1
|
Xu Y, Guo J, Wei Z, Xue C. Cellulose-based delivery systems for bioactive ingredients: A review. Int J Biol Macromol 2025; 299:140072. [PMID: 39842568 DOI: 10.1016/j.ijbiomac.2025.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Considering the outstanding advantages including abundant resources, structure-performance designability, impressive mechanical strength, and 3D network structure-forming ability, cellulose is an ideal material for encapsulating bioactive ingredients. Due to its low solubility in water, large-scaled morphology and poor flexibility, cellulose is unsuitable for the construction of carriers. Consequently, the majority of cellulose is employed following physical or chemical modification. Cellulose and its derivatives are extensively employed in the food industry, including fat replacement, food packaging composites, food additives, 3D-printed food and delivery systems. Their benefits in food delivery systems are particularly pronounced. Therefore, the distinguishing features, preparation methods, recent developments and effectiveness of different cellulose-based delivery systems for bioactive ingredients are discussed. Cellulose-based delivery systems offer unique advantages in terms of environmental impact reduction, modification facilitation, stimuli-responsive release as well as tailored design, and their application has gained widespread recognition. However, they are facing challenges in the application process comprising modification methods for cellulose-based materials, new methods for commercial preparation on a wide scale, cellulose-based multifunctional conveyance systems and systematic evaluation using in vivo experiments. In conclusion, this review provides theoretical references for the development of novel delivery carriers as well as the efficient application and popularization of cellulose-based delivery systems.
Collapse
Affiliation(s)
- Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jiarui Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Xu Y, Zhang R, Wang K, Chisoro P, Huang F, Wang J, Zhang C. Effect of carboxymethyl cellulose and/or wheat gluten on the pasting, rheological and quality properties of wheat starch-based batter for deep-fried products. Food Chem X 2025; 26:102262. [PMID: 40007517 PMCID: PMC11851186 DOI: 10.1016/j.fochx.2025.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the effects of the individual and synergistic addition of wheat gluten (WG) and carboxymethyl cellulose (CMC) on the wheat starch (WS)-based batter characteristics to determine the molecular basis of texture formation in the actual batter system. Results showed that adding WG and/or CMC significantly increased the viscosity of WS during pasting. The rheological behavior showed that the WG-treated and CMC-treated group had the highest and lowest viscoelasticity. The addition of WG-CMC helped the WS-based batter obtain moderate viscoelasticity. These outcomes could be attributed to the enhancement of hydrogen bonding. The microstructure suggested that the addition of WG-CMC increased the density and integrity of the gel network. Overall, CMC competed for the binding sites of WG on WS, reducing the increase in viscoelasticity caused by the interaction between WG and WS. This might alleviate the unwanted springiness of fried products.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ruishu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Kangyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Prince Chisoro
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural sciences, Changji 831100, China
| | - Jing Wang
- Xinjiang Uygur Autonomous Region Academy of Animal Sciences, Urumqi 830052, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural sciences, Changji 831100, China
| |
Collapse
|
3
|
Ghamari M, Sun D, Dai Y, See CH, Yu H, Edirisinghe M, Sundaram S. Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review. Int J Biol Macromol 2024:136130. [PMID: 39443179 DOI: 10.1016/j.ijbiomac.2024.136130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The study underscores the urgent need for sustainable waste management by focusing on circular economy principles, government regulations, and public awareness to combat ecological threats, pollution, and climate change effects. It explores extracting nanocellulose from waste streams such as textile, paper, agricultural matter, wood, animal, and food waste, providing a detailed process framework. The emphasis is on waste-derived nanocellulose as a promising material for eco-friendly products. The research evaluates the primary mechanical and thermal properties of nanocellulose from various waste sources. For instance, cotton-derived nanocellulose has a modulus of 2.04-2.71 GPa, making it flexible for lightweight applications. Most waste-derived nanocelluloses have densities between 1550 and 1650 kg/m3, offering strong, lightweight packaging support while enhancing biodegradability and moisture control. Crystallinity influences material usage: high crystallinity is ideal for packaging (e.g., softwood, hardwood), while low crystallinity suits textiles (e.g., cotton, bamboo). Nanocelluloses exhibit excellent thermal stability above 200 °C, useful for flame-retardant coatings, insulation, and polymer reinforcement. The research provides a comprehensive guide for selecting nanocellulose materials, highlighting their potential across industries like packaging, biomedical, textiles, apparel, and electronics, promoting sustainable innovation and a more eco-conscious future.
