1
|
Sampaio SL, Chisnall T, Euston SR, Liddle C, Lonchamp J. Novel palm shortening substitute using a combination of rapeseed oil, linseed meal and beta-glucan. Food Chem 2024; 457:140134. [PMID: 38901335 DOI: 10.1016/j.foodchem.2024.140134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the potential of a novel sustainable ingredient composed of rapeseed oil, linseed meal and beta-glucan (PALM-ALT) to mimic palm shortening functionality in cake. The combined functional properties of linseed meal and beta-glucan led to stable semi-solid emulsion-gels (20-31 μm oil droplet size, 105-115 Pa.s viscosity and 60-65 Pa yield stress). PALM-ALT contained 25 and 88% less total and saturated fat than palm shortening, whilst PALM-ALT cakes contained 26 and 75% less total and saturated fat than the palm-based control. PALM-ALT cakes matched the flavour profile of the palm-based control, while rapeseed oil cakes tasted more sour and less sweet than the control (p < 0.05). PALM-ALT cakes proved less hard and more cohesive than the control (p < 0.05), with 100% of the consumer panel preferring PALM-ALT formulations. This study demonstrated the unique potential of PALM-ALT as healthier, sustainable and competitive alternative to palm shortening.
Collapse
Affiliation(s)
- Shirley L Sampaio
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Timothy Chisnall
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stephen R Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Catriona Liddle
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom
| | - Julien Lonchamp
- School of Health Sciences, Queen Margaret University, Queen Margaret University Drive, Edinburgh EH21 6UU, United Kingdom.
| |
Collapse
|
2
|
Mel R, Rampitsch C, Zvomuya F, Nilsen KT, Beattie AD, Malalgoda M. Determining the Impact of Genotype × Environment on Oat Protein Isolate Composition Using HPLC and LC-MS Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8103-8113. [PMID: 38530645 DOI: 10.1021/acs.jafc.3c07486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The effect of genotype and environment on oat protein composition was analyzed through size exclusion-high-performance liquid chromatography (SE-HPLC) and liquid chromatography-mass spectrometry (LC-MS) to characterize oat protein isolate (OPI) extracted from three genotypes grown at three locations in the Canadian Prairies. SE-HPLC identified four fractions in OPI, including polymeric globulins, avenins, glutelins, and albumins, and smaller proteins. The protein composition was dependent on the environment, rather than the genotype. The proteins identified through LC-MS were grouped into eight categories, including globulins, prolamins/avenins, glutelins, enzymes/albumins, enzyme inhibitors, heat shock proteins, grain softness proteins, and allergenic proteins. Three main globulin protein types were also identified, including the P14812|SSG2-12S seed storage globulin, the Q6UJY8_TRITU-globulin, and the M7ZQM3_TRIUA-Globulin-1 S. Principal component analysis indicated that samples from Manitoba showed a positive association with the M7ZQM3_TRIUA-Globulin-1 S allele and Q6UJY8_TRITU-globulin, while samples from Alberta and Saskatchewan had a negative association with them. The results show that the influence of G × E on oat protein fractions and their relative composition is crucial to understanding genotypes' behavior in response to different environments.
Collapse
Affiliation(s)
- Roshema Mel
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kirby T Nilsen
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Aaron D Beattie
- Crop Development Center, University of Saskatchewan, Saskatoon, Saskatchewan R3T 2N2, Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
3
|
Marlapati L, Basha RFS, Navarre A, Kinchla AJ, Nolden AA. Comparison of Physical and Compositional Attributes between Commercial Plant-Based and Dairy Yogurts. Foods 2024; 13:984. [PMID: 38611291 PMCID: PMC11011924 DOI: 10.3390/foods13070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
A primary strategy led by the food industry to improve the sustainability of the agricultural food supply is the development of modern plant-based alternatives. The information provided via marketing and product packaging provides consumers with the expectation that these products provide a similar product experience to conventional products, yet it is not well understood whether these commercial alternative products are comparable to traditional animal-based products. To aid in developing improved plant-based products, this study aimed to compare the quality and physical attributes of commercially available plant-based and dairy yogurts. Using instrumental methods, commercially available yogurt products were analyzed for their pH, titratable acidity, color, water activity, moisture content, and rheology, which included 13 plant-based (almond, cashew, coconut, oat, soy) and 8 whole-milk dairy yogurts. The present study reveals that the plant-based and dairy yogurts had no significant differences in pH, lactic acid, water activity, or moisture content. However, there were significant differences in the color and texture properties between the plant-based and dairy yogurts. Additionally, significant differences were observed across the plant-based yogurt products in terms of their color and texture properties. This highlights the need for additional studies to determine how individual ingredients influence the physical characteristics and textural properties to direct the development of plant-based yogurts. Improving upon the physicochemical properties of plant-based yogurt may encourage more consumers to adopt a more sustainable diet.
