1
|
Goraya RK, Singla M, Kaura R, Singh CB, Singh A. Exploring the impact of high pressure processing on the characteristics of processed fruit and vegetable products: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38957008 DOI: 10.1080/10408398.2024.2373390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.
Collapse
Affiliation(s)
- Rajpreet Kaur Goraya
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Mohit Singla
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, India
| | - Robin Kaura
- Dairy Engineering Division, ICAR-NDRI, Karnal, India
| | - Chandra B Singh
- Advanced Post-Harvest Technology Centre, Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, Alberta, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Zhou L, Luo J, Xie Q, Huang L, Shen D, Li G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023; 12:foods12102007. [PMID: 37238825 DOI: 10.3390/foods12102007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) was extracted from navel orange peel residue by enzyme (E-DF) and ultrasound-assisted deep eutectic solvent (US-DES-DF), and its physicochemical and prebiotic properties were characterized. Based on Fourier-transform infrared spectroscopy, all DF samples exhibited typical polysaccharide absorption spectra, indicating that DES could separate lignin while leaving the chemical structure of DF unchanged, yielding significantly higher extraction yields (76.69 ± 1.68%) compared to enzymatic methods (67.27 ± 0.13%). Moreover, ultrasound-assisted DES extraction improved the properties of navel orange DFs by significantly increasing the contents of soluble dietary fiber and total dietary fiber (3.29 ± 1.33% and 10.13 ± 0.78%, respectively), as well as a notable improvement in the values of water-holding capacity, oil-holding capacity, and water swelling capacity. US-DES-DF outperformed commercial citrus fiber in stimulating the proliferation of probiotic Bifidobacteria strains in vitro. Overall, ultrasound-assisted DES extraction exhibited potential as an industrial extraction method, and US-DES-DF could serve as a valuable functional food ingredient. These results provide a new perspective on the prebiotic properties of dietary fibers and the preparation process of prebiotics.
Collapse
Affiliation(s)
- Liling Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiaqian Luo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| |
Collapse
|
3
|
Chen Z, Spilimbergo S, Mousavi Khaneghah A, Zhu Z, Marszałek K. The effect of supercritical carbon dioxide on the physiochemistry, endogenous enzymes, and nutritional composition of fruit and vegetables and its prospects for industrial application: a overview. Crit Rev Food Sci Nutr 2022; 64:5685-5699. [PMID: 36576196 DOI: 10.1080/10408398.2022.2157370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Consumers have an increasing demand for fruit and vegetables with high nutritional value worldwide. However, most fruit and vegetables are vulnerable to quality loss and spoilage during processing, transportation, and storage. Among the recently introduced emerging technologies, supercritical carbon dioxide (SCCO2) has been extensively utilized to treat and maintain fruit and vegetables mainly due to its nontoxicity, safety, and environmentally friendly. SCCO2 technology generates low processing costs and mild processing conditions (temperature and pressure) that allow for the application of CO2 at a supercritical state. This review aimed to summarize the current knowledge on the influence of SCCO2 technology on the quality attributes of fruit and vegetable products, such as physicochemical properties (pH, color, cloud, particle size distribution, texture), sensory quality, and nutritional composition (ascorbic acid, phenolic compounds, anthocyanins, carotenoids, and betalains). In addition, the effects and mechanisms of the SCCO2 technique on endogenous enzyme inactivation (polyphenol oxidase, peroxidase, and pectin methylesterase) were also elucidated. Finally, the prospects of the SCCO2 technique for industrial application was discussed from the economic and regulatory aspect.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Sara Spilimbergo
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Tian X, Liu Y, Zhao L, Rao L, Wang Y, Liao X. Inhibition effect of high hydrostatic pressure combined with epigallocatechin gallate treatments on pectin methylesterase in orange juice and model system. Food Chem 2022; 390:133147. [PMID: 35551026 DOI: 10.1016/j.foodchem.2022.133147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
High hydrostatic pressure (HHP) is currently the most successful non-thermal processing technology for commercial applications, but with a drawback that it is difficult to effectively inactivate the pectin methylesterase (PME), which is critical to the stability of orange juice. In this study, the PME inhibition and mechanism by HHP (600 MPa/10 min) combined with epigallocatechin gallate (HHP-EGCG) treatment were investigated. Firstly, the HHP-EGCG treatment showed enhancement effect on PME inhibition in orange juice, and the samples maintained higher content of water soluble pectin and exhibited higher suspension stability than the HHP treated samples during 13 days of refrigerated storage. Secondly, after HHP-EGCG treatment, further synergistic effect was observed in the phosphate buffer system, and the greatest secondary structure transformation and fluorescence quenching of PME occurred. Finally, molecule docking suggested that EGCG could interact with the active sites of PME, and transmission electron microscope results revealed further aggregation of PME under HHP-EGCG treatment.
