1
|
Cherian E, Ts K, Kn S, Ks A, Poothicote NG. Investigation into pectin extraction and technological implementations in the food industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9102-9110. [PMID: 38850093 DOI: 10.1002/jsfa.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
Pectin, a complex polysaccharide found abundantly in the cell walls of fruits and vegetables, plays a pivotal role in various food applications owing to its unique gelling, thickening and stabilizing properties. As consumer preferences lean towards natural and sustainable ingredients, the demand for pectin as a food additive has surged. This burgeoning interest has prompted a comprehensive exploration into both the extraction methods of pectin from its natural sources and its diverse technological applications in the food industry. The extraction process involves breaking down the plant cell wall to release the pectin. Traditional methods such as hot acid extraction have been widely used, but advances in technology have spurred the development of novel techniques like enzyme-assisted extraction and microwave-assisted extraction. These methods aim not only to enhance the yield and purity of extracted pectin but also to minimize environmental impact and energy consumption. Pectin's versatility has positioned it as a valuable ingredient in the food industry. Its ability to form gels under specific conditions makes it a key component in the production of jams, jellies and fruit preserves. Additionally, pectin acts as a stabilizer in dairy products, prevents syneresis in baked goods and improves the texture of confectionery items. The application of pectin goes beyond its role as a gelling agent; it is also employed in the encapsulation of bioactive compounds, enhancing the functional properties of various food products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elsa Cherian
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Khadeeja Ts
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Saheersha Kn
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Ashitha Ks
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| | - Nisha G Poothicote
- Department of Food Technology, Saintgits College of Engineering, Kottayam, India
| |
Collapse
|
2
|
Kang YR, Chang YH. Structural and flow rheological properties of pumpkin pectic polysaccharide extracted by citric acid. Int J Biol Macromol 2024; 265:130748. [PMID: 38467216 DOI: 10.1016/j.ijbiomac.2024.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The present study aimed to investigate the structural and physicochemical characteristics of acid-extracted pumpkin pectic polysaccharide (AcPP) and to evaluate their flow rheological properties. AcPP was extracted from pumpkin pulp using the citric acid extraction method. The physicochemical and structural properties were analyzed by chemical methods and instrumental analyses. The obtained results showed that AcPP consisted predominantly of GalA (85.99 %) and small amounts of Rha, Gal, and Ara, with the ratio of HG/RG-I being 81.39/16.75. In addition, AcPP had medium DE (45.34 %) and contained four macromolecular populations with different Mw of 106.03 (main), 10.15, 4.99, and 2.90 kDa. The NMR analysis further confirmed that AcPP contained a linear backbone consisting of α-1,4-linked GalA residues, some of which were partially methyl-esterified. Furthermore, AcPP was amorphous in nature and had favorable thermal stability. The effects of extrinsic factors on the flow rheological properties of AcPP were evaluated. In particular, the high concentrations of CaCl2 (8 mM) and MgCl2 (10 mM) were effective in enhancing the viscosity and non-Newtonian shear-thinning behavior of the AcPP solution. This study elucidates the unique molecular structure of AcPP and suggests the potential of AcPP as a rheology modifier in low-viscous and mineral-reinforced beverages.