Collapse
Affiliation(s)
- Mehrdad Ghamari
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Dongyang Sun
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Yanqi Dai
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Chan Hwang See
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Hongnian Yu
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, United Kingdom
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London UCL, London WC1E 7JE, United Kingdom
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital Technologies, Teesside University, Tees Valley, Middlesbrough TS1 3BX, United Kingdom.
| |
Collapse
|
4
|
Qin Q, Liu W, Gao B, Zhang X, Han L, Leong Sing S, Liu X. Capsicum leaf protein-based bionanocomposite films for packaging application: Effect of corn starch content on film properties. Food Chem 2024; 451:139449. [PMID: 38678654 DOI: 10.1016/j.foodchem.2024.139449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The addition of corn starch (CS) enhances the interfacial adhesion of the film-forming liquids (FFLs), weakening the internal relative molecular motion. As a result, the rheological properties and zeta potential values of the FFLs were affected. A tight spatial network structure between capsicum leaf protein (CLP), lignocellulose nanocrystals (LNCs) and CS can be formed through intermolecular entanglement and hydrogen bonding interactions. The crystallinity, thermal degradation temperature, tensile strength and water contact angle of the protein-based bionanocomposite films (PBBFs) increased with increasing CS addition. This is due to the transformation of the secondary space structure of the CLP inside the PBBFs and the increase in cohesion. However, the excessive addition of CS forms aggregated clusters on the surface of PBBFs, which increases the surface roughness of PBBFs and causes more light scattering. Therefore, the brightness and yellowness values of the PBBFs increase, and the transmittance decreases.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China; Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Wenying Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Bing Gao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Swee Leong Sing
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Deng N, Hu Z, Li H, Li C, Xiao Z, Zhang B, Liu M, Fang F, Wang J, Cai Y. Physicochemical properties and pork preservation effects of lotus seed drill core powder starch-based active packaging films. Int J Biol Macromol 2024; 260:129340. [PMID: 38262831 DOI: 10.1016/j.ijbiomac.2024.129340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Lotus seed drill core powder starch (LCPS)-based active packaging films incorporated with cellulose nanocrystals (CNC) and grapefruit essential oil-corn nanostarch Pickering emulsion (ECPE) were characterized, and their pork preservation effects were investigated in this study. In contrast with corn, potato and rice starches, LCPS showed higher amylose content, elliptical and circular shape with more uniform size distribution. Furthermore, LCPS film exhibited lower light transmittance, stronger tensile strength, and smaller elongation at break compared to the other starch films. Then, the LCPS film containing 4 % CNC and 9 % ECPE was fabricated which had stronger mechanical properties, lower water vapor permeability and oxygen transmission rate, and denser network structure. FTIR and XRD analyses also confirmed that CNC and ECPE were successfully implanted into the LCPS matrix without damaging the crystalline structure of LCPS. Herein, the LCPS/CNC/ECPE film exerted potential antibacterial activity against Escherichia coli and Staphylococcus aureus. Besides, packaging with this composite film significantly preserved the pork during cold storage via decreasing its juice loss rate, pH value, total number of colonies, total volatile base nitrogen and thiobarbituric acid reactive substance values. The present study will provide a theoretical basis for the application of LCPS as new biodegradable active films.
Collapse
Affiliation(s)
- Na Deng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhiqiang Hu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Intelligent Manufacturing and Quality Safety of Xiang Flavoured Compound Seasoning for Chain Catering, Liuyang 410023, China.
