1
|
Chowdhury MAH, Sarkar F, Reem CSA, Rahman SM, Mahamud AGMSU, Rahman MA, Md Ashrafudoulla. Enzyme applications in baking: From dough development to shelf-life extension. Int J Biol Macromol 2024; 282:137020. [PMID: 39489247 DOI: 10.1016/j.ijbiomac.2024.137020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Enzymes play a vital role in baking, providing significant benefits from dough development to extending shelf life, which enhances product quality and consistency. Acting as biological catalysts, enzymes such as proteases and amylases break down proteins and starches, modifying dough rheology and improving fermentation. Lipases and oxidases further refine dough texture through emulsification and oxidation, while lipases also produce fatty acid derivatives during fermentation, contributing to the flavor and aroma of baked goods. Xylanases and cellulases optimize dough handling by altering fiber structure, and amylases help maintain moisture and texture, extending the shelf life of baked products. Ensuring regulatory compliance is essential when incorporating enzymes into baking processes, as bakers must address enzyme stability and determine appropriate dosages for reliable outcomes. Ongoing research is exploring innovative enzyme applications, including customized enzyme blends that target specific product qualities, offering new possibilities for product differentiation and innovation. In summary, enzyme-driven advancements present bakers with opportunities to improve product quality, shelf life, and consistency, while meeting industry regulations. This review emphasizes the critical impact enzymes have on dough properties and finished product characteristics, highlighting their role in driving future innovations within the baking industry.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Feroj Sarkar
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Sk Mustafizur Rahman
- Department of Nutrition and Food Engineering, Daffodil International University, Birulia 1216, Bangladesh
| | - A G M Sofi Uddin Mahamud
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, -si, Gyeonggi-Do 17546, Republic of Korea
| | | |
Collapse
|
2
|
Mu D, Li P, Ma T, Wei D, Montalbán-López M, Ai Y, Wu X, Wang Y, Li X, Li X. Advances in the understanding of the production, modification and applications of xylanases in the food industry. Enzyme Microb Technol 2024; 179:110473. [PMID: 38917734 DOI: 10.1016/j.enzmictec.2024.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Xylanases have broad applications in the food industry to decompose the complex carbohydrate xylan. This is applicable to enhance juice clarity, improve dough softness, or reduce beer turbidity. It can also be used to produce prebiotics and increase the nutritional value in foodstuff. However, the low yield and poor stability of most natural xylanases hinders their further applications. Therefore, it is imperative to explore higher-quality xylanases to address the potential challenges that appear in the food industry and to comprehensively improve the production, modification, and utilization of xylanases. Xylanases, due to their various sources, exhibit diverse characteristics that affect production and activity. Most fungi are suitable for solid-state fermentation to produce xylanases, but in liquid fermentation, microbial metabolism is more vigorous, resulting in higher yield. Fungi produce higher xylanase activity, but bacterial xylanases perform better than fungal ones under certain extreme conditions (high temperature, extreme pH). Gene and protein engineering technology helps to improve the production efficiency of xylanases and enhances their thermal stability and catalytic properties.
Collapse
Affiliation(s)
- Dongdong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| | - Penglong Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Tiange Ma
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Dehua Wei
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Manuel Montalbán-López
- Institute of Biotechnology and Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Yaqian Ai
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xuefeng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yifeng Wang
- Anhui Yunshang Cultural Tourism Development Group, Anqing 246600, China
| | - Xu Li
- Anhui Wanyue Xinhe Project Management Company Limited, Anqing 246600, China
| | - Xingjiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China.