Collapse
Affiliation(s)
- Yu-Ra Kang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
A mini-review on the plant sources and methods for extraction of rhamnogalacturonan I. Food Chem 2023; 403:134378. [DOI: 10.1016/j.foodchem.2022.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
4
|
Jia Y, Du J, Li K, Li C. Emulsification mechanism of persimmon pectin with promising emulsification capability and stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Targeted pectin depletion enhances the potential of high-pressure homogenization to increase the network forming potential of tomato cell wall material. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Persimmon tannin can enhance the emulsifying properties of persimmon pectin via promoting the network and forming a honeycomb-structure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Jiang H, Zhang W, Xu Y, Chen L, Cao J, Jiang W. An advance on nutritional profile, phytochemical profile, nutraceutical properties, and potential industrial applications of lemon peels: A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
The role of mechanical collapse by cryogenic ball milling on the effect of high-pressure homogenization on the microstructural and texturizing properties of partially pectin-depleted tomato cell wall material. Food Res Int 2022; 155:111033. [DOI: 10.1016/j.foodres.2022.111033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
|
9
|
Putri NI, Celus M, Van Audenhove J, Nanseera RP, Van Loey A, Hendrickx M. Functionalization of pectin-depleted residue from different citrus by-products by high pressure homogenization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Influence of different dispersing systems on rheological and microstructural properties of citrus fiber suspensions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Effect of pulsed electric field, mild thermal pretreatment and calcium on texture changes of potato (Solanum tuberosum L.) during subsequent cooking. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Tunç MT, Odabaş Hİ. Single-step recovery of pectin and essential oil from lemon waste by ohmic heating assisted extraction/hydrodistillation: A multi-response optimization study. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Van Audenhove J, Bernaerts T, Putri NI, Okello EO, Van Rooy L, Van Loey AM, Hendrickx ME. Microstructural and Texturizing Properties of Partially Pectin-Depleted Cell Wall Material: The Role of Botanical Origin and High-Pressure Homogenization. Foods 2021; 10:2644. [PMID: 34828925 PMCID: PMC8621128 DOI: 10.3390/foods10112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
In the current study, the texturizing properties of partially pectin-depleted cell wall material (CWM) of apple, carrot, onion and pumpkin, and the potential of functionalization by high-pressure homogenization (HPH) were addressed. This partially pectin-depleted CWM was obtained as the unextractable fraction after acid pectin extraction (AcUF) on the alcohol-insoluble residue. Chemical analysis was performed to gain insight into the polysaccharide composition of the AcUF. The microstructural and functional properties of the AcUF in suspension were studied before HPH and after HPH at 20 and 80 MPa. Before HPH, even after the pectin extraction, the particles showed a cell-like morphology and occurred separately in the apple, onion and pumpkin AcUF and in a clustered manner in the carrot AcUF. The extent of disruption by the HPH treatments at 20 and 80 MPa was dependent on the botanical origin. Only for the onion and pumpkin AcUF, the water binding capacity was increased by HPH. Before HPH, the texturizing potential of the AcUFs was greatly varying between the different matrices. Whereas HPH improved the texturizing potential of the pumpkin AcUF, no effect and even a decrease was observed for the onion AcUF and the apple and carrot AcUF, respectively.
Collapse
Affiliation(s)
- Jelle Van Audenhove
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, P.O. Box 2457, 3001 Leuven, Belgium; (T.B.); (N.I.P.); (E.O.O.); (L.V.R.); (A.M.V.L.); (M.E.H.)
| | | | | | | | | | | | | |
Collapse
|
14
|
Serial M, Velichko E, Nikolaeva T, den Adel R, Terenzi C, Bouwman W, van Duynhoven J. High-pressure homogenized citrus fiber cellulose dispersions: Structural characterization and flow behavior. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Neckebroeck B, Verkempinck S, Bernaerts T, Verheyen D, Hendrickx M, Van Loey A. Investigating the role of the different molar mass fractions of a pectin rich extract from onion towards its emulsifying and emulsion stabilizing potential. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Meng X, Wu C, Liu H, Tang Q, Nie X. Dietary fibers fractionated from gardenia (Gardenia jasminoides Ellis) husk: structure and in vitro hypoglycemic effect. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3723-3731. [PMID: 33305370 DOI: 10.1002/jsfa.11003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gardenia (Gardenia jasminoides Ellis) husk rich in dietary fiber is a byproduct of fructus processing, and commonly discarded as waste. The husk was fractionated by sequential extraction into four fractions: water-soluble fiber (W-SF), acid-soluble fiber (Ac-SF), alkali-soluble fiber (Al-SF) and insoluble residue fiber (IRF). The aim of this study was to investigate the differences in structure and in vitro hypoglycemic effect of these fibers. RESULTS Monosaccharide composition and Fourier transform infrared spectra showed that the major component might be pectin for W-SF and Ac-SF, xylan as well as pectin for Al-SF and cellulose for IRF. These fibers offered excellent water-holding capacity and swelling capacity, except that IRF was only slightly swellable in water. W-SF exhibited significantly higher capacities to adsorb glucose (2.408 mmol g-1 at a glucose concentration of 200 mmol L-1 ) and inhibit α-amylase activity (29.48-49.45% inhibition rate at a concentration of 4-8 mg mL-1 ), probably caused by the higher viscosity and hydration properties; while Ac-SF, Al-SF and IRF (especially Al-SF) were more effective in retarding the glucose diffusion across a dialysis membrane (34.97-41.67% at 20-30 min), which might be attributed to particle size and specific surface area. All the fibers could quench the intrinsic fluorescence of α-amylase to some degree. CONCLUSIONS Dietary fiber from gardenia husk, especially W-SF, can be used as a potential hypoglycemic ingredient in diabetic functional foods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, China