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
6
|
Thirunavookarasu N, Kumar S, Shetty P, Shanmugam A, Rawson A. Impact of ultrasound treatment on the structural modifications and functionality of carbohydrates - A review. Carbohydr Res 2024; 535:109017. [PMID: 38163393 DOI: 10.1016/j.carres.2023.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Carbohydrates are crucial in food as essential biomolecules, serving as natural components, ingredients, or additives. Carbohydrates have numerous applications in the food industry as stabilizers, thickeners, sweeteners, and humectants. The properties and functionality of the carbohydrates undergo alterations when exposed to various thermal or non-thermal treatments. Ultrasonication is a non-thermal method that modifies the structural arrangement of carbohydrate molecules. These structural changes lead to enhanced gelling and viscous nature of the carbohydrates, thus enhancing their scope of application. Ultrasound may improve carbohydrate functionality in an environmentally sustainable way, leaving no chemical residues. The high-energy ultrasound treatments significantly reduce the molecular size of complex carbohydrates. Sonication parameters like treatment intensity, duration of treatment, and energy applied significantly affect the molecular size, depolymerization, viscosity, structural modifications, and functionality of carbohydrate biomolecules. This review provides a comprehensive analysis of ultrasound-assisted modifications in carbohydrates and the changes in functional properties induced by sonication.
Collapse
Affiliation(s)
- Nirmal Thirunavookarasu
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Sumit Kumar
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Prakyath Shetty
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Akalya Shanmugam
- Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Food Processing Business Incubation Centre, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India; Center of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management - Thanjavur (NIFTEM - T), Tamil Nadu, 613005, India.
| |
Collapse
|
7
|
Ma S, Liu Y, Dong W, Ma W, Li Y, Luo H. Comparison of structures and properties of gels formed by corn starch with fresh or dried Mesona chinensis polysaccharide. Curr Res Food Sci 2023; 8:100665. [PMID: 38188651 PMCID: PMC10767276 DOI: 10.1016/j.crfs.2023.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Starch is a major dietary carbohydrate, but its digestion properties need to be improved. Mesona chinensis polysaccharides (MCPs) had a unique function in improving the flocculation performance of starch. This study investigated the effects of adding Mesona chinensis polysaccharide extracted from wet fresh and dry plants with one-year storage, namely WMCP and DMCP, on the physicochemical properties and digestion kinetics of corn starch(CS). The composition analysis showed both WMCP and DMCP were an acidic heteropolysaccharide rich in galacturonic acid and galactose, whereas showed different average main fraction molecular weights (Mw) of 47.36 kDa and 42.98 kDa, respectively. In addition, WMCP showed higher yield, purity and better physicochemical properties to CS than DWCP. Thermal analysis showed WMCP decreased more gelatinization temperatures and enthalpy of CS, and increased more freeze-thaw stability, water holding capacity, and textural parameters of CS gels than DMCP. Structural analysis revealed WMCP induced more changes in crystallinity, short-range order, and microstructure of CS, which inhibited retrogradation than DMCP. In vitro digestion assays demonstrated WMCP addition significantly increased higher resistant starch content by altering starch-starch and starch-MCP interactions than DWCP. Overall, MCPs addition beneficially modulated CS properties and digestion kinetics, providing a novel way to improve starch functionalities. Moreover, WMCP had more advantages to be chosen to form hydrocolloid with CS than DMCP.
Collapse
Affiliation(s)
- Shengjian Ma
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yijun Liu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
| | - Wei Dong
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Wenxin Ma
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yanxia Li
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| | - Hao Luo
- College of Life Science and technology, Lingnan Normal University, Zhanjiang, 524048, China
| |
Collapse
|
8
|
Deng L, Li Y, Zhong G, Lei W, Peng Y, Zhu Z. Effects of Starch Addition on KGM Sol's Pasting, Rheological Properties, and Gel Texture. ACS OMEGA 2023; 8:33299-33309. [PMID: 37744872 PMCID: PMC10515340 DOI: 10.1021/acsomega.3c02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Konjac tofu is an irreversible gel formed by removing the acetyl group from konjac glucomannan (KGM) through alkaline heating. This type of food is low in calories, filling, and healthy, making it popular in the market. However, pure konjac tofu has a hard texture and lacks flavor when heated. To improve its taste and appearance, the effects of three varieties of native starch, including corn starch (CS), Canna edulis Ker starch (CKS), and potato starch (PS), on the formation of pasting and rheological properties of the KGM sol were investigated. Konjac tofu samples that incorporated different types and quantities of starch were prepared and analyzed in terms of structure, texture, dehydration, and flavor, with pure konjac tofu serving as a reference. The findings revealed that KGM mixed with a concentration of 4.2% CS, or 0.85% CKS, or 0.85% PS of the total mass produced a gel with the highest viscosity and a steady structure. Texture profile analysis indexes of these combinations were superior to pure KGM, and the konjac-starch tofu had a lamellar network structure. Thus, konjac tofu with the addition of starch has a higher quality texture, lower dehydration, and improved flavor compared to pure KGM gel.
