1
|
Uuh-Narvaez JJ, Guerrero-Analco JA, Monribot-Villanueva JL, Campos MRS. Mechanistic in vitro study of the effect of Cucurbita moschata (Cucurbitaceae) on carbohydrate digestive enzymes. J Food Sci 2024; 89:9923-9935. [PMID: 39437304 DOI: 10.1111/1750-3841.17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Diabetes is marked by postprandial hyperglycemia (PHG), an abnormal rise in blood glucose after meals. A key therapeutic goal to reduce PHG is the inhibition of α-amylase (αAM) and α-glucosidase (αGL), enzymes that break down carbohydrates into sugars. Cucurbita moschata has been shown to inhibit both enzymes. However, its inhibition mechanism has not been explored. This study investigated the in vitro inhibition mechanisms of αAM and αGL and conducted a metabolomic analysis of C. moschata (edible part) water-extract (CME), aiming to preliminarily identify its bioactive compounds (BCs). The inhibitory mechanisms were determined using Lineweaver-Burk plots. The BCs were identified and quantified using HPLC-QTOF-MS, employing both targeted and untargeted metabolomic approaches. CME had a significant higher effect (p < 0.05) on αAM activity than against αGL with IC50 of 28.99 and 698.42 mg/mL, respectively. The extract showed mixed and uncompetitive type inhibitions on αAM and αGL, respectively. The lowest inhibition constant (Ki) was 47.68 mg/mL on αAM activity at 20 mg/mL. Untargeted metabolic profiling by UPLC-MS-ESI-QTOF putatively identified 30 compounds in CME, such as amino acids, vitamins, phytohormones, fatty acids, cucurbitacins and phenolic acids, and flavonoids. Functional analysis of CME identified significant pathways, including pantothenate and CoA biosynthesis and phenylpropanoids, among others. The targeted analysis by UPLC-MS-ESI-QqQ allowed us to identify 12 compounds, with l-phenylalanine, p-hydroxybenzoic, and p-coumaric acid as majors. This study demonstrated the inhibitory potential of CME on αAM and αGL activities, which may be attributed to its metabolites. Thus, this plant represents a valuable source of BC against PHG. Practical Application: The research highlights that Cucurbita moschata has significant potential in managing postprandial hyperglycemia in diabetic patients by inhibiting enzymes like α-amylase and α-glucosidase. In addition, the identification of its compounds emphasizes its importance as a source of bioactive compounds. Therefore, C. moschata could be effectively utilized in the development of nutraceuticals or as an ingredient in functional foods specifically designed for postprandial hyperglycemia management. Thus, integrating C. moschata as part of the daily diet could offer patients with diabetes a natural alternative to control their blood glucose levels after eating.
Collapse
Affiliation(s)
| | - José A Guerrero-Analco
- Laboratory of Chemistry of Natural Products, Network of Advanced Molecular Studies, Institute of Ecology A. C., Xalapa, Veracruz, Mexico
| | - Juan L Monribot-Villanueva
- Laboratory of Chemistry of Natural Products, Network of Advanced Molecular Studies, Institute of Ecology A. C., Xalapa, Veracruz, Mexico
| | | |
Collapse
|
2
|
Ozcan BE, Tetik N, Aloglu HS. Polysaccharides from fruit and vegetable wastes and their food applications: A review. Int J Biol Macromol 2024; 276:134007. [PMID: 39032889 DOI: 10.1016/j.ijbiomac.2024.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit and vegetables are a great source of nutrients and have numerous health benefits. The fruit and vegetable industry produces enormous amounts of waste such as peels, seeds, and stems. The amount of this waste production has increased, causing economic and environmental problems. Fruit and vegetable wastes (FVWs) have the potential to be recovered and used to produce high-value goods. Furthermore, FVWs have a large variety and quantity of polysaccharides, which makes them interesting to study for potential industrial use. Currently, the investigations on extracting polysaccharides from FVWs and examining how they affect human health are increasing. The present review focuses on polysaccharides from FVWs such as starch, pectin, cellulose, and inulin, and their various biological activities such as anti-inflammatory, anti-tumor, anti-diabetic, antioxidant, and antimicrobial. Additionally, applications as packaging material, gelling agent, emulsifier, prebiotic, and fat replacer of polysaccharides from FVWs in the food industry have been viewed in detail. As a result, FVWs can be reused as the source of polysaccharides, reducing environmental pollution and enabling sustainable green development. Further investigation of the biological activities of polysaccharides from FVWs on human health is of great importance for using these polysaccharides in food applications.
Collapse
Affiliation(s)
- Basak Ebru Ozcan
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kırklareli 39000, Turkiye.
| | - Nurten Tetik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkiye
| | - Hatice Sanlidere Aloglu
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, Kırklareli 39000, Turkiye
| |
Collapse
|
3
|
Yang R, Liu L, Gao D, Zhao D. Purification, structural characterization, and bioactive properties of exopolysaccharides from Saccharomyces cerevisiae HD-01. Front Bioeng Biotechnol 2024; 12:1455708. [PMID: 39239255 PMCID: PMC11374770 DOI: 10.3389/fbioe.2024.1455708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Exopolysaccharides (EPSs), which show excellent biological activities, like anti-tumor, immune regulation, and anti-oxidation activities, have gained widespread attention. In this study, an EPS-producing Saccharomyces cerevisiae HD-01 was identified based on 18S rDNA sequence analysis and an API 20C test. The purified HD-01 EPS was obtained by gel filtration chromatography. High-performance liquid chromatography (HPLC), gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) revealed that it was a heteropolysaccharide composed of α-1 (38.3%), α-1, 2 (17.5%), α-1, 6 (14.8%)-linked mannose and α-1, 2, 3, 6 (24.3%), α-1 (3.3%), β-1, 4 (1.8%)-linked glucose. Chemical composition and elemental analysis indicated the existence of sulfation modifications. A scanning electron microscope (SEM) and an atomic force microscope (AFM) revealed that it exhibited a flaky structure with thorn-like protrusions on the three-dimensional surface. X-ray diffraction (XRD) revealed that it was an amorphous non-crystalline substance. HD-01 EPS had great thermostability; probiotic properties; strong antioxidant properties to DPPH, ABTS, and hydroxyl; and good reducing power. The MTT, NO, and neutral red assays demonstrated that it had a great immunomodulatory effect on macrophages RAW264.7. All results suggested that the HD-01 EPS had the potential to be applied in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Ruoxi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Lina Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Dongni Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
4
|
Dong B, Shen L, Yang M, Yang K, Cheng F. Structure and Bioactivity of Intracellular and Extracellular Polysaccharides of Trametes lactinea Mycelium. Microorganisms 2024; 12:1431. [PMID: 39065199 PMCID: PMC11278701 DOI: 10.3390/microorganisms12071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Trametes lactinea polysaccharides have a high medicinal value; however, we still know little about the structure and bioactivity of intracellular and extracellular polysaccharides in the mycelial liquid fermentation of T. lactinea. This study analyzed the structures of intracellular (IP-1, IP-2, and IP-3) and extracellular (EP-1 and EP-2) polysaccharide components isolated from T. lactinea liquid fermentation, as well as investigated their antioxidant, antibacterial, and immunomodulatory properties. The results showed that IP-3 was the only component with a triple-helix structure, while the other four components did not possess this structure. IP3 has a higher molecular weight, flavonoid, and total phenolic content compared to other components. Both intracellular and extracellular polysaccharide components exhibited strong scavenging abilities against ABTS and DPPH radicals. The components showed limited antibacterial effects against four types of bacteria (Staphylococcus aureus, Bacillus subtilis, Erwinia carotovora, and Escherichia coli), and were found to be non-toxic to RAW264.7 cells, even promoting cell proliferation. Furthermore, within a specific concentration range, all components enhanced the phagocytic activity of RAW264.7 cells, increased the secretion of NO, TNF-α, and IL-6, and demonstrated concentration-dependent effects, with IP-3 displaying the most potent immunomodulatory activity. This study shows a high potential for the development and utilization of polysaccharides derived from the liquid fermentation of T. lactinea mycelium.