| | - Congcong Wu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, China
| | - Haizhen Liu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, China
| | - Qiwen Tang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, China
| |
Collapse
|
17
|
Moens LG, Huang W, Van Loey AM, Hendrickx ME. Effect of pulsed electric field and mild thermal processing on texture-related pectin properties to better understand carrot (Daucus carota) texture changes during subsequent cooking. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Van Audenhove J, Bernaerts T, De Smet V, Delbaere S, Van Loey AM, Hendrickx ME. The Structure and Composition of Extracted Pectin and Residual Cell Wall Material from Processing Tomato: The Role of a Stepwise Approach versus High-Pressure Homogenization-Facilitated Acid Extraction. Foods 2021; 10:foods10051064. [PMID: 34065932 PMCID: PMC8150267 DOI: 10.3390/foods10051064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023] Open
Abstract
In literature, different pectin extraction methods exist. In this study, two approaches starting from the alcohol-insoluble residue (AIR) of processing tomato are performed in a parallel way to facilitate the comparison of pectin yield and the compositional and structural properties of the extracted pectin and residual cell wall material obtained. On the one hand, pectin is extracted stepwise using hot water, chelating agents and low-alkaline conditions targeting fractionation of the pectin population. On the other hand, an industrially relevant single-step nitric acid pectin extraction (pH 1.6) is performed. In addition to these conventional solvent pectin extractions, the role of high-pressure homogenization (HPH) as a physically disruptive treatment to facilitate further pectin extraction from the partially pectin-depleted fraction obtained after acid extraction is addressed. The impact of HPH on the pectin cell wall polysaccharide interactions was shown as almost two thirds of the residual pectin were extractable during the subsequent extractions. For both extraction approaches, pectin obtained further in the sequence was characterized by a higher molecular mass and a higher amount of rhamnogalacturonan I domains. The estimated hemicellulose and cellulose content increased from 56 mol% for the AIR to almost 90 mol% for the final unextractable fractions of both methods.
Collapse
|
19
|
Atencio S, Bernaerts T, Liu D, Reineke K, Hendrickx M, Van Loey A. Impact of processing on the functionalization of pumpkin pomace as a food texturizing ingredient. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Effect of homogenization associated with alkaline treatment on the structural, physicochemical, and emulsifying properties of insoluble soybean fiber (ISF). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Neckebroeck B, Verkempinck SHE, Van Audenhove J, Bernaerts T, de Wilde d'Estmael H, Hendrickx ME, Van Loey AM. Structural and emulsion stabilizing properties of pectin rich extracts obtained from different botanical sources. Food Res Int 2020; 141:110087. [PMID: 33641966 DOI: 10.1016/j.foodres.2020.110087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/09/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022]
Abstract
The presented research studied the emulsifying and emulsion stabilizing capacity of pectin samples isolated from different plant origin: apple, carrot, onion and tomato. The acid extracted pectin samples showed distinct structural properties. Specifically, apple pectin showed a high degree of methylesterification (78.41 ± 0.83%), carrot pectin had the lowest concentration of other co-eluted cell wall polymers, onion pectin displayed a bimodal molar mass distribution suggesting two polymer fractions with different molar mass and tomato pectin was characterized by a high protein content (16.48 ± 0.05%). The evaluation of the emulsifying and emulsion stabilizing potential of the pectin samples included investigating their ability to lower the interfacial tension next to a storage stability study of pectin stabilized o/w emulsions. Creaming behavior as well as the evolution of the oil droplet size were thoroughly examined during storage using multiple analytical techniques. Overall, smaller oil droplet sizes were obtained at pH 2.5 compared to pH 6.0 indicating better emulsifying capacity at lower pH. The lowest emulsion stability was observed in emulsions formulated with tomato pectin in which weak flocculation and relatively fast creaming affected emulsion stability. Onion pectin clearly showed the most promising emulsifying and emulsion stabilizing potential. At both pH conditions, emulsions stabilized by the onion pectin sample displayed highly stable oil droplet sizes during the whole storage period. The presence of the two polymer fractions in this sample can play an important role in the observed stability. In future work, it could be evaluated if both fractions contribute to emulsion stability in a synergistic way. In conclusion, this work showed that pectin samples extracted from different plant origin display diverse structural properties resulting in varying emulsifying and emulsion stabilizing potential. Polymer molar mass potentially plays a major role in the structure-function relation.