Collapse
Affiliation(s)
- Liling Deng
- Chongqing
Key Laboratory of High Active Traditional Chinese Drug Delivery System,
Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, PR China
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, the Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Li
- Chongqing
Key Laboratory of High Active Traditional Chinese Drug Delivery System,
Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, PR China
| | - Geng Zhong
- College
of Food Science, Southwest University, Chongqing 400715, PR China
| | - Wen Lei
- College
of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yongbo Peng
- Chongqing
Key Laboratory for Pharmaceutical Metabolism Research, the Key Laboratory
of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaojing Zhu
- Chongqing
Key Laboratory of High Active Traditional Chinese Drug Delivery System,
Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, PR China
| |
Collapse
|
9
|
Xu H, Hao Z, Gao J, Zhou Q, Li W, Liao X, Zheng M, Zhou Y, Yu Z, Song C, Xiao Y. Complexation between rice starch and cellulose nanocrystal from black tea residues: Gelatinization properties and digestibility in vitro. Int J Biol Macromol 2023; 234:123695. [PMID: 36801275 DOI: 10.1016/j.ijbiomac.2023.123695] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this work, cellulose nanocrystal (CNC) was extracted from black tea waste and its effects on the physicochemical properties of rice starch were explored. It was revealed that CNC improved the viscosity of starch during pasting and inhibited its short-term retrogradation. The addition of CNC changed the gelatinization enthalpy and improved the shear resistance, viscoelasticity, and short-range ordering of starch paste, which meant that CNC made the starch paste system more stable. The interaction of CNC with starch was analyzed using quantum chemistry methods, and it was demonstrated that the hydrogen bonds were formed between starch molecules and the hydroxyl groups of CNC. In addition, the digestibility of starch gels containing CNC was significantly decreased because CNC could dissociate and act as an inhibitor of amylase. This study further expanded the understanding of the interactions between CNC and starch during processing, which could provide a reference for the application of CNC in starch-based foods and the development of functional foods with a low glycemic index.
Collapse
Affiliation(s)
- Huajian Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Huzhou city Linghu Xinwang Chemical Co. Ltd., China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Sapuan SM, Harussani MM, Ismail AH, Zularifin Soh NS, Mohamad Azwardi MI, Siddiqui VU. Development of nanocellulose fiber reinforced starch biopolymer composites: a review. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Abstract
In the last few years, there are rising numbers for environmental waste due to factors such as plastic based food packaging that really need to get enough attention in order to prevent the issue from becoming worse and bringing disaster to society. Thus, the uses of plastic composite materials need to be reduced and need to be replaced with materials that are natural and have low degradation to preserve nature. Based on the statistics for the global, the production of plastic has been roughly calculated for passing 400 million metric tons every year and has a high probability of approaching the value of 500 million metric tons at the year of 2025 and this issue needs to be counteracted as soon as possible. Due to that, the increasing number for recent development of natural biopolymer, as an example starch, has been investigated as the substitution for the non-biodegradable biopolymer. Besides, among all biodegradable polymers, starch has been considered as promising substitution polymer due to its renewability, easy availability, and biodegradability. Apart from that, by the reinforcement from the nanocellulose, starch fiber has an increasing in terms of mechanical, barrier and thermal properties. In this review paper, we will be discussing the up-to-date development of nanocellulose fiber reinforced starch biopolymer composites throughout this century.