| |
Collapse
|
3
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
4
|
Sempio R, Segura Godoy C, Nyhan L, Sahin AW, Zannini E, Walter J, Arendt EK. Closing the Fibre Gap-The Impact of Combination of Soluble and Insoluble Dietary Fibre on Bread Quality and Health Benefits. Foods 2024; 13:1980. [PMID: 38998486 PMCID: PMC11241219 DOI: 10.3390/foods13131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Dietary fibre (DF) is important for overall health and disease prevention. However, the intake of DF in Westernised countries is below the recommended level, largely due to the excessive consumption of low-fibre foods. Fortifying staple foods, such as bread, with dietary fibre ingredients is one approach to closing the fibre gap in our diet. However, incorporating purified and chemically modified fibre ingredients into food is challenging. This study unveils interactions between soluble-fermentable (arabinoxylan), insoluble-fermentable (resistant starch type IV) and insoluble-unfermentable (cellulose) fibre ingredients and their impact on bread quality using Response Surface Methodology. This resulted in an optimised mixture of these fibre ingredients that can coexist within a bread matrix while maintaining quality characteristics comparable to white wheat bread. The partial replacement of flour with fibre ingredients led to an interference with the gluten network causing a reduction in gluten strength by 12.4% and prolonged gluten network development time by 24.4% compared to the control (no fibre addition). However, the CO2 retention coefficient during dough fermentation was not affected by fibre ingredient inclusion. The fibre content of the white bread was increased by 128%, with only a marginal negative impact on bread quality. Additionally, the fibre-fortified bread showed a lower release of reducing sugars during in vitro starch digestion. This study illustrates the synergy of different types of fibre ingredients in a bread system to advance in closing the fibre gap.
Collapse
Affiliation(s)
- Rebecca Sempio
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Celia Segura Godoy
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Jens Walter
- School of Microbiology, Department of Medicine, University College Cork, T12 Y337 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, College Road, T12 K8AF Cork, Ireland; (R.S.); (C.S.G.); (L.N.); (A.W.S.); (E.Z.)
- APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland
| |
Collapse
|
5
|
Yegin S, Altinel B, Tuluk K. Exploitation of Aureobasidium pullulans NRRL Y-2311-1 xylanase in mulberry and rice flours-based gluten-free cookie formulation: Effects on dough properties and cookie characteristics. J Food Sci 2024; 89:2645-2658. [PMID: 38563094 DOI: 10.1111/1750-3841.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Xylanases are mainly utilized in bakery industry for the hydrolysis of dietary fiber-based fractions. Their applications in gluten-free products have not been considered before. In the present study, the xylanase produced by Aureobasidium pullulans NRRL Y-2311-1 was utilized in a mulberry and rice flours-based gluten-free cookie formulation for the first time. Effects of various xylanase concentrations on gluten-free dough rheology and cookie characteristics were elucidated. Only rice flour-based cookie and only wheat flour-based cookie formulations were also prepared as comparison. Incorporation of xylanase into all cookie recipes resulted in softer cookie doughs with lower absolute stickiness. The hardness and absolute stickiness of the cookie doughs prepared by the mixture of mulberry and rice flours decreased by the addition of the enzyme into the formulation in a concentration-dependent manner. Enzyme concentrations above 100 U/100 g flour did not provide statistically significant further changes on gluten-free cookie doughs. Incorporation of xylanase into the cookie recipes resulted in increased baking loss and spread ratio in an enzyme concentration-dependent manner for all cookie types. Hardness values of both types of gluten-free cookies decreased by xylanase incorporation. Different effects on fracturability were observed depending on the cookie type and enzyme concentration. Enzyme concentration of 100 U/100 g flour provided mulberry and rice flours-based cookies with a more flexible and softer structure. No significant effects on color parameters of cookies were observed by xylanase incorporation.
Collapse
Affiliation(s)
- Sirma Yegin
- Department of Food Engineering, Engineering Faculty, Ege University, Izmir, Turkey
| | - Burak Altinel
- Department of Food Engineering, Engineering Faculty, Ege University, Izmir, Turkey
| | - Kubra Tuluk
- Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
Molina MA, Cazzaniga A, Sgroppo SC, Milde LB, Zapata PD, Fonseca MI. Bioengineered xylanase from Misiones Argentina rainforest: A bakery enhancement approach. J Food Sci 2024; 89:2124-2136. [PMID: 38462841 DOI: 10.1111/1750-3841.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
In this study, we pursued the heterologous expression of the xylanase gene from Trichoderma atroviride, a native fungus in the province of Misiones, and used it to enhance the textural properties of baked goods through varying enzymatic concentrations. This marks the inaugural exploration into its functionality in the context of bread production. The recombinant xylanase exhibited improved activity, reaching 36,292 U L-1, achieved by supplementing the culture medium with dextrose. Following the optimization of recombinant xylanase concentration, promising results emerged, notably reducing hardness and chewiness parameters of bread significantly. Our findings underscore the potential of this native fungal enzyme for industrial processes, offering a sustainable and efficient means to enhance the quality of baked goods with broad implications for the food industry. No prior research has been documented on the heterologous expression of the xylanase gene derived from T. atroviride, from the Misiones rainforest, expressed in Kluyveromyces lactis. PRACTICAL APPLICATION: This research, focusing on the isolation and cloning of xylanase enzyme from Trichoderma atroviride, a native fungus in the province of Misiones, offers a valuable tool for improving the texture of bakery products. By optimizing enzyme concentrations, our findings present a practical approach for the food industry, offering a viable solution to improve the overall quality and consumer satisfaction of bakery products.