Collapse
Affiliation(s)
- Bowen Dong
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
| | - Lu Shen
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
| | - Mei Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kaitai Yang
- Guangxi Forestry Science Research Institute, Nanning 530002, China;
| | - Fei Cheng
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (B.D.); (L.S.); (M.Y.)
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Liang L, Lin L, Zhao M. Exploration of green preparation strategy for Lycium barbarum polysaccharide targeting Bacteroides proliferative and immune-enhancing activities and its potential use in geriatric foods. Int J Biol Macromol 2024; 267:131316. [PMID: 38574908 DOI: 10.1016/j.ijbiomac.2024.131316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Lycium barbarum polysaccharide (LBP) is beneficial for elderly people, but its use is limited in geriatric foods due to the lack of comprehensive information on its preparation strategy and physical property. In this study, the low-ester rhamnogalacturonan-I (RG-I) type pectic polysaccharide-protein complexes with varying physicochemical properties, structural characteristics, proliferative activities on Bacteroides, and immune-enhancing activities on RAW 264.7 cells, were obtained by moderate-temperature acid extraction within adjustment of enzymatic and physical pretreatments. LBP prepared by moderate-temperature acid extraction, namely S1-A, showed the strongest immune-enhancing activity via increasing the phagocytosis capacity and NO release of RAW 264.7 cells by 23 % and 76 %, respectively. S1-A exhibited relatively high viscosity and calcium ion response characteristic with the application potential for thickened liquid foods for the elderly with dysphagia. LBP prepared by composite cellulase and pectinase pretreatment combined with moderate-temperature acid extraction, namely S1-M1, showed the strongest Bacteroides proliferative activity that was equivalent to 0.60-0.97 times of that of inulin. S1-M1 exhibited extremely low viscosity and strong tolerance to food nutrients with high processing applicability for fluid foods. This study provided crucial data for the preparation and application of LBP targeting gut microbiota disorders and immunosenescence for the development of geriatric foods.
Collapse
Affiliation(s)
- Lisi Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510641, China
| |
Collapse
|
6
|
Ji R, Zhang X, Liu C, Zhang W, Han X, Zhao H. Effects of extraction methods on the structure and functional properties of soluble dietary fiber from blue honeysuckle (Lonicera caerulea L.) berry. Food Chem 2024; 431:137135. [PMID: 37591145 DOI: 10.1016/j.foodchem.2023.137135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The work within this study aimed to investigate and compare the effects of compound enzyme extraction (CE), ultrasonic chemical extraction (UC) and combined fermentation extraction (CF) on the physicochemical properties, microstructure, and functional properties of soluble dietary fiber (SDF) extracted from blue honeysuckle berries. The results showed that CE-SDF had higher crystallinity (32.41%). UC-SDF had the highest yield (13.32 ± 0.80 g/100 g). CF-SDF had the maximum inhibition of α-amylase (50.82 ± 0.76%) and α-glucosidase (54.87 ± 1.25%). The in vitro hypoglycemic activity of the three SDFs was observed in the order of CF > CE > UC. Meanwhile, the purity of SDF had a strong positive correlation with its antioxidant and in vitro hypoglycemic capacities. The crystallinity of SDF was found to be positively correlated with its molecular weight and thermal properties. Additionally, the sugar composition of SDF was found to be an important factor affecting its biological activity.
Collapse
Affiliation(s)
- Run Ji
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China.
| | - Chenghai Liu
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Xiaofeng Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China
| | - Hengtian Zhao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang Province 150080, China.
| |
Collapse
|
7
|
Mo MM, Chen WM, Jiang FY, Ding ZD, Bi YG, Kong FS. Effect of Ultrasonic Treatment on Structure, Antibacterial Activity of Sugarcane Leaf Polysaccharides. Chem Biodivers 2023; 20:e202300006. [PMID: 37565513 DOI: 10.1002/cbdv.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
This study investigated the impact of ultrasonic extraction (UE) on the structure and in vitro antibacterial activity of polysaccharides from sugarcane leaves (SLW). Native sugarcane leaf polysaccharides were treated with ultrasound (480 W) for 3 h to yield sugarcane leaf polysaccharides (SLU). Compared to SLW (33.59 kDa), the molecular weight of SLU (13.08 kDa) was significantly decreased, while the monosaccharide composition of SLU was unchanged. The results of SEM and XRD indicated that UE significantly changed the surface morphology of SLW and destroyed its inner crystalline structure. In vitro experiments showed that SLU had stronger antibacterial activity. These findings revealed that UE treatment could alter the tertiary structure of SLW but had no impact on its primary structure. Furthermore, the antibacterial activity of SLW could be greatly enhanced after UE treatment. As a bioactive additive, SLU has great application potential in functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Meng-Miao Mo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei-Ming Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Feng-Yu Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhen-Dong Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yong-Guang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fan-Sheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Aziz A, Noreen S, Khalid W, Ejaz A, Faiz ul Rasool I, Maham, Munir A, Farwa, Javed M, Ercisli S, Okcu Z, Marc RA, Nayik GA, Ramniwas S, Uddin J. Pumpkin and Pumpkin Byproducts: Phytochemical Constitutes, Food Application and Health Benefits. ACS OMEGA 2023; 8:23346-23357. [PMID: 38170139 PMCID: PMC10761000 DOI: 10.1021/acsomega.3c02176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/14/2023] [Indexed: 01/05/2024]
Abstract
Nowadays, agricultural waste byproducts are exploited in the food industry rather than discarded. Pumpkin is one of the most significant vegetable crops that is widely consumed in farmland and certain urban regions. The current study was designed to measure the phytochemical constituents, food application, health benefits, and toxicity of pumpkin and pumpkin byproducts. Pumpkins and pumpkin byproducts (seeds, leaf, and skin/peel) can be utilized as functional ingredients. Different parts of the pumpkin contain bioactive compounds including carotenoids, lutein, zeaxanthin, vitamin E, ascorbic acid, phytosterols, selenium, and linoleic acid. Pumpkin is used in various food sectors as a functional food, including baking, beverages, meat, and dairy industries. Furthermore, the leaves and pulp of the pumpkin are used to produce soups, purees, jams, and pies. Different parts of pumpkins have several health benefits such as antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. Therefore, this review paper elaborates on the pumpkins and pumpkin byproducts that can be used to develop food products and may be valuable against various diseases.
Collapse
Affiliation(s)
- Afifa Aziz
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Noreen
- University
Institute of Diet and Nutritional Sciences, Faculty of Allied Health
Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Khalid
- University
Institute of Food Science and Technology, The University of LahoreLahore 54000, Pakistan
| | - Afaf Ejaz
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Izza Faiz ul Rasool
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Maham
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Areesha Munir
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Farwa
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Miral Javed
- College of
Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310027, P.R. China
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye
- HGF
Agro,
Ata Teknokent, 25240 Erzurum, Türkiye
| | - Zuhal Okcu
- Department
of Gastronomy, Faculty of Tourism, Ataturk
University, 25240 Erzurum, Türkiye
| | - Romina Alina Marc
- Food
Engineering
Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Technological
Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No.
64, 400509 Cluj-Napoca, Romania
| | - Gulzar Ahmad Nayik
- Department
of Food Science & Technology, Govt.