Collapse
Affiliation(s)
| | | | | | | | - Alissa A. Nolden
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA (A.J.K.)
| |
Collapse
|
4
|
Gu Y, Zhang X, Song S, Wang Y, Sun B, Wang X, Ma S. Structural modification of starch and protein: From the perspective of gelatinization degree of oat flour. Int J Biol Macromol 2024; 260:129406. [PMID: 38224797 DOI: 10.1016/j.ijbiomac.2024.129406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
To clarify the relationship between gelatinization degree and structure characteristics, oat kernels were roasted to different gelatinization degree of 15 %-90 % based on tempering water content of 22.5 %-35 %, and the structure characteristics of starch and protein were evaluated. The results showed that the increased gelatinization degree dependent on tempering water content promoted protein aggregation on the surface of starch particles, forming larger aggregates with molecular weight >100 kDa. Oat kernels presented a dense starch gel network structure induced by gelatinized starch. Partial gelatinization of starch led to a decrease in pasting viscosities (setback viscosity, 3.91 Pa·s-1.59 Pa·s) and enthalpy (5.12 J/g-0.11 J/g). With the increase of gelatinization degree, the starch crystal structure conversed from A + V type to V type, accompanied by the formation of starch-lipid complexes and a decrease of relative crystallinity (22.28 %-8.72 %). Moreover, 50 % gelatinized oat flour possessed the highest β-sheet structure (38.04 %), but a decrease in surface hydrophobicity and an increase in endogenous fluorescence intensity were found in oat flour of gelatinization degree >50 %. This study provided a theoretical reference for the application of oat flour with different gelatinization degrees to match suitable products.
Collapse
Affiliation(s)
- Yujuan Gu
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Xiaoyan Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Shuya Song
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Ying Wang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
5
|
Sargautis D, Kince T, Gramatina I. Characterisation of the Enzymatically Extracted Oat Protein Concentrate after Defatting and Its Applicability for Wet Extrusion. Foods 2023; 12:2333. [PMID: 37372544 DOI: 10.3390/foods12122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
An oat protein concentrate (OC1) was isolated from oat flour through starch enzymatic hydrolysis, by subsequent defatting by ethanol and supercritical fluid extraction (SFE) reaching protein concentrations of 78% and 77% by weight in dry matter, respectively. The protein characterisation and functional properties of the defatted oat protein concentrates were evaluated, compared and discussed. The solubility of defatted oat protein was minor in all ranges of measured pH (3-9), and foamability reached up to 27%. Further, an oat protein concentrate defatted by ethanol (ODE1) was extruded by a single screw extruder. The obtained extrudate was evaluated by scanning electron microscope (SEM), texture and colour analysers. The extrudate's surface was well formed, smooth, and lacking a tendency to form a fibrillar structure. Textural analysis revealed a non-unform structure (fracturability 8.8-20.9 kg, hardness 26.3-44.1 kg) of the oat protein extrudate.
