanofiber: Preparation, Characterization, and In Vitro Release. NANOMATERIALS 2022; 12:nano12132303. [PMID: 35808139 PMCID: PMC9268290 DOI: 10.3390/nano12132303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
This study describes the preparation and characterization of eggplant peel extract-loaded electrospun gelatin nanofiber and study of its in vitro release. Results obtained by scanning electron microscopy (SEM) and transmission electronic microscopy (TEM) micrograph revealed that eggplant peel extract-loaded electrospun gelatin nanofiber is in nanometric range with an average diameter 606.7 ± 184.5 and 643.6 ± 186.7 nm for 20 and 33.3 mg mL−1 of extract addition, respectively. Moreover, the incorporation of extract improved morphology by being smooth, homogeneous, and without account formation compared to nanofibers without extract (control). Fourier transform-infrared (FT-IR) spectra indicated that interaction exists between electrospun gelatin nanofiber and eggplant peel extract by hydrogen bond interactions, mainly. Electrospun gelatin nanofibers showed encapsulation efficiency greater than 90% of extract and a maximum release of 95 and 80% for the medium at pH 1.5 and 7.5, respectively. Therefore, the electrospinning technique is a good alternative for the conservation of bioactive compounds present in the eggplant peel through electrospun gelatin nanofiber.
Collapse
Affiliation(s)
- Danya Elizabeth Estrella-Osuna
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico; (D.E.E.-O.); (M.I.E.-A.); (L.A.C.-C.)
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (E.M.-R.); (C.L.D.-T.-S.); (F.R.-F.)
- Correspondence: (J.A.T.-H.); (S.R.-C.)
| | - Saúl Ruíz-Cruz
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico; (D.E.E.-O.); (M.I.E.-A.); (L.A.C.-C.)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (E.M.-R.); (C.L.D.-T.-S.); (F.R.-F.)
- Correspondence: (J.A.T.-H.); (S.R.-C.)
| | - Enrique Márquez-Ríos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (E.M.-R.); (C.L.D.-T.-S.); (F.R.-F.)
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos s/n, Parque Industrial, Cuauhtémoc 31570, Chihuahua, Mexico;
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (E.M.-R.); (C.L.D.-T.-S.); (F.R.-F.)
| | - Víctor Manuel Ocaño-Higuera
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico;
| | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (E.M.-R.); (C.L.D.-T.-S.); (F.R.-F.)
| | - María Isabel Estrada-Alvarado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico; (D.E.E.-O.); (M.I.E.-A.); (L.A.C.-C.)
| | - Luis Alberto Cira-Chávez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregón 85000, Sonora, Mexico; (D.E.E.-O.); (M.I.E.-A.); (L.A.C.-C.)
| |
Collapse
|
40
|
Khalil RK, Abdelrahim DS, Sharaby MR. Novel active edible food packaging films based entirely on citrus peel wastes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Rheological properties of fish (Sparus aurata) skin gelatin modified by agricultural wastes extracts. Food Chem 2022; 393:133348. [PMID: 35661603 DOI: 10.1016/j.foodchem.2022.133348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
Abstract
In this study, fish skin gelatin (FG) obtained from sea bream (Sparus aurata) was evaluated as an alternative to mammalian gelatin. Improvement in rheological properties of FG was attempted with addition of grape pomace (GP), pomegranate peel (PP), and green tea (GT) extracts, all of which are agricultural wastes rich in phenolic components. These additives were added at ratios of 20%, 13.3%, 10%, and 6.7% to determine the best formulation. Melting and gelling temperatures, kgel, gel strength, and tmodel values of samples were measured. 20% GP added fish gelatin (OG) had optimum rheological properties. Melting temperatures of BG, OG, and FG were 31.64 ± 0.28, 33.80 ± 0.54, 25.78 ± 0.24 °C, respectively. The addition of GP caused a 14% increase in Tg by increasing the intermolecular interactions of FG. GP is important in that it provides functional properties and structural improvement of FG, making it an alternative to BG and facilitating its use in confectionery industry.