Degree College, Shopian-192303, J&K, India
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali 140413, Punjab, India
| | - Jalal Uddin
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| |
Collapse
|
9
|
Yu M, Peng M, Chen R, Chen J. Effect of Thermal Pretreatment on the Physiochemical Properties and Stability of Pumpkin Seed Milk. Foods 2023; 12:foods12051056. [PMID: 36900573 PMCID: PMC10000546 DOI: 10.3390/foods12051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
During the production of plant-based milk, thermal treatment of raw materials is an important processing method to improve the physicochemical and nutritional quality of the final products. The objective of this study was to examine the impact of thermal processing on the physiochemical properties and stability of pumpkin seed (Cucurbita pepo L.) milk. Raw pumpkin seeds were roasted at different temperatures (120 °C, 160 °C, and 200 °C), and then processed into milk using a high-pressure homogenizer. The study analyzed the microstructure, viscosity, particle size, physical stability, centrifugal stability, salt concentration, heat treatment, freeze-thaw cycle, and environment stress stability of the resulting pumpkin seed milk (PSM120, PSM160, PSM200). Our results showed that the microstructure of pumpkin seeds was loose and porous, forming a network structure because of roasting. As the roasting temperature increased, the particle size of pumpkin seed milk decreased, with PSM200 showing the smallest at 210.99 nm, while the viscosity and physical stability improved. No stratification was observed for PSM200 within 30 days. The centrifugal precipitation rate decreased, with PSM200 showing the lowest rate at 2.29%. At the same time, roasting enhanced the stability of the pumpkin seed milk in the changes in ion concentration, freeze-thaw, and heating treatment. The results of this study suggested that thermal processing was an important factor in improving the quality of pumpkin seed milk.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ronghua Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
10
|
Peach palm (Bactris gasipaes Kunth) and mammee apple (Mammea americana L.) seeds: Properties and potential of application in industry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Tan M, Zhao Q, Wang X, Zhao B. Study on extraction, isolation and biological activity of saponins from quinoa bran. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University,Dalian 116034
| | - Qingsheng Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Xiaodong Wang
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| | - Bing Zhao
- Division of Green Biochemical Process, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
| |
Collapse
|
12
|
Chavez-Esquivel G, García-Martínez JC, Cervantes-Cuevas H, Acosta D, Vera-Ramírez MA. Effect of thermo-alkali treatment on the morphological and electrochemical properties of biopolymer electrolytes based on corn starch–Al(OH)3. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03752-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Quintana Martinez S, Torregroza Fuentes EE, García-Zapateiro LA. Rheological and Microstructural Properties of Acidified Milk Drink Stabilized with Butternut Squash Pulp Hydrocolloids (BSPHs). ACS OMEGA 2022; 7:19235-19242. [PMID: 35721938 PMCID: PMC9202050 DOI: 10.1021/acsomega.2c00513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, hydrocolloids from butternut squash pulp (BSPH) have been employed as stabilizers for the development of acidified milk drinks to evaluate their physicochemical, rheological, and microstructural properties. BSPH was obtained in the alkaline medium (yield of 630 mg of hydrocolloids/100 g of pulp), presenting 79.97 ± 0.240% carbohydrate and non-Newtonian-type shear thinning. Four acidified milk drinks (AMDs) were obtained with 0.25, 0.50, and 1.00% BSPHs and a control sample without BSPHs. The addition of BSPHs did not alter the proximal composition of AMDs with similar proximal values; also, the samples present typical behavior of non-Newtonian-fluid-type shear thinning adjusted to the Carreau-Yasuda model. Storage (G') and loss (G″) moduli values were slightly dependent on the frequency in most of the studied systems. Then, the addition of BSPHs retained their uniform internal structure and contributed to the stabilization of the products.
Collapse
|
14
|
Huang Y, Gao Y, Pi X, Zhao S, Liu W. In Vitro Hepatoprotective and Human Gut Microbiota Modulation of Polysaccharide-Peptides in Pleurotus citrinopileatus. Front Cell Infect Microbiol 2022; 12:892049. [PMID: 35669115 PMCID: PMC9165600 DOI: 10.3389/fcimb.2022.892049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Pleurotus citrinopileatus, a golden oyster mushroom, is popular in Asia and has pharmacological functions. However, the effects of polysaccharide-peptides extracted from Pleurotus citrinopileatus and underlying mechanism on digestive systme have not yet been clarified. Here, we determined the composition of two polysaccharide-peptides (PSI and PSII) from P. citrinopileatus and investigated the protective effects of on hepatoprotective and gut microbiota. The results showed that PSI and PSII were made up of similar monosaccharide moieties, except for the varying ratios. Furthermore, PSI and PSII showed that they have the hepatoprotective effects and significantly increased the viabilities and cellular total superoxide dismutase activities increased significantly in HepG2 cells. Intracellular triglyceride content and extracellular alanine aminotransferase and aspartate transaminase contents markedly decreased following treatment with 40 and 50 μg/mL PSI and PSII, respectively. Moreover, PSI and PSII activated the adiponectin pathway and reduced lipid accumulation in liver cells. PSI and PSII elevated short-chain fatty acid concentrations, especially butyric and acetic acids. 16S rRNA gene sequencing analysis showed that PSI promoted the relative abundances of Bifidobacteria, Lactobacillus, Faecalibacterium, as well as Prevotella generas in the gut. PSII markedly suppressed the relative abundances of Escherichia-Shigella and Bacteroides generas. We speculate that the PSI and PSII play a role through liver-gut axis system. Polysaccharide-peptides metabolize by gut microbiota to produce short-chain fatty acids (SCFAs) and in turn influence liver functions.
Collapse
Affiliation(s)
- Yihua Huang
- Disinfection Supply Center, Lishui Second People's Hospital, Lishui, China
| | - Yi Gao
- Department of Stomatology, Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
15
|
Zhou Y, Chen X, Chen T, Chen X. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Yu Q, Chen W, Zhong J, Huang D, Shi W, Chen H, Yan C. Purification, structural characterization, and bioactivities of a polysaccharide from
Coreopsis tinctoria. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Qian Yu
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Wei Chen
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Jing Zhong
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Dong Huang
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Wenting Shi
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Haiyun Chen
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou China
| | - Chunyan Yan
- School of Clinical Pharmacy Guangdong Pharmaceutical University Guangzhou China
| |
Collapse
|
17
|
Physicochemical, Rheological, Structural, Antioxidant, and Antimicrobial Properties of Polysaccharides Extracted from Tamarind Seeds. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9788248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the polysaccharides were firstly extracted from the tamarind seeds in which the crude polysaccharides have been extracted once by hot water extraction. The structure was characterized by FTIR, SEM, and X-ray diffraction after removing protein and small molecule impurities. Furthermore, the rheological and bioactivity of tamarind seed polysaccharides (TSP) were also investigated. The results indicated that the yield of the obtained polysaccharide was 3.42%. TSP was mainly composed of glucose (45.09%), galactose (22.80%), and xylose (28.89%), while it contained characteristic structure of polysaccharides, such as –OH, pyranose, and uronic acid at 3,418, 1,150, and 1,040 cm−1 respectively, which demonstrated that it was a uronic acid heteropolysaccharide. Moreover, the XRD pattern revealed the amorphous behavior of TSP, and it was found to consist of films or “sheets” reflected by SEM. The flow behavior testing confirmed its pseudoplastic character, and the flow behavior index (n) was between 0.4539 and 0.9201. The DPPH radical scavenging activity of TSP was 40.34% at 10 mg/mL. Furthermore, TSP displayed moderate hydroxyl radical scavenging and anti-bacterial activities, owing to its special structure and composition. Overall, our results suggested that TSP could be used as a food ingredient with anti-oxidative and antibacterial activities, which provides useful information on the potential utilization of TSP in the food industry.