Collapse
Affiliation(s)
- Darius Sargautis
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Tatjana Kince
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Ilze Gramatina
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| |
Collapse
|
6
|
Sargautis D, Kince T. Effect of Enzymatic Pre-Treatment on Oat Flakes Protein Recovery and Properties. Foods 2023; 12:foods12050965. [PMID: 36900482 PMCID: PMC10001348 DOI: 10.3390/foods12050965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Oats are considered an exceptional source of high-quality protein. Protein isolation methods define their nutritional value and further applicability in food systems. The aim of this study was to recover the oat protein using a wet-fractioning method and investigate the protein functional properties and nutritional values among the processing streams. The oat protein was concentrated through enzymatic extraction, eliminating starch and non-starch polysaccharides (NSP), treating oat flakes with hydrolases, and reaching protein concentrations of up to about 86% in dry matter. The increased ionic strength from adding sodium chloride (NaCl) improved protein aggregation and resulted in increased protein recovery. Ionic changes improved protein recovery in provided methods by up to 24.8 % by weight. Amino acid (AA) profiles were determined in the obtained samples, and protein quality was compared with the required pattern of indispensable amino acids. Furthermore, functional properties of the oat protein, such as solubility, foamability, and liquid holding capacity, were investigated. The solubility of the oat protein was below 7 %; foamability averaged below 8%. The water and oil-holding reached a ratio of up to 3.0 and 2.1 for water and oil, respectively. Our findings suggest that oat protein could be a potential ingredient for food industries requiring a protein of high purity and nutritional value.
Collapse
|
7
|
Oil-in Water Vegetable Emulsions with Oat Bran as Meat Raw Material Replacers: Compositional, Technological and Structural Approach. Foods 2022; 12:foods12010040. [PMID: 36613256 PMCID: PMC9818671 DOI: 10.3390/foods12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The unique composition and technological properties of some oat bran components (mainly protein and soluble fiber) and olive oil make them a good choice to form oil-in-water vegetable emulsions. The different concentrations of oat bran were studied to form olive oil-in water (O/W) emulsions to apply as a replacement for fat and meat. As a result, four O/W emulsions (OBE) were formulated with 10% (OBE10), 15% (OBE15), 20% (OEB20), and 30% (OBE30) oat bran concentrations and 40% olive oil, with the corresponding amount of water added for each O/W emulsion. Composition, technological properties (thermal stability, pH, texture), and lipid structural characteristics were evaluated. The results showed that low oat bran content (OEB10)-with a lower concentration of oat protein and β-glucans-resulted in an O/W emulsion with an aggregated droplet structure and lower thermal stability and hardness. These connections between composition, technology, and structural properties of olive O/W emulsions elaborated with oat bran could help in making the optimal choice for their potential application in the production of foods such as healthier meat products.
Collapse
|
8
|
Immonen M, Chandrakusuma A, Hokkanen S, Partanen R, Mäkelä-Salmi N, Myllärinen P. The effect of deamidation and lipids on the interfacial and foaming properties of ultrafiltered oat protein concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Korpela B, Pitkänen L, Heinonen M. Enzymatic modification of oat globulin enables covalent interaction with procyanidin B2. Food Chem 2022; 395:133568. [DOI: 10.1016/j.foodchem.2022.133568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
10
|
Wojciechowski K. Surface tension of native and modified plant seed proteins. Adv Colloid Interface Sci 2022; 302:102641. [PMID: 35299137 DOI: 10.1016/j.cis.2022.102641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
Abstract
The present review, dedicated to Prof. Zbigniew Adamczyk on the occasion of his 70th anniversary, covers the literature data on surface tension and surface compression (dilational) rheology of the adsorbed layers of 21 plant seed proteins (10 leguminous and 11 non-leguminous plants). They are typically analyzed as protein concentrates or isolates, the latter usually obtained by isoelectric precipitation or diafiltration. Despite generally lower solubility, as compared to their animal counterparts (lactoglobulins, caseins, albumins, etc.), the plant seed proteins are also capable of lowering surface tension and forming viscoelastic adsorbed layers. Many seed proteins serve mostly as amino acids reservoirs for the future seedling (storage proteins), hence their instantaneous amphiphilicity is not always sufficient to induce strong adsorption at the aqueous-air interface. They can be, however, conveniently unfolded, hydrolyzed and/or chemically/enzymatically modified to expose more hydrophilic or hydrophobic patches. As shown in numerous contributions reviewed below, the resulting shift of the hydrophilic-lipophilic balance can boost their surface activity to the level comparable to that of many animal proteins or low molecular weight surfactants. An important advantage of the plant seed proteins over the animal ones is their much lower environmental cost and abundance in many plants (e.g. ~40% in sunflower or soybean seeds).
