1
|
Zhang H, Wu Z, Wu J, Hua Q, Liang Y, Renneckar S. High internal phase Pickering emulsions stabilized by surface-modified dialdehyde xylan nanoparticles. Carbohydr Polym 2025; 354:123324. [PMID: 39978906 DOI: 10.1016/j.carbpol.2025.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/22/2025]
Abstract
Polysaccharide-based particles have attracted considerable attention for stabilizing Pickering emulsions due to their sustainability and biocompatibility. In this study, we developed a novel approach utilizing hemicellulose-based nanoparticles for the stabilization of high internal phase Pickering emulsions (HIPPEs). Polyethylenimine-modified dialdehyde xylan nanoparticles (PEI-DAXNPs) were prepared through periodate oxidation of xylan nanoparticles obtained from esparto pulp, followed by a Schiff base reaction with polyethylenimine (PEI). Oil-in-water HIPPEs were fabricated using PEI-DAXNPs as the sole stabilizer through a one-time homogenization method and exhibited long-term stability after 180 days of storage. Furthermore, gel-like HIPPEs were obtained with a minimum concentration of 0.1 wt% PEI-DAXNPs in the continuous phase and exhibited shear-thinning behavior and promising viscoelastic properties, indicating good processability in the fabrication of soft materials and porous scaffolds. Therefore, the produced PEI-DAXNPs demonstrated significant potential as HIPPE stabilizers, providing inspiration for the valorization of hemicellulose-based nanoparticles.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zemeng Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jie Wu
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Qi Hua
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yalan Liang
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
2
|
Karandagaspitiya CO, Mahendra CK, Lim HP, Chan DKH, Tey YS, Kam CF, Singh CKS, Song CP, Chan ES. Tripolyphosphate-chitosan-pea protein interactions confers long-term stability to 3D printed high internal phase Pickering emulsions. Food Chem 2025; 466:142228. [PMID: 39608119 DOI: 10.1016/j.foodchem.2024.142228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
This research explores the interactions of tripolyphosphate-chitosan-pea protein (TPP-CS-PP) in improving the stability and storage of 3D printing food inks. Chitosan (CS) and pea protein (PP) were complexed at various concentrations with 80 % palm olein to produce high internal phase Pickering emulsions (HIPPEs) 3D printing food inks. The resulting CSPP HIPPEs exhibited shear-thinning behaviour and the flexibility to switch between solid and liquid states, ideal for 3D printing. CSPP1:150 achieved the best 3D printing resolution and shape fidelity due to electrostatic attraction of CS-PP and excess PP enhancing adhesion at the oil/water interface. After spraying tripolyphosphate (TPP), crosslinking with CS and phosphorylation of PP further improved HIPPE resistance to deformation and oiling off for 2 days post-printing. This is a significant improvement over the control. Thus, further investigation on the interaction of TPP with CS and PP is warranted to further improve the storage stability of 3D printed food inks.
Collapse
Affiliation(s)
- Chani Oshadi Karandagaspitiya
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Camille Keisha Mahendra
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Hui-Peng Lim
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Derek Kwan-Hoe Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yi Shen Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chui Fong Kam
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Charanjit Kaur Surjit Singh
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Xie Y, Li H, Deng Z, Yu Y, Zhang B. Enhanced Bioaccessibility and Antioxidant Activity of Curcumin from Transglutaminase Cross-Linked Mulberry Leaf Protein-Stabilized High-Internal-Phase Pickering Emulsion: In Vivo and In Vitro Studies. Foods 2024; 13:3939. [PMID: 39683012 DOI: 10.3390/foods13233939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to formulate Pickering emulsions stabilized by transglutaminase cross-linked mulberry leaf protein (TG-MLP) nanoparticles as a delivery system for curcumin (Cur) and to assess its bioaccessibility both in vivo and in vitro. The encapsulation efficiency of curcumin in high-internal-phase Pickering emulsions (HIPEs) prepared at pH 10 with a 20 mg/mL concentration of TG-MLP reached 93%. Compared to Oil-Cur, Cur-HIPEs exhibited superior antioxidant activity. Furthermore, Cur-HIPEs demonstrated enhanced stability against ultraviolet irradiation, storage under dark and visible light, and heating, in contrast to Oil-Cur. Among the various conditions tested, HIPEs stabilized by TG-MLP nanoparticles at an ionic strength of 1000 mM offered the most effective protection for curcumin. Moreover, TG-MLP nanoparticles at pH 8 provided better stability for the formulated HIPEs compared to those at pH 6 and 10. During simulated gastrointestinal digestion, the bioaccessibility of curcumin in Cur-HIPEs was significantly increased to 30.1% compared to Oil-Cur. In murine studies, higher levels of curcumin were detected in the stomach, small intestine, rectum, ileum, and feces following administration of Cur-HIPEs, indicating improved protection, absorption, and potential biological activity during digestion. Consequently, HIPEs offer excellent protection and delivery for curcumin during digestion.
Collapse
Affiliation(s)
- Yingshan Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Yanfang Yu
- Jiangxi Cash Crops Institute, Nanchang 330202, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| |
Collapse
|
4
|
Shi Z, Wu J, Wang X, Nie T, Zeng Q, Yuan C, Jin R. Development of Pickering water-in-oil emulsions using a dual stabilization of candelilla wax and acylated EGCG derivatives to enhance the survival of probiotics ( Lactobacillus plantarum) powder. Food Funct 2024; 15:11141-11157. [PMID: 39440390 DOI: 10.1039/d4fo01342e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Probiotics have considerable interest due to their inseparable link to human health. However, probiotic products are seriously challenged during processing, preservation, and intake. Food-grade probiotic delivery systems need to be further explored as an effective way to enhance cell viability. In this study, water-in-oil (W/O) Pickering emulsions were fabricated by adding candelilla wax (CLW) as a network stabilizer based on acylated EGCG derivatives in the crystalline form as a Pickering stabilizer. The effects of acylated EGCG derivatives' concentration, CLW concentration, and oil phase volume fraction on the droplet size distribution, microstructure, and physical stability of Pickering emulsions were explored. The presence of CLW reduced the particle size and improved the physical stability of acylated EGCG-based emulsions, and the effect was more positive with increasing concentration. The protective effect of emulsions with different oil phase volume fractions on Lactobacillus plantarum during freeze-thaw cycles, storage, and gastrointestinal digestion was evaluated. The outer-phase physical barrier of W/O emulsions co-stabilized with acylated EGCG derivatives and CLW facilitated the sensitivity of probiotics to ice crystal growth, temperature changes, acidic environments, and digestive enzymes. The emulsions formulated with 40% oil phase volume fractions allowed Lactobacillus plantarum to survive up to 7.75 log CFU g-1 in the harsh gastrointestinal environment. The results offer promising strategies for applying W/O emulsion probiotic delivery systems in food processing, storage, and oral administration.