Collapse
Affiliation(s)
- Melisa A Molina
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Amanda Cazzaniga
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Sonia C Sgroppo
- Laboratorio de Tecnología Química (FaCENA - IQUIBA - CONICET), Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Laura B Milde
- Departmento de Química, Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pedro D Zapata
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Maria I Fonseca
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
8
|
Xiao J, Li Y, Niu L, Chen R, Tang J, Tong Z, Xiao C. Effect of Adding Fermented Proso Millet Bran Dietary Fiber on Micro-Structural, Physicochemical, and Digestive Properties of Gluten-Free Proso Millet-Based Dough and Cake. Foods 2023; 12:2964. [PMID: 37569233 PMCID: PMC10419140 DOI: 10.3390/foods12152964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing demand for functional foods has pushed the food industry to produce fiber-enriched products. In this study, rheological, microstructural, physicochemical, and functional characteristics were investigated for whole proso millet dough and cake, fortified with fermented proso millet bran dietary fiber flour (F-DF). Results showed that proso millet flour is less absorbent and stable than the control group. Adding proso millet flour and F-DF reduced the elasticity of the dough and increased its hardness, but had no significant effect on viscosity, cohesion, and resilience. The microstructure analysis exhibited an unformed continuous network formation in proso millet dough. Analyses suggested that proso millet flour combined with the fermented dietary fiber group had significantly higher total phenol content (0.46 GAE mg/g), DPPH• scavenging activity (66.84%), and ABTS•+ scavenging activity (87.01%) than did the other group. In addition, F-DF led to a significant reduction in the predicted released glucose contents of reformulated cakes. In summary, cakes prepared with the involvement of whole proso millet flour and F-DF exhibited less adverse sensory impact and possessed the potential to decrease postprandial blood glucose levels resulting purely from cake consumption.
Collapse
Affiliation(s)
- Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Yinxia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Ronghui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Jiayu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Zongbo Tong
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| |
Collapse
|
9
|
Li W, Sun X, Du Y, Su A, Fang Y, Hu Q, Pei F. Effects of co-fermentation on the release of ferulic acid and the rheological properties of whole wheat dough. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system – A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Li X, Zhang L, Jiang Z, Liu L, Wang J, Zhong L, Yang T, Zhou Q, Dong W, Zhou J, Ye X, Li Z, Huang Y, Cui Z. A novel cold-active GH8 xylanase from cellulolytic myxobacterium and its application in food industry. Food Chem 2022; 393:133463. [PMID: 35751210 DOI: 10.1016/j.foodchem.2022.133463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Although xylanase have a wide range of applications, cold-active xylanases have received less attention. In this study, a novel glycoside hydrolase family 8 (GH8) xylanase from Sorangium cellulosum with high activity at low temperatures was identified. The recombinant xylanase (XynSc8) was most active at 50 °C, demonstrating 20% of its maximum activity and strict substrate specificity towards beechwood and corncob xylan at 4 °C with Vmax values of 968.65 and 1521.13 μmol/mg/min, respectively. Mesophilic XynSc8 was active at a broad range of pH and hydrolyzed beechwood and corncob xylan into xylooligosaccharides (XOS) with degree of polymerization greater than 3. Moreover, incorporation of XynSc8 (0.05-0.2 mg/kg flour) provided remarkable improvement (28-30%) in bread specific volume and textural characteristics of bread compared to commercial xylanase. This is the first report on a novel cold-adapted GH8 xylanase from myxobacteria, suggesting that XynSc8 may be a promising candidate suitable for bread making.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhitong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Fernandes de Souza H, Aguiar Borges L, Dédalo Di Próspero Gonçalves V, Vitor dos Santos J, Sousa Bessa M, Fronja Carosia M, Vieira de Carvalho M, Viana Brandi I, Setsuko Kamimura E. Recent advances in the application of xylanases in the food industry and production by actinobacteria: a review. Food Res Int 2022; 162:112103. [DOI: 10.1016/j.foodres.2022.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