Collapse
Affiliation(s)
- Kamil Wojciechowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland.
| |
Collapse
|
11
|
Greis M, Sainio T, Katina K, Nolden AA, Kinchla AJ, Seppä L, Partanen R. Physicochemical Properties and Mouthfeel in Commercial Plant-Based Yogurts. Foods 2022; 11:foods11070941. [PMID: 35407028 PMCID: PMC8997816 DOI: 10.3390/foods11070941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
There is a growing need for plant-based yogurts that meet consumer demands in terms of texture. However, more research is required to understand the relationship between physicochemical and mouthfeel properties in plant-based yogurts. The purpose of this study was to determine the physicochemical properties of five commercial plant-based yogurt alternatives with different chemical compositions, making comparisons to dairy yogurts and thick, creamy, thin, and watery mouthfeel sensations. The physicochemical parameters studied included large and small deformation rheology, particle size, soluble solids, acidity, and chemical composition. Significant differences in flow behavior and small deformation rheology were found between dairy- and plant-based yogurts. Among plant-based yogurts thick, creamy, thin, and watery mouthfeel sensations were strongly associated with steady shear rates and apparent viscosity. The results highlight the importance of large deformation rheology to advance the use of plant-based ingredients in the development of yogurt alternatives. Furthermore, this study demonstrates that dairy- and plant-based yogurts with a similar mouthfeel profiles may have different viscoelastic properties, which indicates that instrumental and sensory methods should not be considered substitutive but complementary methods when developing plant-based yogurts in a cost-effective and timely manner.
Collapse
Affiliation(s)
- Maija Greis
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (T.S.); (K.K.); (L.S.)
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.A.N.); (A.J.K.)
- Correspondence:
| | - Taru Sainio
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (T.S.); (K.K.); (L.S.)
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (T.S.); (K.K.); (L.S.)
| | - Alissa A. Nolden
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.A.N.); (A.J.K.)
| | - Amanda J. Kinchla
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; (A.A.N.); (A.J.K.)
| | - Laila Seppä
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland; (T.S.); (K.K.); (L.S.)
| | | |
Collapse
|
12
|
Pöri P, Nisov A, Nordlund E. Enzymatic modification of oat protein concentrate with trans- and protein-glutaminase for increased fibrous structure formation during high-moisture extrusion processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Rethinking plant protein extraction: Albumin—From side stream to an excellent foaming ingredient. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Wang X, Wolber FM, Ye A, Stroebinger N, Hamlin A, Zhu P, Montoya CA, Singh H. Gastric digestion of cow milk, almond milk and oat milk in rats. Food Funct 2022; 13:10981-10993. [DOI: 10.1039/d2fo02261c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, gastric digestion of isocaloric and iso-macronutrient cow milk, almond milk and oat milk were compared in rats euthanized at different post-feeding times.
Collapse
Affiliation(s)
- Xin Wang
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Frances M. Wolber
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Natascha Stroebinger
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aimee Hamlin
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Peter Zhu
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Smart Foods and Bioproducts, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North 4474, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
15
|
Brückner-Gühmann M, Kratzsch A, Sozer N, Drusch S. Oat protein as plant-derived gelling agent: Properties and potential of modification. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
17
|
Mel R, Malalgoda M. Oat protein as a novel protein ingredient: Structure, functionality, and factors impacting utilization. Cereal Chem 2021. [DOI: 10.1002/cche.10488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roshema Mel
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
18
|
Wang H, Xiang L, Rao P, Ke L, Wu B, Chen S, Wang S, Shi Y, Su P. Effects of pretreatments on structural and functional changes of oat protein isolate. Cereal Chem 2021. [DOI: 10.1002/cche.10480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hailin Wang
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Leiwen Xiang
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Pingfan Rao
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Lijing Ke
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Benyang Wu