Collapse
|
18
|
Chakou FZ, Boual Z, Hadj MDOE, Belkhalfa H, Bachari K, El Alaoui-Talibi Z, El Modafar C, Hadjkacem F, Fendri I, Abdelkafi S, Traïkia M, Cerf DL, Dubessay P, Delattre C, Pierre G, Michaud P. Pharmacological Investigations in Traditional Utilization of Alhagi maurorum Medik. in Saharan Algeria: In Vitro Study of Anti-Inflammatory and Antihyperglycemic Activities of Water-Soluble Polysaccharides Extracted from the Seeds. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122658. [PMID: 34961129 PMCID: PMC8704266 DOI: 10.3390/plants10122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The anti-inflammatory and antihyperglycemic effects of polysaccharides extracted from Alhagi maurorum Medik. seeds, spontaneous shrub collected in Southern of Algerian Sahara were investigated. Their water extraction followed by alcoholic precipitation was conducted to obtain two water-soluble polysaccharides extracts (WSPAM1 and WSPAM2). They were characterized using Fourier transform infrared, 1H/13C Nuclear Magnetic Resonance, Gas Chromatography-Mass Spectrometry and Size Exclusion Chromatography coupled with Multi-Angle Light Scattering. The capacity of those fractions to inhibit α-amylase activity and thermally induced Bovine Serum Albumin denaturation were also investigated. WSPAM1 and WSPAM2 were galactomannans with a mannose/galactose ratio of 2.2 and 2.4, respectively. The SEC-MALLS analysis revealed that WSPAM1 had a molecular weight of 1.4 × 106 Da. The investigations highlighted antinflammatory and antihyperglycemic effects in a dose-dependant manner of WSPAM1 and WSPAM2.
Collapse
Affiliation(s)
- Fatma Zohra Chakou
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria; (F.Z.C.); (Z.B.); (M.D.O.E.H.); (F.H.)
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France; (P.D.); (C.D.); (G.P.)
| | - Zakaria Boual
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria; (F.Z.C.); (Z.B.); (M.D.O.E.H.); (F.H.)
| | - Mohamed Didi Ould El Hadj
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria; (F.Z.C.); (Z.B.); (M.D.O.E.H.); (F.H.)
| | - Hakim Belkhalfa
- Scientific and Technical Research Center in Physicochemical Analysis, Tipaza 42000, Algeria; (H.B.); (K.B.)
| | - Khaldoun Bachari
- Scientific and Technical Research Center in Physicochemical Analysis, Tipaza 42000, Algeria; (H.B.); (K.B.)
| | - Zainab El Alaoui-Talibi
- Faculty of Sciences and Techniques, University of Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
| | - Cherkaoui El Modafar
- Faculty of Sciences and Techniques, University of Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
| | - Farah Hadjkacem
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria; (F.Z.C.); (Z.B.); (M.D.O.E.H.); (F.H.)
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National Engineering School of Sfax, Sfax University, Sfax 3038, Tunisia;
| | - Imen Fendri
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences, Sfax University, Sfax 3038, Tunisia;
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National Engineering School of Sfax, Sfax University, Sfax 3038, Tunisia;
| | - Mounir Traïkia
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France;
| | - Didier Le Cerf
- Département de Chimie, Université de Rouen Normandie, INSA Rouen, CNRS, PBS, 76000 Rouen, France;
| | - Pascal Dubessay
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France; (P.D.); (C.D.); (G.P.)
| | - Cédric Delattre
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France; (P.D.); (C.D.); (G.P.)
| | - Guillaume Pierre
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France; (P.D.); (C.D.); (G.P.)
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France; (P.D.); (C.D.); (G.P.)
| |
Collapse
|
19
|
Whey Proteins Isolate-Based Biopolymeric Combinations to Microencapsulate Supercritical Fluid Extracted Oleoresins from Sea Buckthorn Pomace. Pharmaceuticals (Basel) 2021; 14:ph14121217. [PMID: 34959618 PMCID: PMC8707564 DOI: 10.3390/ph14121217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, high-value, carotenoid-rich oleoresin obtained by supercritical carbon dioxide (SFE-CO2) extraction was used to develop five variants of microencapsulated delivery system, based on whey proteins isolate (WPI), in combination with inulin (I), pectin (P) or lactose (L). The WPI:I and WPI:L variants were also obtained by conjugation via Maillard reaction. The microencapsulation of the SFE-CO2 sea buckthorn pomace oleoresin was performed by emulsion, complex coacervation and freeze-drying, which allowed for the obtaining of five powders, with different phytochemicals profile. The WPI:I conjugate showed the highest level of total carotenoids, whereas the counterpart WPI:L showed the highest content in linoleic acid (46 ± 1 mg/g) and palmitoleic acid (20.0 ± 0.5 mg/g). The β-tocopherol and β-sitosterol were identified in all variants, with the highest content in the conjugated WPI:L variant. Both WPI:L and WPI:I conjugate samples presented similar IC50 value for inhibitory activity against pancreatic lipase and α-amylase; the highest activity was observed for the conjugated WPI:I. The WPI:P combination allowed the highest release of carotenoids in the gastro-intestinal environment. All the powders exhibited poor flowing properties, whereas water activity (aw) ranged from 0.084 ± 0.03 to 0.241 ± 0.003, suggesting that all variants are stable during storage. In case of solubility, significant differences were noticed between non-heated and glycated samples, with the highest value for the WPI:I and the lowest for glycated WPI:I. The structural analysis revealed the presence of finer spherosomes in WPI:I and WPI:L, with a reduced clustering capacity, whereas the particles in the conjugated samples were more uniform and aggregated into a three-dimensional network.
Collapse
|
20
|
Tan M, Zhao Q, Zhao B. Physicochemical properties, structural characterization and biological activities of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Int J Biol Macromol 2021; 193:1635-1644. [PMID: 34743027 DOI: 10.1016/j.ijbiomac.2021.10.226] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 01/13/2023]
Abstract
In this paper, membrane separation technology was employed to separate polysaccharide fractions from the water extract of quinoa seeds. The chemical composition, structure characteristic and morphology were analyzed by chemical methods and instrumental analysis including HPLC-DAD, UV, FT-IR, Congo red test, SEM, AFM, XRD, TGA and NMR. Results indicated that three polysaccharide fractions named as QPs-I, QPs-II and QPs-III were successfully separated using microfiltration and ultrafiltration membrane with MWCO of 300 and 10 kDa in sequence. The Mw and polysaccharide content of three fractions were QPs-I (4609 Da, 33.75%), QPs-II (15,932 Da, 45.31%) and QPs-III (960,895 Da, 34.65%), respectively. The polysaccharide in three fractions was heteropolysaccharide that mainly consisted of glucose, galactose and arabinose, with their combined monosaccharide percentage being 91.17% in QPs-I, 87.81% in QPs-II, and 91.72% in QPs-III, respectively. All three polysaccharide fractions contained triple-helix structure. Biological experiment showed that antioxidant and antidiabetic activities in dose-dependent manners and also revealed immunoregulatory activity on RAW264.7 cells. These results indicated that QPs has the potential to be used in a natural agent in antioxidant, antidiabetic and immunoregulation functional food.