13
|
Torbica A, Radosavljević M, Belović M, Tamilselvan T, Prabhasankar P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation – Advantages, disadvantages and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Oskay M. Production, Partial Purification, and Characterization of Polygalacturonase from Aureobasidium pullulans P56 under Submerged Fermentation Using Agro-Industrial Wastes. Curr Microbiol 2022; 79:296. [PMID: 35994212 DOI: 10.1007/s00284-022-02991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
Abstract
Polygalacturonase (PGase) production by Aureobasidium pullulans P56 under submerged fermentation was investigated using agro-industrial wastes and commercial carbon and nitrogen sources. The maximum PGase concentration was equivalent to 8.6 U/mL that was obtained in presence of citrus pectin at 150 rpm, 30 °C, pH = 5.5, and 60 h of fermentation conditions. However, a significant amount of enzyme production was also recorded upon the utilization of corncob (5.3 U/mL) and wheat bran (4.4 U/mL) as carbon sources. Amongst the different nitrogen sources, the highest enzyme production (8.2 U/mL) was obtained in presence of ammonium sulphate and yeast extract simultaneously at a ratio of 1:1. The enzyme was partially purified by gel filtration using Sephadex G50 equilibrated and washed with 50 mM-sodium acetate buffer. The obtained yield and specific activity were determined equivalent to 17% and 9.53 U/mg, respectively. The molecular weight of the partially purified enzyme was estimated as 54 kDa on SDS-PAGE. The conditions affecting the enzyme activity were determined and the highest enzyme activity was recorded at 40 °C and 4.5 pH. Amongst the tested metal ions, 2 and 5 mM of CaCl2 concentrations increased the enzymatic activity by 30%. Overall, the use of corncob (2.5%) to produce PGase by A. pullulans represents an attractive agro-industrial substrate.
Collapse
Affiliation(s)
- Mustafa Oskay
- Faculty of Sciences and Letters, Department of Biology, Section of Basic and Industrial Microbiology, Manisa Celal Bayar University, 45030, Manisa, Turkey.
| |
Collapse
|
15
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
16
|
Yu L, Ma Y, Zhao Y, Rehman AU, Guo L, Liu Y, Yang Y, Wang Z, Cao X, Gao X. Interaction of B-type starch with gluten skeleton improves wheat dough mixing properties by stabilizing gluten micro-structure. Food Chem 2022; 371:131390. [PMID: 34808780 DOI: 10.1016/j.foodchem.2021.131390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 11/04/2022]
Abstract
Some recent studies have revealed individual and the combined interactions of gluten and starch affecting dough mixing properties. However, the combined influence of high-molecular-weight glutenin subunits (HMW-GS) and starch on dough mixing and rheological properties requires elucidation. Thus four recombinant inbred lines, SS 1, SS 2, ZZ 1 and ZZ 2, were selected based on their HMW-GSs compositions. Compared to ZZ 1 and ZZ 2, both SS 1 and SS 2 carried superior HMW-GS alleles, and exhibited extended dough development and stability time, indicating their significant dough mixing characteristics. The gluten skeleton of the wheat lines SS 2 and ZZ 2 with higher B-type starch proportions exhibited fewer breakages along with the rise of dough temperature during mixing. Higher content of B-type starch strengthens interaction between starch and gluten skeleton at the dough heating stage, suggesting a specific range of B-type starch proportion can improve dough mixing characteristics.
