1
|
Shi L, Zou Z, Zhu C, Wang H, Lin L, Wang J, Wei C. Structures, gelatinization properties and enzyme hydrolyses of starches from transparent and floury grains of rices subjected to field natural extreme high temperature. Food Chem 2024; 459:140392. [PMID: 39018617 DOI: 10.1016/j.foodchem.2024.140392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Three rice varieties underwent the field natural extreme high temperature (EHT) with daily average temperature over 30 °C from 21 to 89 days after sowing, and had transparent, chalky and floury grains. The structures, gelatinization properties and enzyme hydrolyses of starches from transparent and floury grains were investigated. Compared with control transparent grains, floury grains subjected to EHT markedly decreased the contents of amylose molecules, amylopectin A chains and amylopectin B1 chains and increased the contents of amylopectin B2 and B3+ chains and the average branch-chain length of amylopectin. Both transparent and floury grains had A-type starches, but floury grain starches exhibited higher relative crystallinity, gelatinization temperature, retrogradation and pasting viscosities than transparent grain starches. Floury grain starches had lower hydrolysis rates than transparent grain starches. Native starches were more resistant to digestion but gelatinized and retrograded starches were more prone to digestion in floury grains than in transparent grains.
Collapse
Affiliation(s)
- Laiquan Shi
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Zihan Zou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chen Zhu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Hao Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Juan Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Feng P, Zhou X, Yu W. Study of starch molecular structure-property relations provides new insight into slowly digested rice development. Food Res Int 2024; 194:114887. [PMID: 39232521 DOI: 10.1016/j.foodres.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.
Collapse
Affiliation(s)
- Puxu Feng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Xianglong Zhou
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China.
| |
Collapse
|
3
|
Shi L, Guo K, Xu X, Lin L, Bian X, Wei C. Physicochemical properties of starches from sweet potato root tubers grown in natural high and low temperature soils. Food Chem X 2024; 22:101346. [PMID: 38586226 PMCID: PMC10997820 DOI: 10.1016/j.fochx.2024.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024] Open
Abstract
Three sweet potato varieties grew in natural high temperature (HT) and low temperature (LT) field soils. Their starch physicochemical properties were affected similarly by HT and LT soils. Compared with LT soil, HT soil induced the increases of granule size D[4,3] from 18.0-18.7 to 19.9-21.8 μm and amylopectin average branch-chain length from 21.9-23.1 to 24.1-24.7 DP. Starches from root tubers grown in HT and LT soils exhibited CA- and CC-type XRD pattern, respectively. Starches from root tubers grown in HT soil exhibited stronger lamellar peak intensities (366.8-432.0) and higher gelatinization peak temperature (72.0-76.8 °C) than those (176.2-260.5, 56.4-63.4 °C) in LT soil. Native starches from root tubers grown in LT soil were hydrolyzed more easily (hydrolysis rate coefficient 0.227-0.282 h-1) by amylase than those (0.120-0.163 h-1) in HT soil. The principal component analysis exhibited that starches from root tubers grown in HT and LT soils had significantly different physicochemical properties.
Collapse
Affiliation(s)
- Laiquan Shi
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Xiaofeng Bian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Zhang X, Fan X, Li W. Effect of emulsified lipid and saponified lipid on the enzyme desizing of starch and its mechanism. Int J Biol Macromol 2024; 268:131835. [PMID: 38663696 DOI: 10.1016/j.ijbiomac.2024.131835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
To enhance the flexibility of starch film adhesion on yarns, sizing lipids (saponified lipid or emulsified lipid) must be added during the sizing process. However, different types of sizing lipids may have diverse combinations with starch to impact enzyme desizing. Therefore, this study investigated the effects of saponified lipid and emulsified lipid commonly used in warp sizing on the hydrolysis of starch. Additionally, the desizing efficiency and chain structure of desizing residues were analyzed. Experimental results demonstrated that the existence of saponified lipid or emulsified lipid led to a reduction in the degree of hydrolysis (1.1 % and 2.6 %, respectively) compared to the original corn starch. Notably, saponified lipid exhibited a relatively strong negative impact. Furthermore, the desizing efficiency decreased after adding emulsified lipid (1.2 %) or saponified lipid (2.9 %). Starch-lipid V-type complexes and physical hindrance could inhibit the enzyme desizing, resulting in a larger wavelength of maximum absorbance for desizing residues, along with higher molecular weight, z-average radius of gyration, and an increased proportion of long chains. The presence of saponified lipid significantly negatively influenced desizing, possibly due to the smaller particle size and propensity for complex formation with starch.
Collapse
Affiliation(s)
- Xun Zhang
- College of Textiles and Garments, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Li
- College of Textiles and Garments, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
5
|
Liang Y, Zheng L, Yang Y, Zheng X, Xiao D, Ai B, Sheng Z. Dielectric barrier discharge cold plasma modifies the multiscale structure and functional properties of banana starch. Int J Biol Macromol 2024; 264:130462. [PMID: 38423435 DOI: 10.1016/j.ijbiomac.2024.130462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.