Collapse
Affiliation(s)
- Zhaojuan Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Jun Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Xingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Tongqiao Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Qingmei Zeng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Chuanxun Yuan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| | - Risheng Jin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- Engineering Research Center of Agricultural Product Biochemicals, Ministry of Education, Hefei 230009, P. R. China
| |
Collapse
|
5
|
Xu J, Ji F, Luo S, Jiang S, Yu Z, Ye A, Zheng Z. Fabrication of soy protein-polyphenol covalent complex nanoparticles with improved wettability to stabilize high-oil-phase curcumin emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8445-8455. [PMID: 38895880 DOI: 10.1002/jsfa.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Recent studies have shown that the wettability of protein-based emulsifiers is critical for emulsion stability. However, few studies have been conducted to investigate the effects of varying epigallocatechin gallate (EGCG) concentrations on the wettability of protein-based emulsifiers. Additionally, limited studies have examined the effectiveness of soy protein-EGCG covalent complex nanoparticles with improved wettability as emulsifiers for stabilizing high-oil-phase (≥ 30%) curcumin emulsions. RESULTS Soy protein isolate (SPI)-EGCG complex nanoparticles (SPIEn) with improved wettability were fabricated to stabilize high-oil-phase curcumin emulsions. The results showed that EGCG forms covalent bonds with SPI, which changes its secondary structure, enhances its surface charge, and improves its wettability. Moreover, SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) exhibited a better three-phase contact angle (56.8 ± 0.3o) and zeta potential (-27 mV) than SPI. SPIEn-2.0 also facilitated the development of curcumin emulsion gels at an oil volume fraction of 0.5. Specifically, the enhanced network between droplets as a result of the packing effects and SPIEn-2.0 with inherent antioxidant function was more effective at inhibiting curcumin degradation during long-term storage and ultraviolet light exposure. CONCLUSION The results of the present study indicate that SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) comprises the optimum conditions for fabricating emulsifiers with improved wettability. Additionally, SPIEn-0.2 can improve the physicochemical stability of high-oil-phase curcumin emulsions, suggesting a novel strategy to design and fabricate high-oil-phase emulsion for encapsulating bioactive compounds. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Xu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Fuyun Ji
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhenyu Yu
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
6
|
Yang F, Wang Y, He H, Wang G, Yang M, Hong M, Huang J, Wang Y. Construction of highly stable, monodisperse water-in-water Pickering emulsions with full particle coverage using a composite system of microfluidics and helical coiled tube. Colloids Surf B Biointerfaces 2024; 242:114079. [PMID: 39029247 DOI: 10.1016/j.colsurfb.2024.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
Water-in-water (W/W) Pickering emulsions, exhibit considerable potential in the food and pharmaceutical fields owing to their compartmentalization and high biocompatibility. However, constrained by the non-uniform distribution of shear forces during emulsification or the spatial obstruction in polydimethylsiloxane (PDMS) passive microfluidic platform, the existing methods cannot generate monodisperse W/W Pickering emulsions with high particle coverage rate, thereby limiting their applications. Herein, a novel microfluidic system is designed for the preparation of monodisperse and highly particle-covered W/W Pickering emulsions under mild conditions. pH-responsive Polyethylene glycol (PEG)/phosphate aqueous two-phase system (ATPS) is used for the emulsions' preparation. Notably, a coverage rate of 96 ± 3 % is obtained by adjusting the length of the helical coiled tube, as well as the size and contact angle of genipin cross-linked BSA (BSA-GP) particles. Moreover, these W/W Pickering emulsions, with surfaces almost completely covered, can maintain monodisperse (Ncoal = 1.18 ± 0.03) for one day. Furthermore, the results of ranitidine hydrochloride (RH) release demonstrated that the drug release rate of W/W Pickering emulsions in the simulated gastric fluid (SGF) was 10 times faster than that in the neutral solution. We believe that the highly particle-covered monodisperse W/W Pickering emulsions possess great potential applications in bioencapsulation for foods and drug delivery.
Collapse
Affiliation(s)
- Feng Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yilan Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Huatao He
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jin Huang
- Southwest Univ, Sch Chem & Chem Engn, Chongqing Key Lab Soft Matter Mat Chem & Funct Mfg, Chongqing 400715, PR China; Southwest Univ, State Key Lab Silkworm Genome Biol, Chongqing 400715, PR China.
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
7
|
Cui R, Ickler M, Markovina A, Kanwal S, Vogel N, Klinger D. Amphiphilic Nanogels as Versatile Stabilizers for Pickering Emulsions. ACS NANO 2024; 18:25499-25511. [PMID: 39228057 PMCID: PMC11411724 DOI: 10.1021/acsnano.4c05143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Pickering emulsions (PEs) are stabilized by particles at the water/oil interface and exhibit superior long-term stability compared to emulsions with molecular surfactants. Among colloidal stabilizers, nano/microgels facilitate emulsification and can introduce stimuli responsiveness. While increasing their hydrophobicity is connected to phase inversion from oil-in-water (O/W) to water-in-oil (W/O) emulsions, a predictive model to relate this phase inversion to the molecular structure of the nano/microgel network remains missing. Addressing this challenge, we developed a library of amphiphilic nanogels (ANGs) that enable adjusting their hydrophobicity while maintaining similar colloidal structures. This enabled us to systematically investigate the influence of network hydrophobicity on emulsion stabilization. We found that W/O emulsions are preferred with increasing ANG hydrophobicity, oil polarity, and oil/water ratio. For nonpolar oils, increasing emulsification temperature enabled the formation of W/O PEs that are metastable at room temperature. We connected this behavior to interfacial ANG adsorption kinetics and quantified ANG deformation and swelling in both phases via atomic force microscopy. Importantly, we developed a quantitative method to predict phase inversion by the difference in Flory-Huggins parameters between ANGs with water and oil (χwater - χoil). Overall, this study provides crucial structure-property relations to assist the design of nano/microgels for advanced PEs.
Collapse
Affiliation(s)
- Ruiguang Cui
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, Berlin 14197, Germany
| | - Maret Ickler
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Ante Markovina
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, Berlin 14197, Germany
| | - Sidra Kanwal
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, Berlin 14197, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, Berlin 14197, Germany
| |
Collapse
|
8
|
Hou H, Zhang Y, Liu Y, Zeng Q, Li Q, Fang X, Guo T, Yuan H, Zeng S, Meng T. Pickering emulsion co-delivery system: Stimuli-responsive biomineralized particles act as particulate emulsifiers and bioactive carriers. Colloids Surf B Biointerfaces 2024; 241:114029. [PMID: 38878663 DOI: 10.1016/j.colsurfb.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/29/2024]
Abstract
Pickering emulsions provide a promising platform for the efficient delivery of bioactive. However, co-delivery of fragile bioactives with different physicochemical properties for comprehensive effects still faces practical challenges due to the limited protection for bioactives and the lack of stimuli-responsive property for on-demand release. Herein, a stimuli-responsive co-delivery system is developed based on biomineralized particles stabilized Pickering emulsions. In this tailor co-delivery system, hydrophilic bioactive (pepsin) with the fragile structure is encapsulated and immobilized by biomineralization, the obtained biomineralized particles (PPS@CaCO3) are further utilized as emulsifiers to form O/W Pickering emulsions, in which the hydrophobic oxidizable bioactive (curcumin) is stably trapped into the dispersed phase. The results show that two bioactives are successfully co-encapsulated in Pickering emulsions, and benefiting from the protection capacities of biomineralization and Pickering emulsions, the activity of pepsin and curcumin shows a 7.33-fold and 144.83-fold enhancement compared to the free state, respectively. Moreover, In vitro study demonstrates that Pickering emulsions enable to co-release of two bioactives with high activity retention by the acid-induced hydrolyzation of biomineralized particles. This work provides a powerful stimuli-responsive platform for the co-delivery of multiple bioactive compounds, enabling high activity of bioactives for the comprehensive health effects.