Collapse
|
42
|
Luzi F, Del Buono D, Orfei B, Moretti C, Bounaurio R, Torre L, Puglia D. Lemna minor aqueous extract as a natural ingredient incorporated in poly (vinyl alcohol)-based films for active food packaging systems. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Vargas-Torrico MF, von Borries-Medrano E, Aguilar-Méndez MA. Development of gelatin/carboxymethylcellulose active films containing Hass avocado peel extract and their application as a packaging for the preservation of berries. Int J Biol Macromol 2022; 206:1012-1025. [PMID: 35318078 DOI: 10.1016/j.ijbiomac.2022.03.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the effect of incorporating different concentrations (0, 200, 300, and 400 mg L-1) of avocado peel extracts (EE-AP) on the physicochemical properties and antifungal activity of gelatin-carboxymethylcellulose (Gel-CMC) films and their applicability in berry preservation. The results showed that incorporating EE-AP was compatible with the Gel-CMC film and enhanced the mechanical properties without affecting the integrity and thermal properties. The 200 mg L-1 of EE-AP concentration on films offered the best barrier properties against water vapor (2.90 × 10-11 g m-1 s-1 Pa-1). FTIR identified the intramolecular and intermolecular interactions between the functional groups of biopolymers and the EE-AP. The results obtained revealed that EE-AP incorporation into gelatin-carboxymethylcellulose films significantly decreased the moisture content (from 12.48 to 11.02%) and solubility (from 40.13 to 35.39%) of the films. All films incorporated with EE-AP showed higher colorimetric parameters and opacity than the control film (p < 0.05). The DPPH radical scavenging ability of the Gel-CMC films was increased from 24.16 to 41.12, 57.21, and 63.47%, as the extract concentration increased. Active films presented excellent ultraviolet-visible light barrier properties. The antioxidant pigments (flavonoids and chlorophylls) were estimated spectrophotometrically through absorbance. In vitro tests indicated high effectiveness to inhibit the growth of Rhizopus stolonifer and Aspergillus niger. A preservation study indicated the absence of fungal development in berries over six days of storage. In conclusion, gelatin-carboxymethylcellulose films with EE-AP represent a potential option for active packaging and can preserve fresh fruit.
Collapse
Affiliation(s)
- Maria Fernanda Vargas-Torrico
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada - Unidad Legaria, Calzada Legaria 694, Colonia Irrigación, C.P. 11500 Ciudad de México, Mexico
| | - Erich von Borries-Medrano
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada - Unidad Legaria, Calzada Legaria 694, Colonia Irrigación, C.P. 11500 Ciudad de México, Mexico.
| | - Miguel A Aguilar-Méndez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada - Unidad Legaria, Calzada Legaria 694, Colonia Irrigación, C.P. 11500 Ciudad de México, Mexico.
| |
Collapse
|
44
|
Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review. MEMBRANES 2022; 12:membranes12050442. [PMID: 35629768 PMCID: PMC9148007 DOI: 10.3390/membranes12050442] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
This review discusses the potential application of gelatin-based film as biodegradable food packaging material from various types of gelatin sources. The exploitation of gelatin as one of the biopolymer packaging in the food industry has rising interest among researchers as the world becomes more concerned about environmental problems caused by petroleum-based packaging and increasing consumer demands on food safety. Single gelatin-based film properties have been characterized in comparison with active and intelligent gelatin-based composite films. The physical properties of gelatin-based film such as thickness, color, and biodegradability were much influenced by total solid contents in each film. While, for mechanical and light barrier properties, poultry-based gelatin films have shown better properties compared to mammalian and marine gelatin films. This paper detailed the information on gelatin-based film characterization in comparison with active and intelligent gelatin-based composite films. The physical properties of gelatin-based film such as color, UV-Vis absorption spectra, water vapor permeability, thermal, and moisture properties are discussed along with their mechanical properties, including tensile strength and elongation at break.
Collapse
|
45
|
Nurdiani R, Ma’rifah RD, Busyro IK, Jaziri AA, Prihanto AA, Firdaus M, Talib RA, Huda N. Physical and functional properties of fish gelatin-based film incorporated with mangrove extracts. PeerJ 2022; 10:e13062. [PMID: 35411257 PMCID: PMC8994492 DOI: 10.7717/peerj.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2022] [Indexed: 01/11/2023] Open
Abstract
Background The fishery processing industry produces a remarkable number of by-products daily. Fish skin accounts for one of the significant wastes produced. Fish skin, however, can be subjected to extraction to yield gelatine and used as the primary raw material for edible film production. To increase the functionality of edible films, bioactive compounds can be incorporated into packaging. Mangroves produce potential bioactive compounds that are suitable as additional agents for active packaging. This study aimed to create a fish gelatine-based edible film enriched with mangrove extracts and to observe its mechanical and biological properties. Methods Two mangrove species (Bruguiera gymnorhiza and Sonneratia alba) with four extract concentrations (control, 0.05%, 0.15%, 0.25%, and 0.35%) were used to enrich edible films. The elongation, water vapour transmission, thickness, tensile strength, moisture content, antioxidant and antibacterial properties of the resulting packaging were analysed. Results The results showed that the mangrove species and extract concentration significantly affected (p < 0.05) the physical properties of the treated films such as elongation (16.89-19.38%), water vapour transmission (13.31-13.59 g/m2), and active packaging-antioxidant activities (12.36%-60.98%). The thickness, tensile strength, and water content were not significantly affected. Potent antioxidant activity and relatively weak antimicrobial activity of this active gelatine packaging were observed.