Collapse
Affiliation(s)
- Xuezhi Tian
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Center for Fruit & Vegetable Processing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yixuan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Center for Fruit & Vegetable Processing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Center for Fruit & Vegetable Processing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Center for Fruit & Vegetable Processing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Center for Fruit & Vegetable Processing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Center for Fruit & Vegetable Processing, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
5
|
Zhang W, Xu S, Gao M, Peng S, Chen L, Lao F, Liao X, Wu J. Profiling the water soluble pectin in clear red raspberry (Rubus idaeus L. cv. Heritage) juice: Impact of high hydrostatic pressure and high-temperature short-time processing on the pectin properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions: Comparison of water-soluble pectins extracted from different sources. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106350] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Chen L, Chen L, Zhu K, Bi X, Xing Y, Che Z. The effect of high-power ultrasound on the rheological properties of strawberry pulp. ULTRASONICS SONOCHEMISTRY 2020; 67:105144. [PMID: 32361277 DOI: 10.1016/j.ultsonch.2020.105144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/25/2020] [Indexed: 05/20/2023]
Abstract
This study investigated the effects of high-power ultrasound (HPU, 0-45 °C, 242-968 W/cm2, 2-16 min) on the rheological properties of strawberry pulp. Following the HPU treatment, the strawberry pulp exhibited an increase in apparent viscosity, storage modulus (G'), and loss modulus (G″). The water-soluble pectin (WSP), pectin methylesterase (PME) activity, and free calcium ions (Ca2+) of the strawberry pulp after HPU treatment were investigated to determine a possible reason for this phenomenon. HPU caused a significant decrease in the degree of esterification (DE), molecular weight (Mw), and particle size of strawberry WSP, but no significant changes were evident in the galacturonic acid (GalA) content and the zeta (ζ)-potential (P > 0.05), resulting in decrease in the apparent viscosity. Moreover, the largest reduction of PME activity was 22.6% after HPU treatment at 605 W/cm2 and 45 °C for 16 min, indicating that the PME was resistant to the HPU treatments. The free Ca2+ content in the strawberry pulp was significantly decreased after exposure to HPU (P < 0.05). The maximal reduction of 52.01% in the free Ca2+ was achieved at 605 W/cm2 and 45 °C for 16 min. The overall results indicated that the high residual activity (RA) of PME after HPU might induce the low esterification of WSP, while HPU promoted the interaction of free Ca2+ and low-methylated pectin, to form the network structure of Ca2+-low-methylated pectin, resulting in an increase in viscosity in the complex strawberry system.
Collapse
Affiliation(s)
- Lei Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Liyi Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kun Zhu
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiufang Bi
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yage Xing
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Food Non-Thermal Processing, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Zhenming Che
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
8
|
Liu J, Bi J, McClements DJ, Liu X, Yi J, Lyu J, Zhou M, Verkerk R, Dekker M, Wu X, Liu D. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review. Carbohydr Polym 2020; 250:116890. [PMID: 33049879 DOI: 10.1016/j.carbpol.2020.116890] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/19/2022]
Abstract
Pectin, a major polysaccharide found in the cell walls of higher plants, plays major roles in determining the physical and nutritional properties of fruit- and vegetable-based products. An in-depth understanding of the effects of processing operations on pectin structure and functionality is critical for designing better products. This review, therefore, focuses on the progress made in understanding the effects of processing on pectin structure, further on pectin functionality, consequently on product properties. The effects of processing on pectin structure are highly dependent on the processing conditions. Targeted control of pectin structure by applying various processing operations could enhance textural, rheological, nutritional properties and cloud stability of products. While it seems that optimizing product quality in terms of physical properties is counteracted by optimizing the nutritional properties. Therefore, understanding plant component biosynthesis mechanisms and processing mechanisms could be a major challenge to balance among the quality indicators of processed products.