Collapse
Affiliation(s)
- Haoyue Hou
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuli Zhang
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Liu
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qi Zeng
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qinyuan Li
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xingyuan Fang
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Guo
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Yuan
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sa Zeng
- Guangzhou Ridgepole Biological Technology Co. Ltd., Guangzhou 510800, China
| | - Tao Meng
- School of Life Science and Engineering, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
9
|
Cheng M, Tao Y, Wang C, Li A. Chitosan-coated soybean protein isolate/lecithin nanoparticles for enhancing the stability and bioaccessibility of phytosterol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4242-4250. [PMID: 38288644 DOI: 10.1002/jsfa.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Phytosterols (PS) have various beneficial effects on human health, especially the property of reducing blood cholesterol. However, the low solubility and bioaccessibility of PS have greatly limited their application in functional food ingredients. RESULTS To improve the bioaccessibility and stability of PS, chitosan-coated PS nanoparticles (CS-PNP) were successfully prepared by self-assembly. The properties of CS-PNP, including size, zeta potential, encapsulation efficiency (EE) and loading amount (LA) were characterised. The optimisation of CS concentration (0.4 mg mL-1) and pH (3.5) resulted in the formation of CS-PNP with an EE of over 90% and a particle size of 187.7 nm. Due to the special properties of CS chitosan, the interaction between CS and soybean protein isolate (SPI)/lecithin (SL) led to the formation of a soluble complex. CS-PNP exhibited good stability to temperature variations but was more sensitive to salt ions. During in vitro digestion, CS efficiently maintained the stability of nanoparticles against the hydrolysis of SPI by pepsin under acidic conditions. However, these nanoparticles tended to aggregate in a neutral intestinal environment. After 3 h of in vitro digestion, the bioaccessibility of PS increased from 18.2% of free PS to 63.5% of CS-PNP. CONCLUSION Overall, these results highlight the potential of chitosan-coated nanoparticles as effective carriers for the oral administration of PS. This multilayer construction may serve as a promising for applications in food products as delivery vehicles for nutraceuticals. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
- Department of Food Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ye Tao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, China
- Department of Food Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chunwei Wang
- Department of Food Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Ao Li
- Department of Food Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
10
|
Du Y, Niu L, Song X, Niu J, Zhang C, Zhi K. Dual-modified starch as particulate emulsifier for Pickering emulsion: Structure, safety properties, and application for encapsulating curcumin. Int J Biol Macromol 2024; 266:131206. [PMID: 38574919 DOI: 10.1016/j.ijbiomac.2024.131206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
In this study, cinnamic acid modified acid-ethanol hydrolyzed starch (CAES) with different degrees of substitution (DS) was fabricated to stabilize Pickering emulsions and probed their application for encapsulating curcumin (Cur). Successful preparation of CAES (with DS from 0.016 to 0.191) was confirmed by 1H NMR and FT-IR, and their physicochemical properties were characterized by XRD, SEM, and TGA. The biosafety evaluations and surface wettability confirmed the excellent safety and amphiphilic character of CAES. CAES-stabilized Pickering emulsion (CS-PE) exhibited different emulsion stability at different DS, with CS-PE (0.031) showing the highest stability. CLSM revealed that the CAES (0.031) formed a dense barrier on the surface of the oil droplets, preventing them from coalescing. The CS-PE (0.031) achieved effective encapsulation of Cur (up to 96.2 %). Compared with free Cur, CS-PE (0.031) exhibited better photochemical stability, higher free fatty acids (FFA) release, and enhanced bioaccessibility. These studies suggested that CAES may serve as a promising emulsifier for stabilizing Pickering emulsions to encapsulate and deliver hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Yanjin Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingling Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinkun Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jihan Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kangkang Zhi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
11
|
Hadian M, Fathi M, Mohammadi A, Eskandari MH, Asadsangabi M, Pouraghajan K, Shohrati M, Mohammadpour M, Samadi M. Characterization of chitosan/Persian gum nanoparticles for encapsulation of Nigella sativa extract as an antiviral agent against avian coronavirus. Int J Biol Macromol 2024; 265:130749. [PMID: 38467218 DOI: 10.1016/j.ijbiomac.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to investigate the physicochemical characteristics of nanoparticles formed by the ionic gelation method between chitosan and water-soluble fraction of Persian gum (WPG) for encapsulation of Nigella sativa extract (NSE) as an antiviral agent. Our findings revealed that the particle size, polydispersity index (PDI), and zeta potential of the particles were in the range of 316.7-476.6 nm, 0.259-0.466, and 37.0-58.1 mV, respectively. The amounts of chitosan and WPG as the wall material and the NSE as the core had a considerable impact on the nanoparticle properties. The proper samples were detected at 1:1 chitosan:WPG mixing ratio (MR) and NSE concentration of 6.25 mg/mL. Fourier-transformed infrared (FTIR) spectroscopy proved the interactions between the two biopolymers. The effect of NSE on infectious bronchitis virus (IBV) known as avian coronavirus, was performed by the in-ovo method determining remarkable antiviral activity of NSE (25 mg/mL) and its enhancement through encapsulation in the nanoparticles. These nanoparticles containing NSE could have a promising capability for application in both poultry industry and human medicine as an antiviral product.
Collapse
Affiliation(s)
- Mohammad Hadian
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Fathi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Asadsangabi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Khadijeh Pouraghajan
- Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Majid Shohrati
- Research Center of Chemical Injuries, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoomeh Mohammadpour
- Department of Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Naji‐Tabasi S, Shakeri M, Modiri‐Dovom A, Shahbazizadeh S. Application of Pistacia atlantica Pickering emulsion-filled chitosan gel for targeted delivery of curcumin. Food Sci Nutr 2024; 12:2809-2817. [PMID: 38628200 PMCID: PMC11016426 DOI: 10.1002/fsn3.3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024] Open
Abstract
Emulsion-filled hydrogels are a growing system in the food industry for delivering bioactive compounds. In this study, Baneh gum (BG) particles were prepared as a Pickering emulsion stabilizer for curcumin delivery. Then, BG Pickering emulsion was added to the chitosan solution (1.5%, 2.0%, and 2.5% w/w) in different Pickering emulsion (PE):hydrogel (HYD) ratios (1:3, 1:5, and 1:7) to create an emulsion-filled gel. The highest amount of Cur stability after the 3rd week of storage was observed in the sample containing 2.0% CS and a 1:7 PE:HYD ratio (97.36%). Pickering emulsion and emulsion-filled gel significantly protected the antioxidant activity of curcumin against the thermal process (p < .05). Curcumin loading in the emulsion-filled gel provided better protection against the gastric condition compared to the emulsion system. The chitosan hydrogel swells in an acidic environment, but its combination with the anionic structure of the emulsion causes a lower release of curcumin in the stomach environment, which can help the stability of curcumin in the digestive system and have a controlled release in the gastrointestinal tract.
Collapse
Affiliation(s)
- Sara Naji‐Tabasi
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Monir‐sadat Shakeri
- Department of Food BiotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Atena Modiri‐Dovom
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Saeedeh Shahbazizadeh
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
13
|
Sun Y, Wang Y, Xie Y, Li T, Wang Y, Zhang X, Xia B, Huang J, Wang S, Dong W. Ultra-stable pickering emulsion stabilized by anisotropic pea protein isolate-fucoidan conjugate particles through Maillard reaction. Int J Biol Macromol 2024; 264:130589. [PMID: 38437935 DOI: 10.1016/j.ijbiomac.2024.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Bio-based emulsifiers hold significant importance in various industries, particularly in food, cosmetics, pharmaceuticals and other related fields. In this study, pea protein isolate (PPI) and fucoidan (FUD) were conjugated via the Maillard reaction, which is considered safe and widely used in the preparation of food particle. The PPI-FUD conjugated particles exhibit an anisotropic non-spherical structure, thereby possessing a high detachment energy capable of preventing emulsion coalescence and Ostwald ripening. Compared to emulsions previously prepared in other studies (< 500 mM), the Pickering emulsion stabilized by PPI-FUD conjugate particles demonstrates outstanding ionic strength resistance (up to 5000 mM). Furthermore, when encapsulating curcumin, the Pickering emulsion protects the curcumin from oxidation. Additionally, the formulated emulsions demonstrated the capability to incorporate up to 60 % (v/v) oil phase, revealing remarkable performance in terms of storage stability, pH stability, and thermal stability.
Collapse
Affiliation(s)
- Yue Sun
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yijie Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yunpeng Xie
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
14
|
Naji-Tabasi S, Shakeri MS, Modiri-Dovom A, Shahbazizadeh S. Investigating Baneh ( Pistacia atlantica) gum properties and applying its particles for stabilizing Pickering emulsions. Food Chem X 2024; 21:101111. [PMID: 38298356 PMCID: PMC10828642 DOI: 10.1016/j.fochx.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this research was to investigate Baneh gum (BG) properties and prepare Pickering emulsion stabilized by BG particles at different concentrations (0.1, 0.3, 0.5, and 0.7 % (w/w)). Average size of the particles was 948 nm, and the SEM images confirmed the presence of the particles. Surface and interfacial tension of the BG particles were 48.39 and 15.36 (mN/m), respectively. Contact angle of water- and oil-BG particles was 99° and 42.68°, respectively, which can stabilize oil-in-water emulsions. Increment of the Pickering particles concentration decreased the size of the emulsion droplets and increased the emulsion stability (p ≤ 0.05). The size of emulsion droplets was in the range of 1.65-1.76 μm and the highest zeta potential value was obtained by 0.7 % (w/w) BG particles (-30.02 mV). It can be concluded that increasing BG particles to 0.7 % resulted in creating the most stable emulsion.