Collapse
Affiliation(s)
- Salit Mohd Sapuan
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Moklis Muhammad Harussani
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering , School of Environment and Society, Tokyo Institute of Technology , Meguro 152-8552 , Tokyo , Japan
| | - Aleif Hakimi Ismail
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Noorashikin Soh Zularifin Soh
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Mohamad Irsyad Mohamad Azwardi
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Vasi Uddin Siddiqui
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| |
Collapse
|
11
|
Bai Y, Qiu T, Chen B, Shen C, Yu C, Luo Z, Zhang J, Xu W, Deng Z, Xu J, Zhang H. Formulation and stabilization of high internal phase emulsions: Stabilization by cellulose nanocrystals and gelatinized soluble starch. Carbohydr Polym 2023; 312:120693. [PMID: 37059515 DOI: 10.1016/j.carbpol.2023.120693] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
In this work, high internal phase emulsions (HIPEs) stabilized by naturally derived cellulose nanocrystals (CNC) and gelatinized soluble starch (GSS) were fabricated to stabilize oregano essential oil (OEO) in the absence of surfactant. The physical properties, microstructures, rheological properties, and storage stability of HIPEs were investigated by adjusting CNC contents (0.2, 0.3, 0.4 and 0.5 wt%) and starch concentration (4.5 wt%). The results revealed that CNC-GSS stabilized HIPEs exhibited good storage stability within one month and the smallest droplets size at a CNC concentration of 0.4 wt%. The emulsion volume fractions of 0.2, 0.3, 0.4 and 0.5 wt% CNC-GSS stabilized HIPEs after centrifugation reached 77.58, 82.05, 94.22, and 91.41 %, respectively. The effect of native CNC and GSS were analyzed to understand the stability mechanisms of HIPEs. The results revealed that CNC could be used as an effective stabilizer and emulsifier to fabricate the stable and gel-like HIPEs with tunable microstructure and rheological properties.
Collapse
|
12
|
Effect of energetic neutrals on the kithul starch retrogradation; Potential utilization for improving mechanical and barrier properties of films. Food Chem 2023; 398:133881. [DOI: 10.1016/j.foodchem.2022.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022]
|
13
|
A structural study of the self-association of different starches in presence of bacterial cellulose fibrils. Carbohydr Polym 2022; 288:119361. [PMID: 35450626 DOI: 10.1016/j.carbpol.2022.119361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
A multi-analytical study was performed to analyse the effect of bacterial cellulose (BCF) on the self-association of starches with different amylose content (wheat, waxy-maize), assessing macrostructural properties (rheology, gel strength) and some nano and sub-nano level features (small and wide-angle X-ray scattering). Although pasting viscosities and G' were significantly increased by BCF in both starches, cellulose did not seem to promote the self-association of amylose in short-range retrogradation. A less elastic structure was reflected by a 2-3-fold increase in loss factor (G″/G') at the highest BCF concentration tested. This behavior agreed with the nano and sub-nano characterisation of the samples, which showed loss of starch lamellarity and incomplete full recovery of an ordered structure after storage at 4 °C for 24 h. The gel strength data could be explained by the contribution of BCF to the mechanical response of the sample. The information gained in this work is relevant for tuning the structure of tailored starch-cellulose composites.
Collapse
|
14
|
Baldassa MA, Dias RV, Oliveira LC, Feitosa E. Aqueous mixtures of cornstarch and Pluronic® F127 studied by experimental and computational techniques. Food Res Int 2022; 158:111515. [DOI: 10.1016/j.foodres.2022.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
|
15
|
Perumal AB, Nambiar RB, Moses J, Anandharamakrishnan C. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Chipón J, Ramírez K, Morales J, Díaz-Calderón P. Rheological and Thermal Study about the Gelatinization of Different Starches (Potato, Wheat and Waxy) in Blend with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:polym14081560. [PMID: 35458308 PMCID: PMC9025455 DOI: 10.3390/polym14081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this work was to analyze the effect of CNCs on the gelatinization of different starches (potato, wheat and waxy maize) through the characterization of the rheological and thermal properties of starch–CNC blends. CNCs were blended with different starches, adding CNCs at concentrations of 0, 2, 6 and 10% w/w. Starch–CNC blends were processed by rapid visco-analysis (RVA) and cooled to 70 °C. Pasting parameters such as pasting temperature, peak, hold and breakdown viscosity were assessed. After RVA testing, starch–CNC blends were immediately analyzed by rotational and dynamic rheology at 70 °C. Gelatinization temperature and enthalpy were assessed by differential scanning calorimetry. Our results suggest that CNCs modify the starch gelatinization but that this behavior depends on the starch origin. In potato starch, CNCs promoted a less organized structure after gelatinization which would allow a higher interaction amylose–CNC. However, this behavior was not observed in wheat and waxy maize starch. Insights focusing on the role of CNC on gelatinization yielded relevant information for better understanding the structural changes that take place on starch during storage, which are closely related with starch retrogradation. This insight can be used as an input for the tailored design of novel materials oriented towards different technological applications.