Collapse
Affiliation(s)
- Liwei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanrong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiyue Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ata-Ur Rehman
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Lei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingchun Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Tian B, Zhou C, Li D, Pei J, Guo A, Liu S, Li H. Monitoring the Effects of Hemicellulase on the Different Proofing Stages of Wheat Aleurone-Rich Bread Dough and Bread Quality. Foods 2021; 10:2427. [PMID: 34681483 PMCID: PMC8535788 DOI: 10.3390/foods10102427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022] Open
Abstract
This study investigated the effects of a hemicellulase dosage (20, 40, and 60 mg kg-1 of flour) on the bread quality and rheological properties of wheat aleurone-rich flour. The results showed that hemicellulase could soften dough and improve extensibility. At the optimum hemicellulase dosage (40 mg kg-1 of flour), the bread specific volume increased by 40.91% and firmness of breadcrumb decreased by 104.57% compared to those of the control. Intermolecular forces indicated that the gluten network during the proofing was mainly strengthened via disulfide bonds, hydrophobic interactions, and hydrogen bonds but not through ionic bonds after hemicellulase addition. Fourier infrared spectroscopy indicated that the hydrolytic activity of hemicellulase catalyzed the transition from α-helix to β-sheet, which verified that viscoelasticity of gluten was enhanced at a dosage of 40 mg kg-1 of flour. These results suggested that hydrolyzation of hemicellulase contributed to the structural of gluten changes, thereby improving the quality of wheat aleurone-rich bread.
Collapse
Affiliation(s)
- Boyu Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Chenxia Zhou
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Dongxiao Li
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Jiawei Pei
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Ailiang Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Shuang Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (B.T.); (C.Z.); (J.P.); (A.G.); (S.L.)
| |
Collapse
|
18
|
Both J, Biduski B, Gómez M, Bertolin TE, Friedrich MT, Gutkoski LC. Micronized whole wheat flour and xylanase application: dough properties and bread quality. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3902-3912. [PMID: 34471314 DOI: 10.1007/s13197-020-04851-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
The micronization process by jet mill of whole wheat flour in addition to xylanase application may be used to improve dough properties and baking quality. This study aimed to evaluate the dough formation and bakery performance of whole wheat flour micronized using jet mill and having different particle sizes and xylanase content A decrease in particle size increased water absorption and increased dough stability by 3.7 units. Increase in xylanase content decreased the dough stability and mixture tolerance, resulting in reduced strength. Although the dough quality reduced, this was not evident in bread quality. In bread, the increase in xylanase content increased the specific volume and improved the texture profile. The 158 and 261 μm particle sizes with 60 and 100 mg kg-1 xylanase content reduced the undesirable effects of fibers in the dough, which may lead to improved bread making, thus enhancing improved consumer acceptance.
Collapse
Affiliation(s)
- Josemere Both
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo, BR 285, CEP 99052-900, Passo Fundo, RS Brazil
| | - Bárbara Biduski
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo, BR 285, CEP 99052-900, Passo Fundo, RS Brazil
| | - Manuel Gómez
- Departamento de Ingeniería Agrícola Y Forestal, Tecnología de Los Alimentos, E.T.S. Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain
| | - Telma Elita Bertolin
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo, BR 285, CEP 99052-900, Passo Fundo, RS Brazil
| | - Maria Tereza Friedrich
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo, BR 285, CEP 99052-900, Passo Fundo, RS Brazil
| | - Luiz Carlos Gutkoski
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade de Passo Fundo, BR 285, CEP 99052-900, Passo Fundo, RS Brazil.,Programa de Pós-Graduação em Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Xylooligosaccharides production by crude and partially purified xylanase from Aureobasidium pullulans: Biochemical and thermodynamic properties of the enzymes and their application in xylan hydrolysis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Guo L, Yu L, Tong J, Zhao Y, Yang Y, Ma Y, Cui L, Hu Y, Wang Z, Gao X. Addition of Aegilops geniculata 1Ug chromosome improves the dough rheological properties by changing the composition and micro-structure of gluten. Food Chem 2021; 358:129850. [PMID: 33940291 DOI: 10.1016/j.foodchem.2021.129850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Aegilops geniculata, a relative of common wheat, has many useful traits for the improvements of wheat varieties. The wheat-Ae. geniculata disomic addition lines (DALs) carrying prior traits need to be characterized for wheat varieties improvement. We currently found that CS-1Ug (Chinese Spring-Ae. geniculata 1Ug DAL) possessed improved dough rheological properties than CS (Chinese Spring) did, and investigated the reasons of those rheological changes in dough. The results showed that CS-1Ug carries a novel high-molecular-weight glutenin subunit (HMW-GS), a substitute for Dx2 from CS, which led to the changes in the relative proportion of individual HMW-GS in total HMW-GSs. Changes in gluten composition improved the stability and elasticity of dough by promoting the accumulation of unextractable polymeric protein, and optimizing the micro-structure of the gluten. The current study provides basic information on CS-1Ug used as a potential resource for future wheat quality breeding.