Collapse
Affiliation(s)
- Sara Naji-Tabasi
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Monir-sadat Shakeri
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Atena Modiri-Dovom
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| | - Saeedeh Shahbazizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), PO Box 91895-157, 356 Mashhad, Iran
| |
Collapse
|
15
|
Li C, Xu Y, Zhang Y, Shen Y, Deng X, Wang F. Novel bigels based on walnut oil oleogel and chitosan hydrogel: Preparation, characterization, and application as food spread. Int J Biol Macromol 2024; 260:129530. [PMID: 38296666 DOI: 10.1016/j.ijbiomac.2024.129530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
This study developed new biphasic gel systems containing a walnut oil-based oleogel and a chitosan hydrogel and evaluated the application on food spread. The effects of different oleogelators [γ-oryzanol/β-sitosterol (γ-ORY/β-SIT), candelilla wax/span 65 (CW/SA), and mono- and diglycerides of fatty acids] were explored. Rheological analysis showed that γ-ORY/β-SIT-based bigel had the strongest gel strength, but XRD confirmed that β' crystal form (d = 3.72 Å, 4.12 Å) was predominantly in the CW/SA-based bigel, which was more appropriate for application as spread. The characteristics of CW/SA-based bigel with different oleogel fractions (40-80 wt%) were investigated. The microscopic images indicated that the hydrogels were dispersed as small droplets in the oleogels after oleogel fraction reaching 60 %. The highest crystallinity was achieved when the oleogel fraction was 60 %, and its oil binding capacity was 96.49 %. Textural analysis showed that the CW/SA-based bigel (OG-60 %) had similar properties with commercial spread B, and can be used as a partial replacement for spread B. Replacing 75 % of the commercial spread B with the bigel was found to be optimal and displayed acceptable sensory features. This study developed a healthy bigel based on walnut oil and provided the in-depth information for bigels as an alternative to plastic fats.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yijie Shen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinyue Deng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fengjun Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Forest Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Chen X, Xiao Y, Wei Y, Cao W, Han Y, Gao Z, Huang Y. High-internal-phase emulsions stabilized by alkali-extracted green tea polysaccharide conjugates for curcumin delivery. Food Chem 2024; 435:137678. [PMID: 37806198 DOI: 10.1016/j.foodchem.2023.137678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Exploring the emulsification capabilities of tea polysaccharide conjugates (TPCs) in high-internal-phase emulsions (HIPEs) would further expand the utilization value of TPCs. This study aimed to prepare 0.1-0.5 wt% alkali-extracted green tea polysaccharide conjugate (gTPC-A)-stabilized HIPEs containing 75-87 wt% medium chain triglycerides (MCTs) to investigate their stability, rheology, microstructure, and loading and protective effects on curcumin. The findings revealed that only 0.1 wt% of gTPC-A could stabilize HIPEs containing 85 wt% oil for 30 days. HIPEs had better storage stability in a weakly acidic environment at pH 5.0-6.0 and at temperatures less than 70 °C. HIPEs could load curcumin and protect it from ultraviolet (UV) radiation and in vitro digestion. The half-life of curcumin loaded in HIPEs was 65 h under UV radiation. The curcumin bioaccessibility of HIPEs (56.29 %) was higher than that in MCT (8.73 %). These results provided a theoretical basis for the extensive use of TPCs.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yuan Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yan'an Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Wendan Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yu Han
- College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, Hubei, China
| | - Zhiling Gao
- Xinding Biotechnology Co. LTD, Yichang 443000, China
| | - Yi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
17
|
Yang K, Yao J, Shi K, Yang C, Xu Y, Zhang P, Pan S. Emulsification Characteristics of Insoluble Dietary Fibers from Pomelo Peel: Effects of Acetylation, Enzymatic Hydrolysis, and Wet Ball Milling. Foods 2024; 13:624. [PMID: 38397601 PMCID: PMC10888415 DOI: 10.3390/foods13040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
To improve the application potential of pomelo peel insoluble dietary fiber (PIDF) in emulsion systems, acetylation (PIDF-A), cellulase hydrolysis (PIDF-E), and wet ball milling (PIDF-M) were investigated in this paper as methods to change the emulsification properties of PIDF. The impact of the methods on PIDF composition, structure, and physicochemical properties was also assessed. The results demonstrated that both acetylation modification and cellulase hydrolysis could significantly improve the emulsification properties of PIDF. The emulsions stabilized with PIDF-A and PIDF-E could be stably stored at 25 °C for 30 d without phase separation at particle concentrations above 0.8% (w/v) and had higher storage stability: The D4,3 increments of PIDF-A- and PIDF-E-stabilized emulsions were 0.98 μm and 0.49 μm, respectively, at particle concentrations of 1.2% (w/v), while the storage stability of PIDF-M-stabilized emulsion (5.29 μm) significantly decreased compared with that of PIDF (4.00 μm). Moreover, PIDF-A showed the highest water retention capacity (21.84 g/g), water swelling capacity (15.40 mL/g), oil retention capacity (4.67 g/g), and zeta potential absolute (29.0 mV) among the PIDFs. In conclusion, acetylation modification was a promising method to improve the emulsifying properties of insoluble polysaccharides.
Collapse
Affiliation(s)
- Kuimin Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (J.Y.); (K.S.); (C.Y.); (Y.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (J.Y.); (K.S.); (C.Y.); (Y.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (J.Y.); (K.S.); (C.Y.); (Y.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenxi Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (J.Y.); (K.S.); (C.Y.); (Y.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (J.Y.); (K.S.); (C.Y.); (Y.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (J.Y.); (K.S.); (C.Y.); (Y.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Y.); (J.Y.); (K.S.); (C.Y.); (Y.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Li G, Li J, Lee YY, Qiu C, Zeng X, Wang Y. Pickering emulsions stabilized by chitosan-flaxseed gum-hyaluronic acid nanoparticles for controlled topical release of ferulic acid. Int J Biol Macromol 2024; 255:128086. [PMID: 37981278 DOI: 10.1016/j.ijbiomac.2023.128086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 μM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.
Collapse
Affiliation(s)
- Guanghui Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Junle Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| | - Xiaofang Zeng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
19
|
Yerramathi BB, Muniraj BA, Kola M, Konidala KK, Arthala PK, Sharma TSK. Alginate biopolymeric structures: Versatile carriers for bioactive compounds in functional foods and nutraceutical formulations: A review. Int J Biol Macromol 2023; 253:127067. [PMID: 37748595 DOI: 10.1016/j.ijbiomac.2023.127067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Alginate-based biopolymer products have gained attention for protecting and delivering bioactive components in nutraceuticals and functional foods. These naturally abundant anionic, unbranched, and linear copolymers are also produced commercially by microorganisms. Alone or in combination with other copolymers, they efficiently transport bioactive molecules in food and nutraceutical products. This review aims to provide an in-depth understanding of alginate-based products and structures, emphasizing their role in delivering functional molecules in various formulations and delivery systems. These include edible coatings/films, gels/emulsions, beads/droplets, microspheres/particles, and engineered nanostructures where alginates have been used potentially. By exploring these applications, readers gain insights into the benefits of these products. Because, alginate-based biopolymer products have shown promise in delivering bioactive compounds like vitamin C, vitamin D3, curcumin, β-carotene, resveratrol, folic acid, gliadins, caffeic acid, betanin, limonoids, quercetin, several polyphenols and essential oils, etc., which are chief contributors to treating specific/overall nutritional and chronic metabolic disorders. So, this review summarizes the potential of alginate-based structures/products in various forms for delivering a wide range of functional food ingredients and nutraceutical components that offer promising perspectives for future investigations.