Collapse
Affiliation(s)
- Josefina Chipón
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile; (J.C.); (K.R.)
| | - Kassandra Ramírez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile; (J.C.); (K.R.)
| | - José Morales
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Facultad de Medicina, Universidad de los Andes, Chile. Av. Monseñor Alvaro del Portillo Nº12.455, Las Condes, Santiago 7620001, Chile
- Correspondence:
| |
Collapse
|
17
|
Li Y, Liang W, Huang W, Huang M, Feng J. Complexation between burdock holocellulose nanocrystals and corn starch: gelatinization properties, microstructure, and digestibility in vitro. Food Funct 2021; 13:548-560. [PMID: 34951438 DOI: 10.1039/d1fo03418a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Holocellulose nanocrystals (hCNCs), with hydrodynamic diameters (DZ) ranging from about 600 to 200 nm, were prepared by treating burdock insoluble dietary fiber (IDF) with enzymes and ultrasonic power. It was revealed that hCNCs improved the viscosity of corn starch (CS) during pasting and inhibited its short-term retrogradation. Besides, the crystallinity, short-range order of the double helix, viscoelastic properties, and microstructure compactness of CS gels improved remarkably in the presence of burdock hCNCs. These effects were both size- and dose-dependent, which primarily originated from the hydrogen bonding between hCNCs and amylopectin or leached amylose. In this regard, the digestion of CS gels containing hCNCs was remarkably retarded because of the reduced accessibility of digestive enzymes to the glycosidic bonds. Therefore, burdock hCNCs, prepared from natural resources using green techniques, hold potential applications in functional foods of a low glycemic index.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
18
|
The Role of Structure and Interactions in Thermoplastic Starch-Nanocellulose Composites. Polymers (Basel) 2021; 13:polym13183186. [PMID: 34578087 PMCID: PMC8473391 DOI: 10.3390/polym13183186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Composite films were fabricated by using cellulose nanocrystals (CNCs) as reinforcement up to 50 wt% in thermoplastic starch (TPS). Structure and interactions were modified by using different types (glycerol and sorbitol) and different amounts (30 and 40%) of plasticizers. The structure of the composites was characterized by visible spectroscopy, Haze index measurements, and scanning electron microscopy. Tensile properties were determined by tensile testing, and the effect of CNC content on vapor permeability was investigated. Although all composite films are transparent and can hardly be distinguished by human eyes, the addition of CNCs somewhat decreases the transmittance of the films. This can be related to the increased light scattering of the films, which is caused by the aggregation of nanocrystals, leading to the formation of micron-sized particles. Nevertheless, strength is enhanced by CNCs, mostly in the composite series prepared with 30% sorbitol. Additionally, the relatively high water vapor permeability of TPS is considerably decreased by the incorporation of at least 20 wt% CNCs. Reinforcement is determined mostly by the competitive interactions among starch, nanocellulose, and plasticizer molecules. The aging of the films is caused by the additional water uptake from the atmosphere and the retrogradation of starch.