Collapse
Affiliation(s)
- Minghui Tan
- Division of Bioresources and Health Product Engineering, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingsheng Zhao
- Division of Bioresources and Health Product Engineering, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Bing Zhao
- Division of Bioresources and Health Product Engineering, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
21
|
Xu H, Hu Y, Hu Q, Liu J, Su A, Xie M, Ma G, Pei F, Mariga AM, Yang W. Isolation, characterization and HepG-2 inhibition of a novel proteoglycan from Flammulina velutipes. Int J Biol Macromol 2021; 189:11-17. [PMID: 34411611 DOI: 10.1016/j.ijbiomac.2021.08.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Flammulina velutipes has anti-inflammatory, immunomodulatory, antioxidant and many bioactive properties with high contents of carbohydrate, proteins and fibers. In this study, a novel proteoglycan with polysaccharide complexes and protein chain, named PGD1-1, was isolated from F. velutipes. The structural characteristics of PGD1-1 were then determined, and its anti-proliferation and pro-apoptotic activities against HepG-2 cells were demonstrated in vitro. Results proved that the average molecular weight of PGD1-1 was 32.71 kDa, and the carbohydrate and protein contents were 93.35 and 2.33%, respectively. The protein moiety was bonded to a polysaccharide chain via O-glycosidic linkage. The monosaccharides consisted of d-glucose, D-galactose and D-xylose in a molar ratio of 21.90:2.84:1.00. PGD1-1 significantly inhibited the proliferation of HepG-2 cells by affecting cell lipid peroxidation and nitric oxide production. In addition, PGD1-1 promoted the apoptosis of HepG-2 cells, especially the early apoptosis. These findings proved that PGD1-1 was a novel potent ingredient against the proliferation of HepG-2, which will provide a theoretical basis for the development and utilization of the functional ingredients of the F. velutipes.
Collapse
Affiliation(s)
- Hui Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ye Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianhui Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Minhao Xie
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gaoxing Ma
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fei Pei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science, Meru University of Science Technology, P.O. Box 972-60400, Meru, Kenya
| | - Wenjian Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
22
|
Thanh TTT, Quach TTM, Yuguchi Y, Nguyen NT, Van Ngo Q, Van Bui N, Kawashima S, Ho CD. Molecular structure and anti-diabetic activity of a polysaccharide extracted from pumpkin Cucurbita pepo. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Zhang Q, Wang J, Sun Q, Zhang SM, Sun XY, Li CY, Zheng MX, Xiang WL, Tang J. Characterization and Antioxidant Activity of Released Exopolysaccharide from Potential Probiotic Leuconostoc mesenteroides LM187. J Microbiol Biotechnol 2021; 31:1144-1153. [PMID: 34226411 PMCID: PMC9705892 DOI: 10.4014/jmb.2103.03055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
A released exopolysaccharide (rEPS)-producing strain (LM187) with good acid resistance, bile salt resistance, and cholesterol-lowering properties was isolated from Sichuan paocai and identified as Leuconostoc mesenteroides subsp. mesenteroides. The purified rEPS, designated as rEPS414, had a uniform molecular weight of 7.757 × 105 Da. Analysis of the monosaccharide composition revealed that the molecule was mainly composed of glucose. The Fourier transform-infrared spectrum showed that rEPS414 contained both α-type and β-type glycosidic bonds. 1H and 13C nuclear magnetic resonance spectra analysis showed that the purified rEPS contained arabinose, galactose, and rhamnose, but less uronic acid. Scanning electron microscopy demonstrated that the exopolysaccharide displayed a large number of scattered, fluffy, porous cellular network flake structures. In addition, rEPS414 exhibited strong in vitro antioxidant activity. These results showed that strain LM187 and its rEPS are promising probiotics with broad prospects in industry.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,Corresponding authors Q. Zhang Phone: +86-28-87720552 Fax: +86-28-87720552 E-mail:
| | - Jie Wang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Qing Sun
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Shu-Ming Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Xiang-Yang Sun
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Chan-Yuan Li
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Miao-Xin Zheng
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Wen-Liang Xiang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Jie Tang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,
J. Tang E-mail:
| |
Collapse
|
24
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Wang YX, Xin Y, Yin JY, Huang XJ, Wang JQ, Hu JL, Geng F, Nie SP. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chem 2021; 368:130772. [PMID: 34399182 DOI: 10.1016/j.foodchem.2021.130772] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Macrolepiota albuminosa (Berk.) Pegler is abundant in active polysaccharides, but little is known about their structures and solution properties. In this study, water-extracted polysaccharides from M. albuminosa (MAWP) were purified into three fractions with structural heterogeneity, which was attributed to the diversity in molecular weight, monosaccharide composition and linkage patterns, further affecting their solution properties. Methylation and NMR analysis revealed MAWP-60p and MAWP-70 were a 3-O-methylated glucomannogalactan and a previously unreported glucomannogalactan, whereas MAWP-80 was elucidated as a branched galactoglucan. Besides, three fractions exhibited random coil conformation in aqueous solution, while MAWP-60p had the highest viscosity due to its highest molecular weight, mean square radius of gyration (Rg) and O-methyl group attached to the backbone. The molecular weight, monosaccharide composition and glycosidic linkages might be the major contributors to the flexibility, molecular size and stereochemistry of mushroom polysaccharide chains.
Collapse
Affiliation(s)
- Yu-Xiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yue Xin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| |
Collapse
|
26
|
Natural Yogurt Stabilized with Hydrocolloids from Butternut Squash (Cucurbita moschata) Seeds: Effect on Physicochemical, Rheological Properties and Sensory Perception. FLUIDS 2021. [DOI: 10.3390/fluids6070251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stabilizers are ingredients employed to improve the technological properties of products. The food industry and consumers have recently become interested in the development of natural ingredients. In this work, the effects of hydrocolloids from butternut squash (Cucurbita moschata) seeds (HBSS) as stabilizers on the physicochemical, rheological, and sensory properties of natural yogurt were examined. HBSS improved the yogurt’s physical stability and physicochemical properties, decreasing syneresis and modifying the samples’ rheological properties, improving the assessment of sensory characteristics. The samples presented shear thinning behavior characterized by a decrease in viscosity with the increase of the shear rate; nevertheless, the samples showed a two-step yield stress. HBSS is an alternative as a natural stabilizer for the development of microstructured products.
Collapse
|
27
|
Qin G, Xu W, Liu J, Zhao L, Chen G. Purification, characterization and hypoglycemic activity of glycoproteins obtained from pea (Pisum sativum L.). FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Ji X, Peng B, Ding H, Cui B, Nie H, Yan Y. Purification, Structure and Biological Activity of Pumpkin Polysaccharides: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904973] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Baixiang Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hehui Ding
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Bingbing Cui
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| | - Hui Nie
- Guangxi Talent Highland of Preservation and Deep Processing Research in Fruit and Vegetables, Hezhou University, Hezhou, P.R. China
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
29
|
Li F, Wei Y, Zhao J, Yu G, Huang L, Li Q. Transport mechanism and subcellular localization of a polysaccharide from Cucurbia Moschata across Caco-2 cells model. Int J Biol Macromol 2021; 182:1003-1014. [PMID: 33892025 DOI: 10.1016/j.ijbiomac.2021.04.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
Pumpkin polysaccharides with various bioactivities are mainly taken orally, thus detailed knowledge of the intestinal transport of which are essential for understanding its bioactivities. The Caco-2 cells monolayer model (mimic intestinal epithelium) was successfully constructed and Cucurbia moschata polysaccharides (PPc-F) were successfully conjugated with fluorescein isothiocyanate (FITC) to evaluate the transcellular transport mechanism and subcellular localization of PPc. The transport process of PPc-F was energy-dependent, and a moderately-absorbed biological macromolecule according to the apparent permeability coefficients (Papp) value. The endocytosis process of PPc-F in Caco-2 cells included the clathrin- and caveolae (or lipid draft)-medicated routes. And the translocation process was related to endoplasmic reticulum (ER), golgi apparatus (GA), tubulin and the acidification of endosomes. As for the intracellular location of PPc-F, it was mainly accumulated in ER. The study provided an understanding of the transmembrane transport of PPc-F, and could help studying the mechanisms of its effects.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Guoyong Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
30
|
Peng M, Lu D, Liu J, Jiang B, Chen J. Effect of Roasting on the Antioxidant Activity, Phenolic Composition, and Nutritional Quality of Pumpkin ( Cucurbita pepo L.) Seeds. Front Nutr 2021; 8:647354. [PMID: 33777995 PMCID: PMC7988230 DOI: 10.3389/fnut.2021.647354] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, with the increasing awareness of health concerns and environment protection needs, there is a growing interest for consumers to choose plant-based food diets compared with those made from animal origin. Pumpkin seed is an excellent dietary source for protein, oil, and some essential micronutrients. Raw pumpkin seed may have a compromised flavor, color, as well as digestibility. Therefore, the objective of present study is to study the influence of roasting (120, 160, and 200°C for 10 min) on the phenolics content, flavonoids content, antioxidant property, fatty acids, and volatile matter composition, as well as protein profile of pumpkin seeds. Our results indicated that, total phenolic compounds, total flavonoids content, as a consequence, total antioxidant capacity increased as the roasting temperature increased. Maillard reaction products and lipid peroxidation products were identified, especially from those pumpkin seeds roasted at high temperature. In the meantime, the composition and content of fatty acids did not change significantly after roasting. The results of electrophoresis and particle size analysis showed that the optimum roasting temperature was 160°C to obtain protein with better nutritional quality. The findings of this study may contribute to the utilization of pumpkin seed component in plant-based diets with increased nutritional quality.