Collapse
Affiliation(s)
- Babu Bhagath Yerramathi
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Beulah Annem Muniraj
- Integrated Food Technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Manjula Kola
- Food Technology Division, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Kranthi Kumar Konidala
- Bioinformatics, Department of Zoology, College of Sciences, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Praveen Kumar Arthala
- Department of Microbiology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | | |
Collapse
|
20
|
Lapo B, Pavón S, Hoyo J, Fortuny A, Scapan P, Bertau M, Sastre AM. Bioderived Pickering Emulsion Based on Chitosan/Trialkyl Phosphine Oxides Applied to Selective Recovery of Rare Earth Elements. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59731-59745. [PMID: 38091526 PMCID: PMC10802976 DOI: 10.1021/acsami.3c10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
A novel biobased pickering emulsion (PE) material was prepared by the encapsulation of Cyanex 923 (Cy923) into chitosan (CS) to selectively recover rare earth elements (REEs) from the aqueous phase. The preparation of PE was optimized through sequentially applying a 23 full factorial design, followed by a 33 Box-Behnken design varying the Cy923 content, CS concentration, and pH of CS. The material was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), optical microscopy, rheological, compositional, and stability measurements. The resultant material was evaluated in the removal of yttrium by pH influence, nitrate concentration, kinetics, equilibrium isotherms, reusability, and a comparison with liquid-liquid (L-L) extraction and tested in a real scenario to extract Y from a fluorescent lamp powder waste. In addition, the selectivity of PE for REE was investigated with Y/Ca, Gd/Ca, and La/Ni systems. PE extracts REE at 1 ≤ pH ≤ 5 at nitrate concentrations up to 2 mol/L. The kinetics and equilibrium studies showed reaction times <5 min and a maximum sorption capacity of 89.98 mg/g. Compared with L-L extraction, PE consumed 48% less Cy923 without using organic diluents. PE showed a remarkable selectivity for REE in the systems evaluated, showing separation factors of 22.62, 9.35, and 504.64 for the blends Y/Ca, Gd/Ca/Mg, and La/Ni, respectively. PE showed excellent selectivity extracting Y from a real aqueous liquor from the fluorescent lamp powder. PE demonstrates to be an effective and sustainable alternative for REE recovering due to its excellent efficiency in harsh conditions, favorable green chemistry metrics, and use of a biopolymer material in its composition avoiding the use of organic solvents used in L-L extraction.
Collapse
Affiliation(s)
- Byron Lapo
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
- School
of Chemical Engineering, Technical University
of Machala, UACQS, BIOeng, 070151 Machala, Ecuador
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Sandra Pavón
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Javier Hoyo
- Department
of Physical-Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Agustín Fortuny
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
| | - Paul Scapan
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Martin Bertau
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Ana María Sastre
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Okasha H, Dahroug H, Gouda AE, Shemis MA. A novel antibacterial approach of Cecropin-B peptide loaded on chitosan nanoparticles against MDR Klebsiella pneumoniae isolates. Amino Acids 2023; 55:1965-1980. [PMID: 37966500 PMCID: PMC10724327 DOI: 10.1007/s00726-023-03356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The proper treatment choice for MDR-KP infections is not well determined which renders the problem more complicated, thus making the control of such infections a serious challenge for healthcare professionals. This study aims to encapsulate the cationic antimicrobial peptide; Cecropin-B (Cec-B), to increase its lifetime, drug targeting, and efficacy and study the antimicrobial effect of free and encapsulated recombinant rCec-B peptide on multidrug-resistant K. pneumoniae (MDR-KP) isolates. Fifty isolates were collected from different clinical departments at Theodore Bilharz Research Institute. Minimal inhibitory concentrations (MICs) of rCec-B against MDR-KP isolates were determined by the broth microdilution test. In addition, encapsulation of rCec-B peptide into chitosan nanoparticles and studying its bactericidal effect against MDR-KP isolates were also performed. The relative expression of efflux pump and porin coding genes (ArcrB, TolC, mtdK, and Ompk35) was detected by quantitative PCR in treated MDR-KP bacterial isolates compared to untreated isolates. Out of 60 clinical MDR isolates, 50 were MDR-KP. 60% of the isolates were XDR while 40% were MDR. rCec-B were bactericidal on 21 isolates, then these isolates were subjected to treatment using free nanocapsule in addition to the encapsulated peptide. Free capsules showed a mild cytotoxic effect on MDR-KP at the highest concentration. MIC of encapsulated rCec-B was higher than the free peptide. The expression level of genes encoding efflux and porin (ArcrB, TolC, mtdK, and Ompk35) was downregulated after treatment with encapsulated rCec-B. These findings indicate that encapsulated rCec-B is a promising candidate with potent antibacterial activities against drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Heba Dahroug
- Microbiology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Abdullah E Gouda
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Abbas Shemis
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
22
|
Wang H, Zhang H, Wu Q, Zhang B, Zhang Z, Rao X. Pickering Emulsions and Viscoelastic Solutions Constructed by a Rosin-Based CO 2-Responsive Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15653-15664. [PMID: 37856252 DOI: 10.1021/acs.langmuir.3c02085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Designing stimulus-switch viscoelastic solutions and Pickering emulsions with reversible CO2-responsive behavior remains a challenge. A rosin-based CO2-responsive surfactant, N-cetyl-maleimidepimaric acid N,N-dimethylenediamide (C16MPAN), was synthesized and used to prepare CO2-triggered viscoelastic solutions and Pickering emulsions. This surfactant exhibited excellent CO2-responsive performance in water and formed a viscoelastic solution. This viscoelastic system was investigated by dynamic light scattering (DLS), rheology, and cryogenic transmission electron microscopy (Cory-TEM). The shear viscosity of the system increased by 3-4 orders of magnitude after bubbling with CO2 and a large number of elongated, flexible, tubular wormlike micelles were observed. Further, Pickering emulsions were prepared by C16MPAN+ synergistically with cellulose nanocrystals (CNCs), whose stability and switchability were investigated via adsorption isotherm, droplet size, contact angle, and macroscopic photographs. C16MPAN+ was adsorbed with CNCs to form mechanical barriers at the oil-water interface, making the emulsion stable for at least three months, and desorption from CNCs enabled emulsion breaking. The cycle could be switched reversibly multiple times and the particle size distribution of emulsion was basically the same. This work enriches the application of biomass resources in intelligent responsive materials.
Collapse
Affiliation(s)
- Hanwen Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Hangyuan Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Qian Wu
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Boyi Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Zehua Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, Fujian, China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, Fujian, China
| |
Collapse
|
23
|
Hu S, Li W, Cai Z, Tang C, Li B, Liu S, Li Y. Research progress on chitin/chitosan-based emulsion delivery systems and their application in lipid digestion regulation. Crit Rev Food Sci Nutr 2023; 64:13275-13297. [PMID: 37811646 DOI: 10.1080/10408398.2023.2264392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Excessive lipid intake is linked to an elevated risk of health problems. However, reducing lipid contents may influence food structure and flavor. Some alternatives are needed to control the lipid absorption. Emulsions are common carriers for lipids, which can control the hydrolysis and absorption of lipids. Chitin (Ch) and chitosan (CS) are natural polysaccharides with good biodegradability, biocompatibility, and unique cationic properties. They have been reported to be able to delay lipolysis, which can be regarded as one of the most promising agents that regulates lipid digestion (LiD). The application of Ch/CS and their derivatives in emulsions are summarized in this review with a focus on their performances and mechanisms for LiD regulation, aiming to provide theoretical guidance for the development of novel Ch/CS emulsions, and the regulation of LiD. A reasonable design of emulsion interface can provide its resistance to the external environment and then control LiD. The properties of emulsion interface are the key factors affecting LiD. Therefore, systematic study on the relationship between Ch/CS-based emulsion structure and LiD can not only instruct the reasonable design of emulsion interface to accurately regulate LiD, but also provide scientific guidelines for applying Ch/CS in functional food, medicine and other fields.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cuie Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
24
|
Wang Q, Li J, Shi Y, Cong T, Liu H, Gao Y. Preparation of lauric acid esterified starch by ethanol solvothermal process and its Pickering emulsion. Int J Biol Macromol 2023; 248:125941. [PMID: 37487998 DOI: 10.1016/j.ijbiomac.2023.125941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In this paper, the esterification modification of different kinds of starches such as waxy maize, normal maize, high-amylose maize, cassava and potato in high temperature closed system were studied by solvothermal method. The oil-in-water Pickering emulsion were prepared with esterified starches as granule stabilizer. The microscopic state of granules in the emulsion and the physical and oxidation stability of emulsion were studied. The results show that starches are not gelatinized and can be esterified at a temperature (100 °C) much higher than that of gelatinization, and the granule morphology is almost unchanged. DS (degree of substitution) values of esterified starches range from 0.0333 to 0.0512. Pickering emulsion with 50 vol% oil volume fraction prepared with 3.0 wt% granule concentration did not show any instability such as oil-water separation after storage at room temperature for 30 days. Atomic force microscope (AFM) analysis showed that all esterified starch granules had the characteristics of granular cold-water swelling starch (GCWSS). The granules completely swelled into a dense molecular chain in the emulsion, and this three-dimensional network structure improved the stability of emulsion. Therefore, the preparation of esterified starch granules by ethanol solvothermal method is a simple and effective method.