Collapse
|
19
|
Li D, Jiang L, Tao Y, Yang N, Han Y. Enhancement of efficient and selective hydrolysis of maize starch via induced electric field. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Ji N, Li F, Yu M, Wang Y, Xiong L, Sun Q. Inhibition of Long‐Term Retrogradation of Corn, Potato, and Pea Starches by Borax. STARCH-STARKE 2021. [DOI: 10.1002/star.202000045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Na Ji
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong Province 266109 China
| | - Fang Li
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong Province 266109 China
| | - Mengting Yu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong Province 266109 China
| | - Yanfei Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong Province 266109 China
| | - Liu Xiong
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong Province 266109 China
| | - Qingjie Sun
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong Province 266109 China
| |
Collapse
|
21
|
Liu W, Wang Z, Liu J, Dai B, Hu S, Hong R, Xie H, Li Z, Chen Y, Zeng G. Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Ma T, Hu X, Lu S, Liao X, Song Y, Hu X. Nanocellulose: a promising green treasure from food wastes to available food materials. Crit Rev Food Sci Nutr 2020; 62:989-1002. [DOI: 10.1080/10408398.2020.1832440] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
23
|
Wang M, Chen J, Chen S, Ye X, Liu D. Inhibition effect of three common proanthocyanidins from grape seeds, peanut skins and pine barks on maize starch retrogradation. Carbohydr Polym 2020; 252:117172. [PMID: 33183621 DOI: 10.1016/j.carbpol.2020.117172] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
The inhibition effect of three common proanthocyanidins (PA) on the retrogradation properties of maize starch was investigated (including grape seed proanthocyanidins (GSPA), peanut skin proanthocyanidins (PSPA), and pine bark proanthocyanidins (PBPA)). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that PA could significantly decrease the values of melting enthalpy of retrogradation (ΔHr) and the degree of relative crystallinity, suggesting that the starch re-crystallization was retarded by PA. Scanning electron microscope (SEM) characterizations illustrated that retrograded PA-starch samples formed a looser matrix with less appearance of continuous flakes during storage. Overall, 0.5 %-2.0 % of three PAs exhibited suppression of starch retrogradation after 21-day cooling storage, mainly resulting from the PA-starch interaction. Among them, PSPA showed the most substantial inhibition effect on starch retrogradation, which might be attributed to its structural features. This study suggested that PA could be a new type of inhibitor to suppress starch retrogradation.
Collapse
Affiliation(s)
- Mengting Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China
| |
Collapse
|
24
|
Lee H, Kim HS. Isolation and physicochemical property of individual parenchyma cells from mealy sweet potato. Food Sci Biotechnol 2020; 29:521-529. [PMID: 32296563 PMCID: PMC7142175 DOI: 10.1007/s10068-019-00692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022] Open
Abstract
This study prepared the dehydrated sweet potato parenchyma cell (SPPC) by isolating intact, individual parenchyma cells (PC) from sweet potato (SP) flesh using pectinase, and compared its chemical compositions, solubility and swelling power, gelatinization, and pasting viscosity to sweet potato starch (SPST) and flour (SPFL). The highest yield of SPPC was achieved when frozen SP whole-tissues were treated with pectin lyase. The majority constituting SPPC was intact, individual PCs fully filled with SPST granules. SPPC possessed lower crude protein and ash contents than SPFL. SPPC revealed lower solubility and swelling power, higher gelatinization temperatures, and lower pasting viscosity than SPST, while it showed lower solubility, higher swelling power, lower gelatinization temperatures, and higher pasting viscosity than SPFL. Overall, SPPC characteristics may result from intact PC walls surrounding clusters of SPPC granules, and SPPC could be considered an alternative to SPFL and SPST for expanding industrial applications of SP.
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Department of Food Science and Biotechnology, Graduate School, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi 16227 Republic of Korea
| | - Hyun-Seok Kim
- Department of Food Science and Biotechnology, Graduate School, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi 16227 Republic of Korea
- Major of Food Science and Biotechnology, Division of Bio-convergence, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi 16227 Republic of Korea
| |
Collapse
|
25
|
Zhang K, Tian Y, Liu C, Xue W. Effects of temperature and shear on the structural, thermal and pasting properties of different potato flour. BMC Chem 2020; 14:20. [PMID: 32226943 PMCID: PMC7092604 DOI: 10.1186/s13065-020-00670-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background The properties of potato flour will be different due to different processing parameters, which will affect their processing adaptability. In this paper, different potato flour were investigated to determine viscoelastic properties and structural transformation using thermodynamics, rheological and spectrum methods. Potato flour was prepared by drying at different temperature after soaking in citric acid, microwave and steamed respectively. The treated samples were dried by hot air and then compared with the freeze-dried potato flour. Four kinds of potato flour showed different properties after shearing at high temperature. Results Differential scanning calorimetry (DSC) results revealed that potato flour with low gelatinization had lower enthalpy and faster melting process than freeze-dried potato powder. RVA and texture results showed that potato flour with low gelatinization had the best retrogradation property and the stable gel. X-ray diffraction (XRD) patterns revealed that the crystalline properties of different potato flour after shearing at high temperature were the same. In addition, low gelatinization potato flour presented a crystalline structure or strong internal order. Fourier-transform infrared spectroscopy (FTIR) spectra showed that high temperature and shearing mainly caused δ-deformation of O-H in intact potato granules. Conclusion Freeze drying and hot air drying at low temperature made potato flour had better gel stability than microwave and steamed treatment. Hot air drying at low temperature made potato flour had good retrogradation after hot shearing, which was more conducive to the formation of hot-processed products.