Collapse
Affiliation(s)
- Mengyao Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dan Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity. Carbohydr Polym 2021; 256:117516. [DOI: 10.1016/j.carbpol.2020.117516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022]
|
32
|
Hajji M, Falcimaigne-Gordin A, Ksouda G, Merlier F, Thomasset B, Nasri M. A water-soluble polysaccharide from Anethum graveolens seeds: Structural characterization, antioxidant activity and potential use as meat preservative. Int J Biol Macromol 2020; 167:516-527. [PMID: 33279565 DOI: 10.1016/j.ijbiomac.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
A novel water-soluble polysaccharide named AGP1 was successfully isolated from seeds of Anethum graveolens by hot water extraction and further purified by DEAE-Sepharose chromatography. AGP1 has a relative molecular weight of 2.1 104 Da determined by Ultra-high-performance liquid chromatography (UHPLC). The AGP1 characterization was investigated by chemical and instrumental analysis including gas chromatography mass spectrometry (GC-MS), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction. Results showed that AGP1 was mainly composed of glucose, galactose, mannose and arabinose in a molar percent of 54.3, 23.8, 14.7 and 7.2, respectively. The thermogravimetry analysis (TGA) and the differential scanning calorimetry (DSC) were used and showed that AGP1 has good thermal stability until 275 °C. Moreover, the purified polysaccharide demonstrated an appreciable in vitro antioxidant potential. The addition of the AGP1, particularly at 0.3% (w/w), in turkey sausages instead of ascorbic acid, as preservative, reduced the lipid peroxidation, preserved the pH and color and improved the bacterial stability during cold storage at 4 °C for 12 days. Overall, the results showed that the AGP1 deserves to be developed as functional and bioactive components for the food and nutraceutical industries.
Collapse
Affiliation(s)
- Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Aude Falcimaigne-Gordin
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Ghada Ksouda
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Franck Merlier
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| |
Collapse
|
33
|
Feriani A, Tir M, Hamed M, Sila A, Nahdi S, Alwasel S, Harrath AH, Tlili N. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. Int J Biol Macromol 2020; 165:2576-2587. [DOI: 10.1016/j.ijbiomac.2020.10.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
|
34
|
Wang L, Gao J, Li L, Huang J, Yang Y, Xu Y, Wang Y, Liu Y. Characterization and Biological Activities of Polysaccharides from Dandelion (
Taraxacum officinale
) Leaves. STARCH-STARKE 2020. [DOI: 10.1002/star.202000051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Libo Wang
- College of Art and Science Northeast Agricultural University Harbin 150030 China
| | - Jingyu Gao
- College of Art and Science Northeast Agricultural University Harbin 150030 China
| | - Lianyu Li
- College of Art and Science Northeast Agricultural University Harbin 150030 China
| | - Jing Huang
- College of Pharmacy Harbin Medical University Harbin 150030 China
| | - Yu Yang
- College of Art and Science Northeast Agricultural University Harbin 150030 China
| | - Yaqin Xu
- College of Art and Science Northeast Agricultural University Harbin 150030 China
| | - Yabin Wang
- College of Art and Science Northeast Agricultural University Harbin 150030 China
| | - Yong Liu
- College of Art and Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
35
|
Bioaccessibility of carotenoids and antioxidant capacity of seed-used pumpkin byproducts powders as affected by particle size and corn oil during in vitro digestion process. Food Chem 2020; 343:128541. [PMID: 33221102 DOI: 10.1016/j.foodchem.2020.128541] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
Powders made from seed-used pumpkin flesh (SUPF) are potential sources of carotenoids. In this study, unexplored effects of particle size and corn oil on bioaccessible amounts of carotenoids and antioxidant capacity of SUPF powders during in vitro digestion process were investigated. Overall, total carotenoid relative bioaccessibility (TCRB) of 100 mesh-sized powder (100 MP, 15.46%) was higher than that of 18 mesh-sized powder (18 MP, 12.94%). With the addition of 2% corn oil, TCRB increased 108.35% (18 MP) and 88.55% (100 MP), respectively. Lutein (≥27160 µg/100 g) and β-carotene (≥5192 µg/100 g) were main carotenoid monomers in SUPF and significantly correlated with DPPH radical scavenging activity of digestive supernatant (p < 0.05). Notably, DPPH radical scavenging activity of 18 MP increased 96.54% with corn oil. These results implied that smaller particle size and oil addition could improve bioaccessible amounts of carotenoids and antioxidant capacity of SUPF powders.
Collapse
|
36
|
Physicochemical, nutritional and functional properties of Cucurbita moschata. Food Sci Biotechnol 2020; 30:171-183. [PMID: 33732508 DOI: 10.1007/s10068-020-00835-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/28/2023] Open
Abstract
Cucurbita moschata is widely planted in most parts of the world, and is rich in carotenoids, vitamins, dietary fiber, minerals, and phenolic compounds. It also has important medicinal value. Some related research has proven that Cucurbita moschata has the potential ability to induce anti-obesity, anti-diabetic, antibacterial, and anticancer effects. At the same time, it has attracted more attention in the medical field. These nutrients and bioactive compounds in Cucurbita moschata have important effects on human health. In order to make better use of this crop, it still needs further study. Therefore, the purpose of this article is to summarize the physicochemical properties and nutritional components of Cucurbita moschata, and to provide a reference for further research on the benefits of on human health.
Collapse
|
37
|
Li F, Wei Y, Liang L, Huang L, Yu G, Li Q. A novel low-molecular-mass pumpkin polysaccharide: Structural characterization, antioxidant activity, and hypoglycemic potential. Carbohydr Polym 2020; 251:117090. [PMID: 33142631 DOI: 10.1016/j.carbpol.2020.117090] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
The novel natural low-molecular-mass polysaccharide (SLWPP-3) from pumpkin (Cucurbia moschata) was separated from the waste supernatant after macromolecular polysaccharide production and purified using a DEAE cellulose-52 column and gel-filtration chromatography. Chemical and instrumental studies revealed that SLWPP-3 with a molecular mass of 3.5 kDa was composed of rhamnose, glucose, arabinose, galactose and uronic acid with a weight ratio of 1: 1: 4: 6: 15, and primarily contained →3,6)-β-d-Galp-(1→, →4)-α-GalpA-(1→(OMe), →4)-α-GalpA-(1→, →2,4)-α-d-Rhap-(1→, →3)-β-d-Galp-(1→, →4)-α-d-Glcp, and →4)-β-d-Galp residues in the backbone. The branch chain passes were connected to the main chain through the O-4 atom of glucose and O-3 atom of arabinose. Physiologically, the ability of SLWPP-3 to inhibit carbohydrate-digesting enzymes and DPPH and ABTS radicals, as well as protect pancreatic β cells from oxidative damage by decreasing MDA levels and increasing SOD activities, was confirmed. The findings elucidated the structural types of pumpkin polysaccharides and revealed a potential adjuvant natural product with hypoglycemic effects.