Collapse
Affiliation(s)
- Qian Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Juanjuan Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yu Shi
- R&D center, Valiant Co. Ltd., Yantai 264000, PR China
| | - Tianxing Cong
- R&D center, Valiant Co. Ltd., Yantai 264000, PR China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Yuan Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
25
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
26
|
Abdouss H, Pourmadadi M, Zahedi P, Abdouss M, Yazdian F, Rahdar A, Díez-Pascual AM. Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells. Int J Biol Macromol 2023; 242:125134. [PMID: 37257532 DOI: 10.1016/j.ijbiomac.2023.125134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.
Collapse
Affiliation(s)
- Hamidreza Abdouss
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
27
|
Galani E, Ly I, Laurichesse E, Schmitt V, Xenakis A, Chatzidaki MD. Pea and Soy Protein Stabilized Emulsions: Formulation, Structure, and Stability Studies. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
During the last decades, there has been a huge consumer concern about animal proteins that has led to their replacement with plant proteins. Most of those proteins exhibit emulsifying properties; thus, the food industry begins their extensive use in various food matrices. In the present study, pea and soy protein isolates (PPI and SPI) were tested as potential candidates for stabilizing food emulsions to encapsulate α-tocopherol and squalene. More specifically, PPI and SPI particles were formulated using the pH modification method. Following, emulsions were prepared using high-shear homogenization and were observed at both a microscopic and macroscopic level. Furthermore, the adsorption of the proteins was measured using the bicinchoninic acid protein assay. The emulsions’ droplet size as well as their antioxidant capacity were also evaluated. It was found that the droplet diameter of the SPI-based emulsions was 60.0 μm, while the PPI ones had a relatively smaller diameter of approximately 57.9 μm. In the presence of the bioactives, both emulsions showed scavenging activity of the 2,20-Azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical cation (ABTS·+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, with the ones loaded with α-tocopherol having the greatest antioxidant capacity. Overall, the proposed systems are very good candidates in different food matrices, with applications ranging from vegan milks and soups to meat alternative products.
Collapse
Affiliation(s)
- Eleni Galani
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Food Chemistry & Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, 11855 Athens, Greece
| | - Isabelle Ly
- CNRS Centre de Recherche Paul Pascal, University of Bordeaux, 33600 Bordeaux, France
| | - Eric Laurichesse
- CNRS Centre de Recherche Paul Pascal, University of Bordeaux, 33600 Bordeaux, France
| | - Veronique Schmitt
- CNRS Centre de Recherche Paul Pascal, University of Bordeaux, 33600 Bordeaux, France
| | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria D. Chatzidaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
28
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydr Polym 2023; 304:120491. [PMID: 36641178 DOI: 10.1016/j.carbpol.2022.120491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitosan-based particles are one of the most promising Pickering emulsions stabilizers due to its cationic properties, cost-effective, biocompatibility, biodegradability. However, there are currently no comprehensive reviews analyzing the role of chitosan to develop Pickering emulsions, and the bioavailability and multiple uses of these emulsions. SCOPE AND APPROACH This review firstly summarizes the types, preparation and functional properties of chitosan-based Pickering emulsion stabilizers, followed by in vivo and in vitro bioavailability, main regulations, and future application and trends. KEY FINDINGS AND CONCLUSIONS Stabilizers used in chitosan-based Pickering emulsions include 6 categories: chitosan self-aggregating particles and 5 types of composites (chitosan-protein, chitosan-polysaccharide, chitosan-fatty acid, chitosan-polyphenol, and chitosan-inorganic). Chitosan-based Pickering emulsions improved the bioavailability of different compounds compared to traditional emulsions. Current applications include hydrogels, microcapsules, food ingredients, bio-based films, cosmeceuticals, porous scaffolds, environmental protection agents, and interfacial catalysis systems. However, due to current limitations, more research and development are needed to be extensively explored to meet consumer demand, industrial manufacturing, and regulatory requirements. Thus, optimization of stabilizers, bioavailability studies, 3D4D printing, fat substitutes, and double emulsions are the main potential development trends or research gaps in the field which would contribute to increase adoption of these promising emulsions at industrial level.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
29
|
Li W, Huang D, Song W, Ouyang F, Li W, Song Y, Li F, Jiang Y, Huang Q, Li D. Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): Construction and delivery studies. Food Chem 2023; 404:134642. [DOI: 10.1016/j.foodchem.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
30
|
Rajaei M, Rashedi H, Yazdian F, Navaei-Nigjeh M, Rahdar A, Díez-Pascual AM. Chitosan/agarose/graphene oxide nanohydrogel as drug delivery system of 5-fluorouracil in breast cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
31
|
Liang S, Du J, Hong Y, Cheng L, Gu Z, Li Z, Li C. Octenyl succinate anhydride debranched starch-based nanocarriers for curcumin with improved stability and antioxidant activity. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Effects of environmental stimuli on the physicochemical and rheological properties of chitosan-macroalgal polyphenol stabilized Pickering emulsion. Int J Biol Macromol 2023; 227:1245-1257. [PMID: 36473531 DOI: 10.1016/j.ijbiomac.2022.11.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In this study, Pickering emulsions stabilized by chitosan (CS), chitosan-Laminaria japonica polyphenols (CP) and chitosan-Ascophyllum nodosum polyphenols (CB) were fabricated. This study also evaluated the stability of CS, CP, and CB under different environmental factors including pH (2-9), NaCl concentrations (0-500 mM), heat treatments (50-100 °C) and storage period (0-8 weeks). The characterization on interfacial layer of emulsion droplets demonstrated that macroalgal polyphenols could combined with the amorphous regions of chitosan particles through hydrogen bond and electrostatic interactions, providing stronger dual wettability with enhanced ability of interfacial layer in stabilizing Pickering emulsions. All three emulsions showed best droplet distribution, highest emulsion stability and specific surface area at pH 6 and 0 mM NaCl concentration as fresh emulsion. Moreover, CS, CP, and CB exhibited the rheological behaviour of pseudoplastic fluids at different pH and NaCl concentration. It should be noted that CP and CB exhibited higher emulsion stability than CS under a variety of environmental stresses. Overall, this research proved that chitosan-macroalgal polyphenol co-stabilized Pickering emulsion had enhanced stability against various environmental stimuli, which could be utilized as potential delivery and protection system for hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
Liu H, Huang R, Zhao X, Yang S, He F, Qin W, Huang J, Yu G, Feng Y, Li J, Liao C. Ca2+/pH-triggered gelation of Pickering emulsion in vitro digestion: Visualization and sustained-release performance. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
34
|
Shafqat O, Rehman Z, Shah MM, Ali SHB, Jabeen Z, Rehman S. Synthesis, structural characterization and in vitro pharmacological properties of betanin-encapsulated chitosan nanoparticles. Chem Biol Interact 2023; 370:110291. [PMID: 36513144 DOI: 10.1016/j.cbi.2022.110291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Betanin, a natural food color and the only betalain, is approved for use in pharmaceutical and food industries as natural antioxidative and preservative agent, respectively. However, the antioxidant power and health-promoting properties of betanin have been disregarded due to its low stability in physiological conditions. Therefore, this study is designed to synthesize and evaluate in vitro pharmacological characteristics of betanin-encapsulated chitosan nanoparticles (ChBetNPs). ChBetNPs were synthesized by ionic gelation method and characterized by DLS, UV, FTIR, SEM and zeta potential analysis. The encapsulation efficiency (EE) and in vitro release kinetics were analyzed using spectrophotometric technique for quantifying the encapsulated amount of betanin in ChBetNPs as a function of time. The antioxidant activity of ChBetNPs was analyzed by DPPH and H2O2 radical scavenging assays, anti-inflammatory activity by protein denaturation and human RBCs stabilization assays, and anti-acetylcholinesterase activity using standard protocol with minor modifications. Unloaded chitosan nanoparticles (CSNPs) were found to be sized at 161.4 ± 5.75 nm while an increase in the size to 270.3 ± 8.50 nm was noticed upon encapsulating betanin. EE of ChBetNPs was measured to be ∼87.5%. The IC50 of ChBetNPs depicted significant free radical scavenging activities as compared to CSNPs. Similarly, a strong anti-inflammatory activity of ChBetNPs was noted. Significant decrease in acetylcholinesterase activity by ChBetNPs was measured (IC50 0.5255 μg/mL vs. control 26.09 μg/mL). The vegetables coated with 3% ChBetNPs showed decreased weight loss as compared to uncoated control. ChBetNPs was shown to exhibit strong antioxidant, anti-inflammatory and anti-acetylcholinesterase activities thus making it a significant therapeutic agent for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Omayya Shafqat
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | - Zartasha Rehman
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | | | | | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad CUI, 45550, Pakistan.