Collapse
Affiliation(s)
- B Neckebroeck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - S H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - J Van Audenhove
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - T Bernaerts
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - H de Wilde d'Estmael
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - M E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - A M Van Loey
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
22
|
Moens LG, De Laet E, Van Wambeke J, Van Loey AM, Hendrickx ME. Pulsed electric field and mild thermal processing affect the cooking behaviour of carrot tissues (Daucus carota) and the degree of methylesterification of carrot pectin. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Gutöhrlein F, Morales-Medina R, Boje AL, Drusch S, Schalow S. Modulating the hydration properties of pea hull fibre by its composition as affected by mechanical processing and various extraction procedures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Willemsen KL, Panozzo A, Moelants K, Wallecan J, Hendrickx M. Towards improved understanding of the viscoelastic properties of functionalized lemon peel fibers in suspension based on microstructure, hydration value and swelling volume. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Mesa J, Hinestroza-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020; 25:E3305. [PMID: 32708208 PMCID: PMC7397014 DOI: 10.3390/molecules25143305] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.
Collapse
Affiliation(s)
- José Mesa
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Leidy Indira Hinestroza-Córdoba
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
- Grupo de Valoración y Aprovechamiento de la Biodiversidad, Universidad Tecnológica del Chocó. AA.292, Calle 22 No. 18B-10, Quibdó-Chocó CP 270001, Colombia
| | - Cristina Barrera
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Lucía Seguí
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain
| | - Noelia Betoret
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| |
Collapse
|
26
|
Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Lupi F, Puoci F, Bruno E, Baldino N, Marino R, Gabriele D. The effects of process conditions on rheological properties of functional citrus fibre suspensions. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Makarem M, Kim H, Emami P, Melendez J, Steinbach A, Lipkie T, Deleris I, Desmet C, Wallecan J, Kim SH. Impact of Drying on Meso- and Nanoscale Structures of Citrus Fiber: A Study by SFG, ATR-IR, XRD, and DLS. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohamadamin Makarem
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hyojung Kim
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Parinaz Emami
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jesus Melendez
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam Steinbach
- Cargill Research and Development, Plymouth, Minnesota 55447, United States
| | - Tristan Lipkie
- Cargill Research and Development, Plymouth, Minnesota 55447, United States
| | | | | | - Jöel Wallecan
- Cargill Research and Development, 1800 Vilvoorde, Belgium
| | - Seong H. Kim
- Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Kieserling K, Vu TM, Drusch S, Schalow S. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Li Q, Li J, Li H, Xu R, Yuan Y, Cao J. Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydr Polym 2019; 219:181-190. [DOI: 10.1016/j.carbpol.2019.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
31
|
Influence of mechanical and thermal treatment on particle structure, leaching of alcohol insoluble substances and water binding properties of pectin-rich orange fibre. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03249-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Cotyledon pectin molecular interconversions explain pectin solubilization during cooking of common beans (Phaseolus vulgaris). Food Res Int 2019; 116:462-470. [DOI: 10.1016/j.foodres.2018.08.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022]
|
33
|
Willemsen KL, Panozzo A, Moelants K, Cardinaels R, Wallecan J, Moldenaers P, Hendrickx M. Effect of pH and salts on microstructure and viscoelastic properties of lemon peel acid insoluble fiber suspensions upon high pressure homogenization. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|