Collapse
Affiliation(s)
- Rahmi Nurdiani
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia,Bioseafood Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Rica D.A. Ma’rifah
- Bioseafood Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Ihda K. Busyro
- Bioseafood Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Abdul A. Jaziri
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia,Bioseafood Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia,Halal Thoyib Research Centre, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Asep A. Prihanto
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia,Bioseafood Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia,Halal Thoyib Research Centre, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Muhamad Firdaus
- Department of Fish Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia,Bioseafood Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Rosnita A. Talib
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
46
|
Cvek M, Paul UC, Zia J, Mancini G, Sedlarik V, Athanassiou A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14654-14667. [PMID: 35302368 PMCID: PMC8972250 DOI: 10.1021/acsami.2c02181] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bio-based and biodegradable packaging combined with chemical sensors and indicators has attracted great attention as they can provide protection combined with information on the actual freshness of foodstuffs. In this study, we present an effective, biodegradable, mostly bio-sourced material ideal for sustainable packaging that can also be used as a smart indicator of ammonia (NH3) vapor and food spoilage. The developed material comprises a blend of poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) loaded with curcumin (CCM), which is fabricated via the scalable techniques of melt extrusion and compression molding. Due to the structural similarity of PLA and PPC, they exhibited good compatibility and formed hydrogen bonds within their blends, as proven by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis confirmed that the blends were thermally stable at the used processing temperature (180 °C) with minimal crystallinity. The rheological and mechanical properties of the PLA/PPC blends were easily tuned by changing the ratio of the biopolymers. Supplementing the PLA/PCC samples with CCM resulted in efficient absorption of UV radiation, yet the transparency of the films was preserved (T700 ∼ 68-84%). The investigation of CCM extract in ethanol with the DPPH• assay demonstrated that the samples could also provide effective antioxidant action, due to the tunable release of the CCM. Analyses for water vapor and oxygen permeability showed that the PPC improved the barrier properties of the PLA/PPC blends, while the presence of CCM did not hinder barrier performance. The capacity for real-time detection of NH3 vapor was quantified using the CIELab color space analysis. A change in color of the sample from a yellowish shade to red was observed by the naked eye. Finally, a film of PLA/PPC/CCM was successfully applied as a sticker indicator to monitor the spoilage of shrimps over time, demonstrating an evident color change from yellow to light orange, particularly for the PPC-containing blend. The developed system, therefore, has the potential to serve as a cost-effective, easy-to-use, nondestructive, smart indicator for food packaging, as well as a means for NH3 gas monitoring in industrial and environmental applications.
Collapse
Affiliation(s)
- Martin Cvek
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Uttam C. Paul
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 161 63 Genoa, Italy
| | - Jasim Zia
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 161 63 Genoa, Italy
| | - Giorgio Mancini
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 161 63 Genoa, Italy
| | - Vladimir Sedlarik
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | | |
Collapse
|
47
|
Khanoonkon N, Rugthaworn P, Kongsin K, Sukyai P, Harnkarnsujarit N, Sothornvit R, Chollakup R, Sukatta U. Enhanced antimicrobial effectiveness of synergistic mixtures of rambutan peel extract and cinnamon essential oil on food spoilage bacteria and bio‐based food packaging. J Food Saf 2022. [DOI: 10.1111/jfs.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nattaporn Khanoonkon
- Kasetsart Agricultural and Agro‐Industrial Product Improvement Institute Kasetsart University Bangkok Thailand
| | - Prapassorn Rugthaworn
- Kasetsart Agricultural and Agro‐Industrial Product Improvement Institute Kasetsart University Bangkok Thailand
| | - Kunat Kongsin
- Kasetsart Agricultural and Agro‐Industrial Product Improvement Institute Kasetsart University Bangkok Thailand
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Faculty of Agro‐Industry, Department of Biotechnology Kasetsart University Bangkok Thailand
| | - Prakit Sukyai