Collapse
Affiliation(s)
- Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Li Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Guoyong Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing, 100083, PR China.
| |
Collapse
|
38
|
Physicochemical Properties, Antioxidant and Antidiabetic Activities of Polysaccharides from Quinoa ( Chenopodium quinoa Willd.) Seeds. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25173840. [PMID: 32847017 PMCID: PMC7503530 DOI: 10.3390/molecules25173840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022]
Abstract
Quinoa is known for its rich nutrients and bioactive compounds. In order to elucidate the preliminary structural characteristics and biological activity of polysaccharides from quinoa (QPs), five crude polysaccharides (QPE50, QPE60, QPE70, QPE80 and QPE90) were successively fractionated by gradient ethanol, and their physicochemical properties, antioxidant and antidiabetic activities were analyzed. The results implied that their total sugar contents were 52.82%, 63.69%, 67.15%, 44.56%, and 41.01%, and their weight-average molecular weights were 13,785 Da, 6489 Da, 4732 Da, 3318 Da, and 1960 Da, respectively. Glucose was a predominantly monosaccharide in these QPs, which together in QPE50, QPE60, QPE70, QPE80, and QPE90, respectively, made up 94.37%, 87.92%, 92.21%, 100%, and 100% of the total polysaccharide. Congo red test showed that all five QPs contained triple-helix structure. The Fourier transform-infrared spectroscopy (FT-IR) and X-ray diffractometry (XRD) results suggest that the QPs form a semi-crystalline polymer constituted typical functional groups of polysaccharide including CO, CH and OH. The thermogravimetric analysis (TGA) of QPs showed that weight loss was at about 200 °C and 320 °C. The observation from scanning electron microscope (SEM) and atomic force microscope (AFM) image indicated that the morphology of QPs exhibited spherical shape. Antioxidant and antidiabetic assay exhibited that all five QPs samples had certain antioxidant and antidiabetic activities, and QPE90 showed the best antioxidant and antidiabetic activity. Overall, QPs present a promising natural source of food antioxidants and antidiabetic agents.
Collapse
|
39
|
Wang C, He Y, Tang X, Li N. Sulfation, structural analysis, and anticoagulant bioactivity of ginger polysaccharides. J Food Sci 2020; 85:2427-2434. [PMID: 32686122 DOI: 10.1111/1750-3841.15338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/01/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
In this study, ginger polysaccharide (GP), ginger polysaccharide 1 (GP1), and ginger polysaccharide 2 (GP2) from ginger were firstly modified by sulfation. Fourier transform infrared, and nuclear magnetic resonance spectra investigation of sulfated ginger polysaccharide (SGP), sulfated ginger polysaccharide 1 (SGP1), and sulfated ginger polysaccharide 2 (SGP2) revealed that the sulfation successfully occurred with the characteristic absorption peak of polysaccharide. Congo red experiment showed that triple helical structure existed in SGP and SGP1, but random coils existed in SGP2. SGP, SGP1, and SGP2 all showed a rough and rugged surface with plenty of small pores. The blood clotting time of SGP2 or SGP at 2 mg/mL in activated partial thromboplastin time (APTT) assay was 41.42 or 38.01 s, respectively, which were approximately 1.33- and 1.22-fold longer than that of the physiological saline. Compared to the saline control group, prothrombin time (PT) was increased by 1.22-fold with the addition of GP at 2 mg/mL. However, no clotting inhibition phenomenon was observed in thrombin time test even at the concentrations that APTT and PT were obviously prolonged. It indicated that GP2, SGP2, and SGP inhibited the intrinsic pathway of coagulation, but GP inhibited both the intrinsic and extrinsic pathways of coagulation. Hence, ginger polysaccharides might be used as anticoagulants and therapeutic reagents for thrombosis.
Collapse
Affiliation(s)
- Chaofan Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China
| | - Yaoxuan He
- College of Pharmaceutical Science, Shandong First Medical University, Tai'an, Shandong Province, 271018, PR China
| | - Xiaozhen Tang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China
| | - Ningyang Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, PR China
| |
Collapse
|
40
|
Liu Y, Hu CF, Feng X, Cheng L, Ibrahim SA, Wang CT, Huang W. Isolation, characterization and antioxidant of polysaccharides from Stropharia rugosoannulata. Int J Biol Macromol 2020; 155:883-889. [DOI: 10.1016/j.ijbiomac.2019.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/20/2019] [Accepted: 11/06/2019] [Indexed: 01/06/2023]
|
41
|
A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. Int J Biol Macromol 2020; 154:1460-1470. [DOI: 10.1016/j.ijbiomac.2019.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
|
42
|
Liao DW, Cheng C, Liu JP, Zhao LY, Huang DC, Chen GT. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods. Int J Biol Macromol 2020; 152:894-903. [PMID: 32126202 DOI: 10.1016/j.ijbiomac.2020.02.325] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022]
Abstract
Three different extraction technologies including hot water extraction (HWE), enzyme assisted extraction (EAE) and ultrasonic cell grinder extraction (UCGE) were employed to extract crude ginger polysaccharides (GPs) under their respective best parameters, then crude GPs were purified by DEAE cellulose-52 and Sephadex G-200 size-exclusion chromatography in that order. Five GPs fractions (HGP, EGP1, EGP2, UGP1, and UGP2, respectively) were obtained. The differences of five GPs in chemical composition, characterization and antitumor activities were further compared. The molecular weights were different in five GPs, varying from 11.81 to 1831.75 kDa. Mannose and glucose as the main monosaccharide and the glycosidic linkage of →4)-α-D-Glc(1→ and -α-Manp-(1→ existed in both five GPs. While EGP2 and UGP1 possessed specific structure of →6)-β-D-Galp-(1→ and UGP1 contained more sulfate group. Moreover, UGP1 exhibited strong inhibitory effect on three tumor cells especially the colon cancer. The inhibition rates of UGP1 on H1975, HCT116 and MCF-7 were 23.339 ± 2.285%, 56.843 ± 2.405% and 21.061 ± 1.920% respectively. The study indicated GPs extracted by UCGE could reserve more active structure and inhibit colon cancer more significantly.