Collapse
Affiliation(s)
- Lei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liwei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyang Tong
- Institute of Crop Sciences/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiyue Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanrong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yingang Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Yu L, Guo L, Liu Y, Ma Y, Zhu J, Yang Y, Min D, Xie Y, Chen M, Tong J, Rehman AU, Wang Z, Cao X, Gao X. Novel parameters characterizing size distribution of A and B starch granules in the gluten network: Effects on dough stability in bread wheat. Carbohydr Polym 2021; 257:117623. [PMID: 33541650 DOI: 10.1016/j.carbpol.2021.117623] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Our study on six wheat genotypes has revealed strong interaction between gluten and starch to affect dough stability. To establish gluten-starch interaction and its roles in dough stability, we randomly selected 16 wheat genotypes and investigated the physicochemical properties of gluten and starch. The manner in which the starch granules occupied available space in gluten network was quantitatively analyzed using gluten lacunarity and proportion of different sized A-type and B-type starch granules. Positive correlations were found between the morphological attributes (B/A/Lacunarity, B/Lacunarity) and dough stability. The correlation coefficient between B/A/Lacunarity and dough stability was highest, followed by the percentage of unextractable polymeric protein (UPP%), B/Lacunarity and dough stability. Dough mixing properties were strongly affected by gluten-starch interactions, as indicated by novel parameters. Whereas the effect of gluten on its own did not provide any evidence to suggest its concrete role in dough mixing properties because of the various genetic backgrounds.
Collapse
Affiliation(s)
- Liwei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingchun Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanrong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianchu Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Donghong Min
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyang Tong
- Institute of Crop Sciences/National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ata-Ur Rehman
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
|
23
|
Akanbi TO, Ji D, Agyei D. Revisiting the scope and applications of food enzymes from extremophiles. J Food Biochem 2020; 44:e13475. [PMID: 32996180 DOI: 10.1111/jfbc.13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Microorganisms from extreme environments tend to undergo various adaptations due to environmental conditions such as extreme pH, temperature, salinity, heavy metals, and solvents. Thus, they produce enzymes with unique properties and high specificity, making them useful industrially, particularly in the food industries. Despite these enzymes' remarkable properties, only a few instances can be reported for actual exploitation in the food industry. This review's objectives are to highlight the properties of these enzymes and their prospects in the food industry. First, an introduction to extremophilic organisms is presented, followed by the categories and application of food enzymes from extremophiles. Then, the unique structural features of extremozymes are shown. This review also covers the prospective applications of extremozymes in the food industry in a broader sense, including degradation of toxins, deconstruction of polymers into monomers, and catalysis of multistep processes. Finally, the challenges in bioprocessing of extremozymes and applications in food are presented. PRACTICAL APPLICATIONS: Enzymes are important players in food processing and preservation. Extremozymes, by their nature, are ideal for a broad range of food processing applications, particularly those that require process conditions of extreme pH, temperature, and salinity. As the global food industry grows, so too will grow the need to research and develop food products that are diverse, safe, healthy, and nutritious. There is also the need to produce food in a sustainable way that generates less waste or maximizes waste valorization. We anticipate that extremozymes can meet some of the research and development needs of the food industry.
Collapse
Affiliation(s)
- Taiwo O Akanbi
- Faculty of Science, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Poria V, Saini JK, Singh S, Nain L, Kuhad RC. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. BIORESOURCE TECHNOLOGY 2020; 304:123019. [PMID: 32089440 DOI: 10.1016/j.biortech.2020.123019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 05/15/2023]
Abstract
Alpha-L-arabinofuranoside arabinofuranohydrolase (ARA), more commonly known as alpha-L-arabinofuranosidase (E.C. number 3.2.1.55), is a hydrolytic enzyme, catalyzing the cleavage of alpha-L-arabinose by acting on the non-reducing ends of alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linked arabinoxylans and arabinogalactans. ARA functions as debranching enzyme removing arabinose substituents from arabinoxylan and arabinoxylooligomers, thereby, boosting the hydrolysis of arabinoxylan fraction of hemicellulose and improving bioconversion of lignocellulosic biomass. Previously, comprehensive information on this enzyme has not been reviewed thoroughly. Therefore, the main aim of this review is to highlight the important properties of this interesting enzyme, microorganisms used for its production, and enhanced production using genetic engineering approach. An account on synergism with other biomass hydrolyzing enzymes and various industrial applications of this enzyme has also been provided along with an outlook on further research and development.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India.