Collapse
Affiliation(s)
- Jianing Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Quality and Design Group, Wageningen University & Research, Wageningen, PO Box 17, 6700 AA, the Netherlands
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xuan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jian Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Mo Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University & Research, Wageningen, PO Box 17, 6700 AA, the Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University & Research, Wageningen, PO Box 17, 6700 AA, the Netherlands
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dazhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
9
|
|
10
|
Zhao W, Sun Y, Cheng Y, Ma Y, Zhao X. Effect of high‐pressure carbon dioxide on the quality of cold‐ and hot‐break tomato pulps. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenting Zhao
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Beijing China
- Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Yeting Sun
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Beijing China
- Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Yiran Cheng
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Beijing China
- Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Yue Ma
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Beijing China
- Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Xiaoyan Zhao
- Vegetable Research Center Beijing Academy of Agriculture and Forestry Sciences Beijing China
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing Beijing China
- Key Laboratory of Vegetable Postharvest Processing Ministry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
11
|
Benito-Román Ó, Sanz MT, Illera AE, Melgosa R, Benito J, Beltrán S. Pectin methylesterase inactivation by High Pressure Carbon Dioxide (HPCD). J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Changes on the rheological properties of pectin-enriched mango nectar by high intensity ultrasound. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Imaizumi T, Szymańska-Chargot M, Pieczywek PM, Chylińska M, Kozioł A, Ganczarenko D, Tanaka F, Uchino T, Zdunek A. Evaluation of pectin nanostructure by atomic force microscopy in blanched carrot. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Kozioł A, Cybulska J, Pieczywek PM, Zdunek A. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase. Carbohydr Polym 2017; 161:197-207. [DOI: 10.1016/j.carbpol.2017.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
15
|
Characterization and functional properties of mango peel pectin extracted by ultrasound assisted citric acid. Int J Biol Macromol 2016; 91:794-803. [PMID: 27283236 DOI: 10.1016/j.ijbiomac.2016.06.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 12/13/2022]
Abstract
Pectin was extracted from 'Tainong No. 1' mango peels, using a chelating agent-citric acid as extraction medium by ultrasound-assisted extraction (UAE) and conventional extraction (CE) at temperatures of 20 and 80°C. Chemical structures, rheological and emulsifying properties of mango peel pectins (MPPs) were comparatively studied with laboratory grade citrus pectin (CP). All MPPs exhibited higher protein content (4.74%-5.94%), degree of methoxylation (85.43-88.38%), average molecular weight (Mw, 378.4-2858kDa) than the CP, but lower galacuronic acid content (GalA, 52.21-53.35%). CE or UAE at 80°C resulted in significantly higher pectin yield than those at 20°C, while the extraction time for UAE-80°C (15min) was significantly shorter compared to CE-80°C (2h) with comparable pectin yield. Moreover, MPPs extracted at 80°C were observed with higher GalA and protein content, higher Mw, resulting in higher viscosity, better emulsifying capacity and stability, as compared to those extracted at 20°C and the CP. Therefore, these results suggested that MPPs from 'Tainong No. 1' may become a highly promising pectin with good thickening and emulsifying properties, using ultrasound-assisted citric acid as an efficient and eco-friendly extraction method.
Collapse
|
16
|
Role of peach proteins in juice precipitation induced by high pressure CO2. Food Chem 2016; 209:81-9. [PMID: 27173537 DOI: 10.1016/j.foodchem.2016.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022]
Abstract
To better understand the role of peach proteins in juice precipitation induced by high pressure CO2 (HPCD), proteins extracted from peach juice were subjected to HPCD and heat, and changes in particle size distribution (PSD) and structure were investigated. PSD analysis showed aggregations of proteins were both induced by HPCD and heat, but HPCD induced a stronger aggregation. The endotherm of HPCD- and heat-treated proteins moved to lower temperature, indicating that higher-order structures were altered after treatments. Furthermore, proteins related to HPCD- and heat-induced precipitation were analyzed by proteomics and bioinformatics. It was found that proteins with low content of α-helix and hydrogen bonds were more inclined to precipitate under HPCD, and HPCD precipitated proteins with more compact structures than heat, which might cause the stronger aggregation of proteins by HPCD. In conclusion, HPCD could induce the aggregation of peach proteins by destroying higher-order structures, which contributes to juice precipitation.
Collapse
|
17
|
Quality assurance in pepper and orange juice blend treated by high pressure processing and high temperature short time. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|