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Sheng Chen
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Shaoyun Wang
- College of Bioscience and Engineering Fuzhou University Fuzhou China
| | - Yuande Shi
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Pingping Su
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| |
Collapse
|
19
|
Carranza-Saavedra D, Zapata-Montoya JE, Váquiro-Herrera HA, Solanilla-Duque JF. Study of biological activities and physicochemical properties of Yamú (Brycon siebenthalae) viscera hydrolysates in sodium alginate-based edible coating solutions. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The fishing industry produces waste such as viscera, which is an environmental problem for many countries. Obtaining protein from these wastes are useful for the food industry. In this study, the chemical composition, amino acid profile, solubility, digestibility and thermal properties of Yamú protein isolate (PI) and its hydrolysates obtained by enzymatic hydrolysis were characterized. The hydrolysates (0.05, 0.1, 0.5, 1 and 2% w/v) were mixed with a sodium alginate-based solution to form an edible coating solution (ECS). Antioxidant capacity antimicrobial activity, Zeta potential (ζ) and adsorption kinetics properties were determined. PI contains 88% (w/w) protein showing better solubility, digestibility and thermal stability properties. The hydrolysate concentrations with DPPH inhibitory ECS were 0.1 and 0.5% (w/v). The kinetic properties of ECS showed good stability and excellent adsorption. These results suggest that this Yamú protein has high nutritional potential as an ingredient for the production of functional foods.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - José Edgar Zapata-Montoya
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - Henry Alexander Váquiro-Herrera
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
| | - José Fernando Solanilla-Duque
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Departamento de Agroindustria , Facultad de Ciencias Agrarias, Universidad del Cauca , Popayán 190001 , Colombia
| |
Collapse
|
20
|
Li M, Blecker C, Karboune S. Molecular and air-water interfacial properties of potato protein upon modification via laccase-catalyzed cross-linking and conjugation with sugar beet pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Nivala O, Nordlund E, Kruus K, Ercili-Cura D. The effect of heat and transglutaminase treatment on emulsifying and gelling properties of faba bean protein isolate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Sánchez-Velázquez OA, Cuevas-Rodríguez EO, Mondor M, Ribéreau S, Arcand Y, Mackie A, Hernández-Álvarez AJ. Impact of in vitro gastrointestinal digestion on peptide profile and bioactivity of cooked and non-cooked oat protein concentrates. Curr Res Food Sci 2021; 4:93-104. [PMID: 33748776 PMCID: PMC7957154 DOI: 10.1016/j.crfs.2021.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Oat (Avena sativa) is one of the most cultivated and consumed cereals worldwide. Recognized among cereals for its high protein content (12%-24%), it makes it an excellent source of bioactive peptides, which could be modified during processes such as heating and gastrointestinal digestion (GID). This work aims to evaluate the impact of heat treatment on the proteolysis of oat proteins and on the evolution of antioxidant peptide released during in vitro static GID, in terms of comparative analysis between cooked oat protein concentrate (COPC) and non-heated oat protein concentrate (OPC) samples. The protein extraction method and cooking procedure used showed no detrimental effects on protein quality. After GID, the proportion of free amino acids/dipeptides (<0.2 kDa) reached >40% for both samples (OPC and COPC), thus producing peptides with low molecular weight and enhanced bioactivity. Furthermore, during GID, the amino acid profile showed an increase in essential, positively-charged, hydrophobic and aromatic amino acids. At the end of GID, the reducing power of OPC and COPC increased >0.3 and 8-fold, respectively, in comparison to the non-digested samples; while ABTS•+ and DPPH• showed a >20-fold increase. Fe2+ chelating capacity of OPC and COPC was enhanced >4 times; similarly, Cu2+ chelation showed a >19-fold enhancement for OPC and >10 for COPC. β-carotene bleaching activity was improved 0.8 times in OPC and >9 times in COPC; the oxygen radical antioxidant capacity assay increased 2 times in OPC and >4.7 times in COPC, respectively. This study suggests that OPC after cooking and GID positively influenced the nutritional and bioactive properties of oat peptides. Thus, COPC could be used as a functional food ingredient with health-promoting effects, as hydrothermal treatment is frequently used for this type of cereals.