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Faculty of Agro‐Industry, Department of Biotechnology Kasetsart University Bangkok Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies Kasetsart University Bangkok Thailand
| | - Nathdanai Harnkarnsujarit
- Faculty of Agro‐Industry, Department of Packaging and Materials Technology Kasetsart University Bangkok Thailand
| | - Rungsinee Sothornvit
- Faculty of Engineering at Kamphaengsaen, Department of Food Engineering Kasetsart University Nakhon Pathom Thailand
| | - Rungsima Chollakup
- Kasetsart Agricultural and Agro‐Industrial Product Improvement Institute Kasetsart University Bangkok Thailand
| | - Udomlak Sukatta
- Kasetsart Agricultural and Agro‐Industrial Product Improvement Institute Kasetsart University Bangkok Thailand
| |
Collapse
|
48
|
Bhat VG, Narasagoudr SS, Masti SP, Chougale RB, Vantamuri AB, Kasai D. Development and evaluation of Moringa extract incorporated Chitosan/Guar gum/Poly (vinyl alcohol) active films for food packaging applications. Int J Biol Macromol 2022; 200:50-60. [PMID: 34973266 DOI: 10.1016/j.ijbiomac.2021.12.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/05/2022]
Abstract
The present study contributes the synthesis of active films with the incorporation of moringa extract (ME) into chitosan (CS)/guar gum (GG)/poly(vinyl alcohol) (PVA) matrix (CGPM) by simple solvent casting technique. The effect of ME on the mechanical, thermal, structural and morphological properties of CGPM active films were investigated. ME has shown a marked influence on the optical, thermal properties and swelling behaviour of CGPM active films. The improvement in the tensile strength of CGPM-1 active film (53.7 MPa) was observed compared to control CS/GG/PVA (CGP) film. DSC study revealed that glass transition temperature (Tg) and melting temperature (Tm) decreased with the addition of ME in the CGP matrix, which confirmed the miscibility among the components of active films. There was an improvement in the thermal stability of the CGPM active films. The FTIR study confirmed the molecular interaction between ME and CS/GG/PVA matrix. The XRD analysis showed a decrease in crystallinity with an increase in the ratio of CS for CGPM active films. The CGPM active films were an excellent barrier to UV- light and have exhibited a decrease in moisture adsorption and water solubility compared to CGP control film. The inclusion of ME in the CGP matrix leads to the formation of a dense compact surface, which in turn enhanced hydrophobicity of active films. The CGPM active films showed minimum WVP, OP values and overall migration values were within the limits of 10 mg/dm2. It was also observed that CGPM active films effectively inhibited the growth of E. coli and S. aureus bacteria. These findings suggest CGPM active films are biodegradable, biocompatible, non-toxic and hence can find application as food packaging materials.
Collapse
Affiliation(s)
- Veena G Bhat
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | | | - Saraswati P Masti
- Department of Chemistry, Karnatak Science College, Dharwad 580 001, Karnataka, India.
| | - Ravindra B Chougale
- Post-Graduate Department of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
| | - Adiveppa B Vantamuri
- Department of Biotechnology, Karnatak Science College, Dharwad 580 001, Karnataka, India
| | - Deepak Kasai
- Department of Chemistry, Faculty of Engineering and Technology, Jain (Deemed-to-be University), Bangalore, India
| |
Collapse
|
49
|
Improved functionality of cinnamon oil emulsion-based gelatin films as potential edible packaging film for wax apple. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Characterization of Sodium Alginate-Locust Bean Gum Films Reinforced with Daphnetin Emulsions for the Development of Active Packaging. Polymers (Basel) 2022; 14:polym14040731. [PMID: 35215643 PMCID: PMC8876320 DOI: 10.3390/polym14040731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we characterized an active film made of sodium alginate (SA)—locust bean gum (LBG) containing daphnetin-based film. Physicochemical characteristics, as well as antioxidant and antibacterial properties, were investigated. The results showed that the addition of a low concentration of daphnetin increased the flexibility of SA–LBG cling film, leading to an improvement in elongation at break and tensile strength. As the daphnetin content increased, solubility, brightness and transparency of the cling film decreased, and the moisture permeability increased. The antioxidant capacity and antibacterial activity of films with daphnetin were improved compared to those of the basal film. In addition, the cling film formed by adsorption had higher bacterial (Shewanella putrefaciens and Pseudomonas fluorescens) inhibition and antioxidant activity rates than direct film formation. The results indicate that the combination of daphnetin in SA–LBG film provides an active film with antioxidant and antibacterial properties, with potential for the development of food-grade packaging material.
Collapse
|