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India
| | - Ramesh Chander Kuhad
- Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi PIN-110021, India
| |
Collapse
|
25
|
Sharma S, Sharma V, Nargotra P, Bajaj BK. Bioprocess development for production of a process-apt xylanase with multifaceted application potential for a range of industrial processes. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2541-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
26
|
Effect of wheat grain protein composition on end-use quality. Journal of Food Science and Technology 2020; 57:2771-2785. [PMID: 32624587 DOI: 10.1007/s13197-019-04222-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023]
Abstract
The quality of wheat products has been a new challenge next to wheat production which was achieved substantially during green revolution. The end-use quality of wheat is an essential factor for its commercial demand. The quality of wheat is largely based on the wheat storage proteins which extensively influences the dough properties. High molecular weight glutenin subunits (HMWGS), low molecular weight glutenin subunits (LMWGS) and gliadins significantly influence the end-use quality. Genomics and proteomics study of these gluten proteins of bread and durum wheat have explored new avenues for precise identification of the alleles and their role in end-use quality improvement. Secalin protein of Secale cereale encoded by Sec-1 loci and is associated with 1RS.1BL translocation has been known for deterioration of end-use quality. Chromosomal manipulations using various approaches have led to the development of new recombinant lines of wheat without secalin. Advanced techniques associated with assessment of end-use quality have integrated the knowledge of useful or deteriorating HMWGS/LMWGS alleles and their potential role in end-use quality. This review gives a comprehensive insight of different aspects of the end-use quality perspective for bread making in wheat along with some information on the immunological interference of gluten in celiac disease.
Collapse
|
27
|
Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.). Food Chem 2019; 297:125000. [DOI: 10.1016/j.foodchem.2019.125000] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/30/2019] [Accepted: 06/11/2019] [Indexed: 11/24/2022]
|
28
|
Ghadikolaei KK, Sangachini ED, Vahdatirad V, Noghabi KA, Zahiri HS. An extreme halophilic xylanase from camel rumen metagenome with elevated catalytic activity in high salt concentrations. AMB Express 2019; 9:86. [PMID: 31209584 PMCID: PMC6579805 DOI: 10.1186/s13568-019-0809-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022] Open
Abstract
An extreme halophilic xylanase, designated as XylCMS, was characterized by cloning and expression of the encoding gene from a camel rumen metagenome. XylCMS proved to be a GH11 xylanase with high identity to a hypothetical glycosyl hydrolase from Ruminococcus flavefaciens. XylCMS with a molecular weight of about 47 kDa showed maximum activity at pH 6 and 55 °C. The enzyme activity was significantly stimulated by NaCl in 1–5 M concentrations. Interestingly, the optimum temperature was not influenced by NaCl but the Kcat of the enzyme was enhanced by 2.7-folds at 37 °C and 1.2-folds at 55 °C. The Km value was decreased with NaCl by 4.3-folds at 37 °C and 3.7-folds at 55 °C resulting in a significant increase in catalytic efficiency (Kcat/Km) by 11.5-folds at 37 °C and 4.4-folds at 55 °C. Thermodynamic analysis indicated that the activation energy (Ea) and enthalpy (∆H) of the reaction were decreased with NaCl by 2.4 and threefold, respectively. From the observations and the results of fluorescence spectroscopy, it was concluded that NaCl at high concentrations improves both the flexibility and substrate affinity of XylCMS that are crucial for catalytic activity by influencing substrate binding, product release and the energy barriers of the reaction. XylCMS as an extreme halophilic xylanase with stimulated activity in artificial seawater and low water activity conditions has potentials for application in industrial biotechnology.
Collapse
|
29
|
|
30
|
α-l-Arabinofuranosidase: A Potential Enzyme for the Food Industry. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-3263-0_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Myco-Degradation of Lignocellulose: An Update on the Reaction Mechanism and Production of Lignocellulolytic Enzymes by Fungi. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|