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa, Mexico
| | - Edith Oliva Cuevas-Rodríguez
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa, Mexico
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa. Av. Universitarios s/n, Ciudad Universitaria, Col. Universitarios, P. C. 80030, Culiacán Rosales, Sinaloa, Mexico
| | - Martin Mondor
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Casavant West Boulevard, Saint-Hyacinthe, Quebec, Canada, J2S 8E3
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Sabine Ribéreau
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Casavant West Boulevard, Saint-Hyacinthe, Quebec, Canada, J2S 8E3
| | - Yves Arcand
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Casavant West Boulevard, Saint-Hyacinthe, Quebec, Canada, J2S 8E3
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | | |
Collapse
|
23
|
Li X, Murray BS, Yang Y, Sarkar A. Egg white protein microgels as aqueous Pickering foam stabilizers: Bubble stability and interfacial properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105292] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Brückner-Gühmann M, Vasil'eva E, Culetu A, Duta D, Sozer N, Drusch S. Oat protein concentrate as alternative ingredient for non-dairy yoghurt-type product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5852-5857. [PMID: 31206178 DOI: 10.1002/jsfa.9858] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND During the industrial production of β-glucan, a protein-rich fraction remains as a by-product. Recovery of this protein as oat protein concentrate (OPC) results in a source of cereal protein for food and improves the overall economy of the process. In this study, a yoghurt-type product is developed by lactic acid fermentation of an OPC suspension after subjection to heat treatment to assure starch gelatinization. RESULTS In detail, the process of yoghurt production involved an initial heating step to 90 °C, followed by 24 h fermentation with a starter culture consisting of Lactobacillus delbrueckii subsp. bulgaricus und Streptococcus thermophilus. The resulting yoghurt-type product was mildly sour (pH 4.2) with a certain amount of lactic acid (3.3 ± 0.2 g kg-1 ) and contained 4.9 × 106 cfu g-1 lactobacillus after 24 h fermentation. Scanning electron microscopy revealed a porous network presumably built up from the gelatinized starch fraction containing aggregated structures, between which were assumed to be aggregated oat proteins. Moreover, to a limited extent, proteolysis occurred during fermentation. Thus some of the proteolytic enzymes present in the yoghurt culture cleaved oat protein and released peptides. However, the effect on essential amino acids was small. CONCLUSION The results of this study provide a deeper knowledge into the role of starch and protein in fermented OPC yoghurts. The structure of fermented OPC verifies the applicability of oat protein as an alternative source for yoghurt-type products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Monika Brückner-Gühmann
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Elena Vasil'eva
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Alina Culetu
- Department of Research and Innovation, National Institute of Research and Development for Food Bioresources - IBA Bucharest, Bucharest, Romania
| | - Denisa Duta
- Department of Research and Innovation, National Institute of Research and Development for Food Bioresources - IBA Bucharest, Bucharest, Romania
| | - Nesli Sozer
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Han A, Romero HM, Nishijima N, Ichimura T, Handa A, Xu C, Zhang Y. Effect of egg white solids on the rheological properties and bread making performance of gluten-free batter. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
|
27
|
|
28
|
|
29
|
Zhao CB, Zhang H, Xu XY, Cao Y, Zheng MZ, Liu JS, Wu F. Effect of acetylation and succinylation on physicochemical properties and structural characteristics of oat protein isolate. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Structuring colloidal oat and faba bean protein particles via enzymatic modification. Food Chem 2017; 231:87-95. [PMID: 28450027 DOI: 10.1016/j.foodchem.2017.03.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 11/24/2022]
Abstract
Oat and faba bean protein isolates were treated with transglutaminase from Streptomyces mobaraensis and tyrosinase from Trichoderma reesei to modify the colloidal properties of protein particles in order to improve their colloidal stability and foaming properties. Transglutaminase crosslinked faba bean protein extensively already with 10nkat/g enzyme dosage. Oat protein was crosslinked to some extent with transglutaminase with higher dosages (100 and 1000nkat/g). Transglutaminase increased the absolute zeta-potential values and reduced the particle size of oat protein particles. As a result, the colloidal stability and foaming properties were improved. Tyrosinase had limited crosslinking ability on both plant protein materials. Tyrosinase greatly reduced the solubility of oat protein despite limited crosslinking. Tyrosinase did not have effect on zeta-potential or colloidal stability of either protein, but it impaired foaming properties of both. Thus, the crosslinking enzymes studied caused significantly different end product functionality, presumably due to the different mechanism of action.
Collapse
|
31
|
Partanen R, Sibakov J, Rommi K, Hakala T, Holopainen-Mantila U, Lahtinen P, Ercili-Cura D, Lantto R. Dispersion stability of non-refined turnip rapeseed (Brassica rapa) protein concentrate: Impact of thermal, mechanical and enzymatic treatments. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Bučko S, Katona J, Popović L, Vaštag Ž, Petrović L, Vučinić–Vasić M. Investigation on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|