Collapse
Affiliation(s)
- Deng-Wei Liao
- Department of Food Quality and Safety, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chen Cheng
- Department of Food Quality and Safety, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jun-Ping Liu
- Department of Food Quality and Safety, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Li-Yan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - De-Chun Huang
- Department of Food Quality and Safety, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Gui-Tang Chen
- Department of Food Quality and Safety, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
43
|
Wang Z, Yang Q, Wang X, Li R, Qiao H, Ma P, Sun Q, Zhang H. Antibacterial activity of xanthan-oligosaccharide against Staphylococcus aureus via targeting biofilm and cell membrane. Int J Biol Macromol 2020; 153:539-544. [DOI: 10.1016/j.ijbiomac.2020.03.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
|
44
|
Cao M, Wang S, Gao Y, Pan X, Wang X, Deng R, Liu P. Study on physicochemical properties and antioxidant activity of polysaccharides from Desmodesmus armatus. J Food Biochem 2020; 44:e13243. [PMID: 32462686 DOI: 10.1111/jfbc.13243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/25/2020] [Indexed: 01/07/2023]
Abstract
Physicochemical properties and antioxidant activities of Desmodesmus armatus polysaccharides (DAP) were studied. They were extracted by microwave-assisted constant temperature extraction and purification by DEAE-cellulose 52. Four eluents of water (DAP1), 0.25 mol/L NaCl (DAP2), 0.5 mol/L NaCl (DAP3), and 1.0 mol/L NaCl (DAP4) were collected. Four polysaccharides fractions were analyzed, and they were all composed of mannose, rhamnose, glucuronic acid, galacturonic acid, arabinose, and fucose. Gel Permeation Chromatography (GPC) analysis showed that the four polysaccharides fractions have a uniform molecular weight distribution. Scanning electron microscope showed that DAP1 had a dense structure and a smooth but uneven surface, while DAP2, DAP3, and DAP4 were amorphous solids in sheets. Oxidation in vitro experiments showed that DAP2 and DAP3 had scavenging effects on ABTS, DPPH, and hydroxyl radicals. PRACTICAL APPLICATIONS: In the determination of the antioxidant activity, it was found that the antioxidative activity of the polysaccharide of Desmodesmus armatus measured was significantly stronger than the crude polysaccharide of other microalgae. After the polysaccharide was purified, two polysaccharide fractions (DAP2 and DAP3) of Desmodesmus armatus were found to have strong scavenging ability to ABTS, DPPH, and hydroxyl radicals. They can be regarded as a new type of antioxidant, and the differences in the physicochemical properties between the parts can provide a preliminary explanation for the differences in antioxidant activity. But the connection between them needs further analysis. The Desmodesmus armatus used in the experiment is easy to cultivate and easy to obtain, which greatly increases its applicability. This research opens up new possibilities for the development of antioxidants and provides favorable evidence for the use of Desmodesmus armatus in food and feed.
Collapse
Affiliation(s)
- Meng Cao
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Shenglin Wang
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Yumei Gao
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Xiaoyan Pan
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Xiuhai Wang
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Ruru Deng
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Pinghuai Liu
- School of Chemical Engineering and Technology, Hainan University, Haikou, China
| |
Collapse
|
45
|
Comparative characteristics of oil composition in seeds of 31 Cucurbita varieties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00339-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Rjeibi I, Hentati F, Feriani A, Hfaiedh N, Delattre C, Michaud P, Pierre G. Novel Antioxidant, Anti-α-Amylase, Anti-Inflammatory and Antinociceptive Water-Soluble Polysaccharides from the Aerial Part of Nitraria retusa. Foods 2019; 9:E28. [PMID: 31888100 PMCID: PMC7022424 DOI: 10.3390/foods9010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, water-soluble polysaccharides (named as NRLP) were extracted from Nitraria retusa leaves. The main structural features of NRLP were determined by High-pressure size exclusion chromatography, Fourier transform infrared and Gas Chromatography/Mass Spectrometry-Electronic Impact analysis. The in vitro and in vivo biological potential of NRLP were evaluated by measuring its antioxidant (•OH and DPPH• scavenging, total antioxidant capacity), anti-α-amylase as well as anti-inflammatory and antinociceptive activities in a mice model. NRLP was composed of Rha (33.7%), Gal (18.1%), GalA (15.0%), Glc (13.3%), Ara (13.3%), Xyl (3.8%), and GlcA (2.8%) and showed a Molecular Weight (Mw) of 23.0 kDa and a polydispersity index (PDI) of 1.66. The investigations highlighted a significant antioxidant activity (IC50 = 2.4-2.6 mg/mL) and an inhibition activity against α-amylase (IC50 = 4.55 mg/mL) in a dose-dependent manner. Further, NRLP revealed interesting anti-edematous effects and antinociceptive activities (both > 70%). These results open up new pharmacological prospects for the water-soluble polysaccharides extracted from Nitraria retusa leaves.
Collapse
Affiliation(s)
- Ilhem Rjeibi
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia; (I.R.); (N.H.)
| | - Faiez Hentati
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3029, Tunisia
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (C.D.); (G.P.)
| | - Anouar Feriani
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia; (I.R.); (N.H.)
| | - Najla Hfaiedh
- Research unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa 2112, Tunisia; (I.R.); (N.H.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (C.D.); (G.P.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (C.D.); (G.P.)
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (C.D.); (G.P.)
| |
Collapse
|
47
|
Wang B, Song Q, Zhao F, Han Y, Zhou Z. Production optimization, partial characterization and properties of an exopolysaccharide from Lactobacillus sakei L3. Int J Biol Macromol 2019; 141:21-28. [DOI: 10.1016/j.ijbiomac.2019.08.241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
|
48
|
Chen Q, Lyu Y, Bi J, Wu X, Jin X, Qiao Y, Hou H, Lyu C. Quality assessment and variety classification of seed-used pumpkin by-products: Potential values to deep processing. Food Sci Nutr 2019; 7:4095-4104. [PMID: 31890189 PMCID: PMC6924301 DOI: 10.1002/fsn3.1276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022] Open
Abstract
Seed-used pumpkin (SUP) is known as a traditional popular crop, which is mainly processed for seeds. However, the by-products (49 times the amount of seeds) were disposed directly into the field as waste. In this study, potential values of seed-used pumpkins' by-products (SUPBs, peel and pulp) as food resource were investigated. Physico-chemical, nutritional, and aroma profile of ten varieties of SUPBs were characterized, and variety differences were also distinguished. Peel "a*" value, water, fructose, crude fat, sucrose, and Ca contents were the 6 characteristic indicators of SUPBs which screened through correlation analysis, principal component analysis (PCA), and PCA-X model. Comprehensive evaluation of physico-chemical, nutritional, and aroma profile, four varieties by-products (Jf8#, Nf8#, Rbf#, and Rf9#) were always characterized into Cluster Ⅰ. Other varieties were classified into Cluster Ⅱ based on aroma profile. However, two varieties by-products (Db1# and Xn1#) presented significant differences from others (Db2#, Db3#, Db4#, and Myxc2#) in physico-chemical and nutritional indices, they were classified as Cluster III and IV, respectively. Db1# had the highest nutritional value of soluble solid (11.78 ºBx), pectin (1,166.15 mg/ 100 g), total carotenoid (19.57 mg/ 100 g), and total sugar (13.69 g/ 100 g). Among all the SUPBs, Db1# had a relatively higher nutritional value, which was suitable as food resource for deep processing.
Collapse
Affiliation(s)
- Qinqin Chen
- Institute of Food Science and TechnologyChinese Academy of Agricultural Sciences (CAAS) /Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Ying Lyu
- Department of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Jinfeng Bi
- Institute of Food Science and TechnologyChinese Academy of Agricultural Sciences (CAAS) /Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- Department of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Xinye Wu
- Institute of Food Science and TechnologyChinese Academy of Agricultural Sciences (CAAS) /Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Xin Jin
- Institute of Food Science and TechnologyChinese Academy of Agricultural Sciences (CAAS) /Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yening Qiao
- Institute of Food Science and TechnologyChinese Academy of Agricultural Sciences (CAAS) /Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Haonan Hou
- Institute of Food Science and TechnologyChinese Academy of Agricultural Sciences (CAAS) /Key Laboratory of Agro‐Products ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
| | - Chunmao Lyu
- Department of Food ScienceShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
49
|
Xu D, Li C, Zhuo Z, Ye M, Fu B, Pu B. Physicochemical and Emulsifying Properties of Protein Extracted from Zanthoxylum armatum Seed Kernel. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2019. [DOI: 10.1007/s40995-019-00796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|