| |
Collapse
|
35
|
Wang B, Zhao X, Duan C, Li J, Zeng J, Xu J, Gao W, Chen K. Novel carboxylated cellulose nanocrystals synthesized by co-oxidation of sodium periodate/Fenton as a green solid emulsifier for oil-in-water Pickering emulsion. J Colloid Interface Sci 2023; 630:604-617. [DOI: 10.1016/j.jcis.2022.09.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
|
36
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Enhancing the Gastrointestinal Stability of Curcumin by Using Sodium Alginate-Based Nanoemulsions Containing Natural Emulsifiers. Int J Mol Sci 2022; 24:ijms24010498. [PMID: 36613938 PMCID: PMC9820608 DOI: 10.3390/ijms24010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Curcumin presents interesting biological activities but low chemical stability, so it has been incorporated into different emulsion-based systems in order to increase its bioaccessibility. Many strategies are being investigated to increase the stability of these systems. Among them, the use of polysaccharides has been seen to highly improve the emulsion stability but also to modulate their digestibility and the release of the encapsulated compounds. However, the effect of these polysaccharides on nanoemulsions depends on the presence of other components. Then, this work aimed to study the effect of alginate addition at different concentrations (0-1.5%) on the gastrointestinal fate and stability of curcumin-loaded nanoemulsions formulated using soybean lecithin or whey protein as emulsifiers. Results showed that, in the absence of polysaccharides, whey protein was more effective than lecithin in preventing curcumin degradation during digestion and its use also provided greater lipid digestibility and higher curcumin bioaccessibility. The addition of alginate, especially at ≥1%, greatly prevented curcumin degradation during digestion up to 23% and improved the stability of nanoemulsions over time. However, it reduced lipid digestibility and curcumin bioaccessibility. Our results provide relevant information on the use of alginate on different emulsifier-based nanoemulsions to act as carriers of curcumin.
Collapse
|
37
|
Zhang G, Zhang Q, Wang L, Ji L, Han P, Zhao F, Su Q. Preparation and Optimization of O/W Emulsions Stabilized by Triglycerol Monolaurate for Curcumin Encapsulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248861. [PMID: 36557994 PMCID: PMC9781244 DOI: 10.3390/molecules27248861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Curcumin is one of the most studied chemo-preventive agents, which may cause suppression, retardation, or inversion of carcinogenesis. But its application is currently limited because of its poor water-solubility and bioaccessibility. A curcumin O/W emulsion was prepared by high-pressure homogenization, using triglyceride monolaurate as an emulsifier and medium chain triglycerides (MCT) as the oil phase. The effects of emulsifiers, emulsifier concentration, oil type, oil-to-water ratio, and homogenization pressure and processing cycles on the physical stability and droplet size distribution of curcumin-encapsulated O/W emulsions were evaluated in this study. The results showed that the mean droplet size of the O/W emulsions remained remarkably stable during 60 days of storage under both light and dark conditions. Curcumin retentions in O/W emulsions after 60 days of storage under light and dark conditions were 97.9% and 81.6%, respectively. In addition, during the simulated gastrointestinal digestion process, the mean droplet size of the O/W emulsions increased from 260 nm to 2743 nm after incubation with simulated gastric fluid (SGF) for 24 h, while the mean droplet size remained unchanged after incubation with simulated intestinal fluid (SIF). The results displayed negligible changes in curcumin content during incubation with simulated gastrointestinal fluids, indicating that effective protection of curcumin was achieved by encapsulation in the O/W emulsion. It is expected that curcumin will acquire high bioaccessibility and bioavailability when the O/W emulsion is to be used in clinical applications.
Collapse
Affiliation(s)
| | - Qiang Zhang
- Gansu Provincial Cancer Hospital, Lanzhou 730050, China
- Correspondence:
| | - Lan Wang
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China
| | - Lei Ji
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China
| | - Pengbing Han
- Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Fengju Zhao
- Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Qun Su
- Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| |
Collapse
|
38
|
Poly lactide-co-glycolide encapsulated nano-curcumin promoting antagonistic interactions between HSP 90 and XRCC1 proteins to prevent cypermethrin-induced toxicity: An in silico predicted in vitro and in vivo approach. Colloids Surf B Biointerfaces 2022; 220:112905. [DOI: 10.1016/j.colsurfb.2022.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/11/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
39
|
Gu R, Li C, Shi X, Xiao H. Naturally occurring protein/polysaccharide hybrid nanoparticles for stabilizing oil-in-water Pickering emulsions and the formation mechanism. Food Chem 2022; 395:133641. [PMID: 35816986 DOI: 10.1016/j.foodchem.2022.133641] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
In this study, we reported for the first time that the natural protein/polysaccharide hybrid nanoparticles (PPH NPs) with a diameter of ∼ 129 nm, originating from Lactobacillus plantarum fermented cheese whey, could act as green-based NPs for stabilizing Pickering emulsions. Characterizations of PPH NPs showed that the negative-charged PPH NPs were composed of ∼ 37.7% total protein and ∼ 7.3% polysaccharide bearing several functional groups, such as -OH, -NH, -COOH, etc.; and displayed excellent emulsifying capacity in preparing oil-in-water Pickering emulsions. The obtained emulsions exhibited gel-like behavior with excellent stability against the variation of pH, ionic strength, and temperature. Confocal observations showed that PPH NPs effectively adsorbed and anchored at the oil-water interface, thus creating the steric hindrance to inhibit droplet coalescence. This research is of importance in developing novel and biocompatible Pickering stabilizers with outstanding performance, as well as enable a versatile design of stable Pickering emulsions suitable for food industries.
Collapse
Affiliation(s)
- Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
40
|
Alehosseini E, Shahiri Tabarestani H, Kharazmi MS, Jafari SM. Physicochemical, Thermal, and Morphological Properties of Chitosan Nanoparticles Produced by Ionic Gelation. Foods 2022; 11:foods11233841. [PMID: 36496649 PMCID: PMC9736386 DOI: 10.3390/foods11233841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan nanoparticles (CSNPs) can be widely used in the food, pharmaceutical, and cosmetic sectors due to their high performance, unique properties, and high surface area. In this research, CSNPs were produced by the ionic gelation method and using sodium tripolyphosphate (STPP) as an appropriate technique compared to the conventional methods. To evaluate the effects of various factors on the size, zeta potential (ZP), and optimal synthesis conditions, different concentrations of CS (1, 3, and 5 mg/mL), STPP (0.5, 0.75, and 1 mg/mL), and CS to STPP ratio (1:1, 3:1, and 5:1) were applied and optimized using the response surface methodology. The size of CSNPs was increased by using higher concentrations of CS, STPP, and CS/STPP ratios. The value of ZP was determined positive and it increased with increasing CS concentrations and CS/STPP ratios. ATR-FTIR spectra revealed interactions between CS and STPP. The DSC thermogram of CSNPs showed a double sharp endothermic peak at about 74.5 °C (ΔH = 122.00 J/g); further, the TGA thermograms indicated the total weight loss of STPP, CS, and CSNPs as nearly 3.30%, 63.60%, and 52.00%, respectively. The XRD data also revealed a greater chain alignment in the CSNPs. Optimized, the CSNPs can be used as promising carriers for bioactive compounds where they also act as efficient stabilizers in Pickering emulsions.