Collapse
Affiliation(s)
- Ke Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yang Tian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenglong Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentong Xue
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Luo Y, Shen M, Li E, Xiao Y, Wen H, Ren Y, Xie J. Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. Carbohydr Polym 2019; 230:115713. [PMID: 31887863 DOI: 10.1016/j.carbpol.2019.115713] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
Waxy corn starch (WS), normal corn starch (NS), and high amylose corn starch (HS) were used to investigate the effect of Mesona chinensis polysaccharide (MCP) on pasting, rheological, and textual properties of corn starches. Corn starches (6 %, w/v)-MCP (0.05 %, 0.1 %, 0.2 %, 0.3 %, and 0.5 %, w/v) blended systems were used. The pasting viscosity of samples increased after adding MCP, and the improvement effect was most noticeable in WS-MCP system. Meanwhile, MCP can significantly promote the gelatinization and strengthen viscoelasticity of HS-MCP system. MCP inhibited the dissolution of NS and the swelling of WS, while promote the dissolution of HS and WS, as well as the swelling of NS and HS. Furthermore, gelatinization treatment decreased the crystallinity of samples, while high concentration of MCP slightly increased the crystallinity. MCP could promote the formation of a more ordered structure of blended systems, especially for WS-MCP system.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuehuan Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Yanming Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China; China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
27
|
Mu R, Hong X, Ni Y, Li Y, Pang J, Wang Q, Xiao J, Zheng Y. Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Du Y, Sun J, Wang L, Wu C, Gong J, Lin L, Mu R, Pang J. Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films. Int J Biol Macromol 2019; 137:1076-1085. [DOI: 10.1016/j.ijbiomac.2019.06.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
|
29
|
Ma S, Zhu P, Wang M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.045] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Zheng Y, Fu Z, Li D, Wu M. Effects of Ball Milling Processes on the Microstructure and Rheological Properties of Microcrystalline Cellulose as a Sustainable Polymer Additive. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1057. [PMID: 29932099 PMCID: PMC6073434 DOI: 10.3390/ma11071057] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/09/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
To investigate the effect of ball mill treatment of microcrystalline cellulose (MCC) on the rheological properties of MCC-polymer suspension, the structure and physicochemical characteristics of ground samples with different milling time and the rheological behaviors of MCC-starch suspensions were determined and comprehensively analyzed. During the ball milling process, MCC underwent a morphological transformation from rod-like to spherical shape under the combined effect of breakage and an agglomeration regime. The particle size and crystallinity index of MCC exhibited an exponential declining trend with ball milling time. All of the milled MCC samples presented a crystalline cellulose Iβ structure whereas the MCC mechanically treated in a shorter time had better thermal stability. Rheological measurements of starch/MCC suspensions indicated that all the blended paste exhibited shear thinning behavior and ‘weak’ elastic gel-like viscoelastic properties over the whole investigated range owing to the formation of entangled network structure. The rheological behavior of starch/MCC pastes was strongly dependent on milling time and concentration of MCC samples. The increase in milling time of MCC samples resulted in the loss of rheological properties of starch/MCC pastes, where the size of the MCC playing a dominant role in affecting the properties of composite suspension. In addition, a possible network within starch/MCC suspensions was proposed.
Collapse
Affiliation(s)
- Yu Zheng
- College of Engineering, China Agricultural University, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China.
| | - Zongqiang Fu
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Dong Li
- College of Engineering, China Agricultural University, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China.
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 QinghuaEast Road, Haidian District, Beijing 100083, China.
- Engineering Research Center for Agricultural Equipment and Facilities, Ministry of Education, Beijing 100083, China.
| |
Collapse
|