Collapse
Affiliation(s)
- Elham Alehosseini
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | - Hoda Shahiri Tabarestani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
- Correspondence: ; Tel.: +98-17-3242-3080
| |
Collapse
|
41
|
Chen X, Pei Y, Li B, Wang Y, Zhou B, Li B, Liang H. Interfacial decoration of desalted duck egg white nanogels as stabilizer for Pickering emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Fan Y, Luo D, Yi J. Resveratrol-loaded α-lactalbumin-chitosan nanoparticle-encapsulated high internal phase Pickering emulsion for curcumin protection and its in vitro digestion profile. Food Chem X 2022; 15:100433. [PMID: 36211747 PMCID: PMC9532759 DOI: 10.1016/j.fochx.2022.100433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
RES-ALA-CHI colloidal particles were fabricated as CUR-loaded HIPPEs stabilizers. RES-ALA-CHI nanoparticle pronouncedly enhanced the chemical stability of CUR. Lipolysis of HIPPEs can be controlled with RES-ALA-CHI colloidal particles. CUR bioaccessibility can be controlled with RES-ALA-CHI colloidal particles.
The use of antioxidant-loaded protein-polysaccharide nanoparticle in stabilizing and delivering curcumin with high internal phase Pickering emulsions is comparatively scarce. Resveratrol (RES)-loaded α-lactalbumin (ALA)-chitosan (CHI) particles were fabricated and used for curcumin-loaded high internal phase Pickering emulsions (HIPPEs) stabilization and delivery. CLSM illustrated that RES-ALA-CHI nanoparticles were effectively adsorbed on oil/water (O/W) interface and a gel-like structure was formed surrounding oil droplets. All HIPPEs exhibited excellent physical stability. CUR retention was 75.4 % for HIPPEs with RES-ALA-CHI colloidal particles, which was appreciably higher than that with ALA-CHI colloidal particles (63.9 %) after 30 days storage. Compared to bulk medium-chain triglyceride (MCT), both lipolysis extent and curcumin (CUR) bioaccessibility were pronouncedly enhanced with HIPPEs-based delivery systems. But both HIPPEs (51.4 % and 43.7 %) exhibited lower extent of lipolysis than conventional emulsions (90.4 %). The occurrence of RES significantly restrained the lipolysis. These results demonstrated that HIPPEs could be excellent delivery systems for delivering lipophilic curcumin.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Dixue Luo
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Corresponding author.
| |
Collapse
|
43
|
Preparation of nano-composites based on curcumin/chitosan-PVA-alginate to improve stability, antioxidant , antibacterial and anticancer activity of curcumin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Xia C, Han L, Zhang C, Xu M, Liu Z, Chen Y, Zhu Y, Yu M, Wu W, Yin S, Huang J, Zheng Z, Zhang R. Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Effect of type of fatty acid attached to chitosan on walnut oil-in-water Pickering emulsion properties. Carbohydr Polym 2022; 291:119566. [DOI: 10.1016/j.carbpol.2022.119566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/02/2023]
|
46
|
Wang M, Yue L, Zhao L, Khan IM, Zhang Y, Wang Z. Hydroxypropyl chitosan modified by cinnamic acid derivative nanoparticles for stabilizing Pickering emulsion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Lingyu Zhao
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- School of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Collaborative Innovation Center of Food Safety and Quality Control Jiangnan University Lihu Road 1800 Wuxi 214122 PR China
- Key Laboratory of Meat Processing of Sichuan Chengdu University Chengdu 610106 PR China
| |
Collapse
|
47
|
He Q, Huang W, Yin Y, Li D, Hu Y. A Droplet-Manipulation Method Based on the Magnetic Particle-Stabilized Emulsion and Its Direct Numerical Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8211-8221. [PMID: 35763702 DOI: 10.1021/acs.langmuir.2c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Droplet manipulation has found broad applications in various engineering fields, such as microfluidic systems. This work reports a droplet-manipulation method based on particle-stabilized emulsions, where the magnetic particles adsorbed to the droplet surface serve as the actuator. The movement and the release of the droplet can be controlled by applying an external magnetic field. A lattice Boltzmann model for a three-phase system containing liquids and solid particles is adopted, which could provide a full coupling between fluids and particles. The effectiveness of the present droplet-manipulation method is validated through experiments and numerical simulations. Furthermore, the numerical simulation can provide insight into the interactions between the magnetic particles and the droplet during the droplet-driven process. To drive the droplet successfully, the magnetic particle needs to adhere to its surface and act as an "engine" to provide the driving force. As it is a surface-tension-dominant problem, the capillary effect can be considered as an "energy transfer station". The magnetic driving force on the particle is transmitted primarily to the droplet through interfacial capillary forces at the three-phase contact line, which assists the droplet in overcoming the viscous resistance and moving forward. A dimensionless number is proposed as a predictor of droplet transport and particle detachment.
Collapse
Affiliation(s)
- Qiang He
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Weifeng Huang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yuan Yin
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Decai Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yang Hu
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
48
|
Stern Y, Tadmor R, Multanen V, Oren G. A first order-based model for the kinetics of formation of Pickering emulsions. J Colloid Interface Sci 2022; 628:409-416. [DOI: 10.1016/j.jcis.2022.07.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
|
49
|
Cao X, Xiong C, Zhao X, Yang S, Wen Q, Tang H, Zeng Q, Feng Y, Li J. Tuning self-assembly of amphiphilic sodium alginate-decorated selenium nanoparticle surfactants for antioxidant Pickering emulsion. Int J Biol Macromol 2022; 210:600-613. [PMID: 35513095 DOI: 10.1016/j.ijbiomac.2022.04.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Delivering effectively zero-valent selenium nanoparticles (SeNPs) and develop its functions in more fields is still a challenge. Herein, a novel template for the preparation and stabilization of SeNP-based surfactants was developed, amphiphilic sodium alginate (APSA), which can self-assemble into micelles in an aqueous solution. Primarily, physicochemical properties of SeNPs stabilized by APSA with different molecular weights were compared and the interaction mechanism of APSA/SeNPs was investigated. Moreover, a functional Pickering emulsion (PE) was presented using the SeNP-based surfactants. Results showed that high molecular weight-stabilized SeNPs had small particle size (54.72 nm) and great stability due to the hydrogen bonding between Se atoms and APSA. The "soft" particle-decorated SeNPs with interface activity formed a dense interfacial layer on the oil-water interface, which exhibited excellent antioxidant properties. The contents of lipid hydrogen peroxide (LH) and malondialdehyde (MDA) were significantly reduced by 88.7% and 63.4%. Overall, SeNPs stabilized by APSA have great application potential as an emulsifier and antioxidant in industrial field.
Collapse
Affiliation(s)
- Xinyu Cao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chuang Xiong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qiyan Wen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Haiyun Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qu Zeng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
50
|
Haseli S, Pourmadadi M, Samadi A, Yazdian F, Abdouss M, Rashedi H, Navaei-Nigjeh M. A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan-based nanocarrier: emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnol Prog 2022; 38:e3280. [PMID: 35678755 DOI: 10.1002/btpr.3280] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Curcumin application as an anti-cancer drug is faced with several impediments. This study has developed a platform that facilitates the sustained release of curcumin, improves loading efficiency, and anti-cancer activity. Montmorillonite (MMT) nanoparticles were added to chitosan (CS)-agarose (Aga) hydrogel and then loaded with curcumin (Cur) to prepare a curcumin-loaded nanocomposite hydrogel. The loading capacity increased from 63% to 76% by adding MMT nanoparticles to a chitosan-agarose hydrogel. Loading the fabricated nanocomposite in the nanoniosomal emulsion resulted in sustained release of curcumin under acidic conditions. Release kinetics analysis showed diffusion and erosion are the dominant release mechanisms, indicating non-fickian (or anomalous) transport based on the Korsmeyer-Peppas model. FTIR spectra confirmed that all nanocomposite components were present in the fabricated nanocomposite. Besides, XRD results corroborated the amorphous structure of the prepared nanocomposite. Zeta potential results corroborated the stability of the fabricated nanocarrier. Cytotoxicity of the prepared CS-Aga-MMT-Cur on MCF-7 cells was comparable to that of curcumin-treated cells (p <0.001). Moreover, the percentage of apoptotic cells increased due to the enhanced release profile resulting from the addition of MMT to the hydrogel and the incorporation of the fabricated nanocomposite into the nanoniosomal emulsion. To recapitulate, the current delivery platform improved loading, sustained release, and curcumin anti-cancer effect. Hence, this platform could be a potential candidate to mitigate cancer therapy restrictions with curcumin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shabnam Haseli
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirmasoud Samadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|