Collapse
Affiliation(s)
- Yonglun Liang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China.
| | - Zhanwu Sheng
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
6
|
Ichinose J, Oba K, Arase Y, Kaneshiro J, Tate SI, Watanabe TM. Quantitative prediction of rice starch digestibility using Raman spectroscopy and multivariate calibration analysis. Food Chem 2024; 435:137505. [PMID: 37837895 DOI: 10.1016/j.foodchem.2023.137505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Digestibility is an important characteristic of rice starch. It is affected by the growing environment, such as temperature and soil, so that even in the same genetic cultivar the digestibility of each product will be different. Here, we predicted rice starch digestibility by Raman scattering spectroscopy. A partial least squares (PLS) regression analysis was performed between biochemically quantified digestibility index values and Raman scattering spectra of purified starch from rice samples of different cultivars and growing conditions. The prediction model obtained by analyzing the individual cultivars was able to predict digestibility with a high accuracy, with an R2 of 0.95 and RMSEP of 0.43, whereas a mixture of all cultivars resulted in more than two times worse accuracy. Our finding suggests that the molecular structures affecting digestibility fluctuate depending on the growing environment while maintaining a unique balance regulated by cultivar-specific starch synthesis mechanisms.
Collapse
Affiliation(s)
- Junya Ichinose
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Kenji Oba
- Hiroshima Prefectural Technology Research Institute Agricultural Technology Research Center, Hiroshima, Japan
| | - Yuya Arase
- Hiroshima Prefectural Technology Research Institute Food Technology Research Center, Hiroshima, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima, Japan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Fan C, Li X, Wang Y, Dong J, Jin Z, Bai Y. Effects of maltogenic α-amylase on physicochemical properties and edible quality of rice cake. Food Res Int 2023; 172:113111. [PMID: 37689841 DOI: 10.1016/j.foodres.2023.113111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Maltogenic α-amylase (MA) are commercially used in the baking industry to retard starch retrogradation. However, whether MA can be used to modify rice flour during the fermentation process to improve the quality of rice flour remains unclear. In this study, MA was introduced during rice cake (RC) processing, and the modification effect and underlying mechanism were explored. Mn showed a decreasing trend except for 4.0 × 10-3 U/g sample. Chain length distribution data showed that MA effectively hydrolyzed long chains in amylopectin and increased the concentration of amylopectin chain length with a degree of polymerization of ≤ 9. High-performance liquid chromatography results suggested that the maltose content increased to 3.14% at an MA concentration of 9.5 × 10-3 U/g, which affected the fermentation effect of MA-treated RC. MA effectively reduced the viscosity of RC, and the gelatinization enthalpy of RC changed to 0.835 mJ/mg. MA also reduced the hardness and chewiness of RC after storage for 7 d. Moreover, rapidly digestible starch and slowly digestible starch contents of MA-treated RC decreased and increased, respectively, and resistant starch contents were remained unchanged. These results indicate that MA exerts a significant and effective antiretrogradation effect on RC. Combining the above results with sensory evaluation findings, an MA concentration of 4.0 × 10-3 U/g was the best supplemental concentration for obtaining RC with better edible quality. These findings suggest that MA treatment to rice flour during the fermentation process not only preserved the edible quality of RC but also retarded its retrogradation, thus, providing a novel processing method for the industrial production of RC.
Collapse
Affiliation(s)
- Can Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Li C, Wu A, Gilbert RG. Critical examination of the characterization techniques, and the evidence, for the existence of extra-long amylopectin chains. Compr Rev Food Sci Food Saf 2023; 22:4053-4073. [PMID: 37458307 DOI: 10.1111/1541-4337.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 09/13/2023]
Abstract
It has been suggested that amylopectin can contain small but significant amounts of extra-long chains (ELCs), which could affect functional properties, and also would have implications for the mechanism of starch biosynthesis. However, current evidence for the existence of ELCs is ambiguous. The amylose/amylopectin separation and the characterization techniques used for the investigation of ELCs are reviewed, problems in those techniques are examined, and studies of ELCs of amylopectin are discussed. A model for the biosynthesis of amylopectin chains in terms of conventional biosynthesis enzymes, which provides an excellent fit to a large amount of experimental data, is used to provide a rigorous definition of ELCs. In addition, current investigations of ELCs, involving separation, is hindered by the lack of a method to quantitatively separate all the amylopectin from starch without any traces of residual amylose (which would have long chains). Unambiguous evidence for the existence of ELCs can be obtained using two-dimensional (2D) characterization, these dimensions being the degree of polymerization of a chain and the size of the whole molecule. Available 2D data indicate that there are no ELCs present in currently detectable quantities in native rice starches. However, concluding this more rigorously requires improvements in the resolution of current 2D methods.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Food Science and Engineering, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, China
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. The impact of differently structured starch gels on the gastrointestinal fate of a curcumin-containing nanoemulsion. Food Funct 2023; 14:7924-7937. [PMID: 37548382 DOI: 10.1039/d3fo01566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In this study, we focused on the in vitro gastrointestinal digestion of curcumin-nanoemulsion-loaded corn starch gels formed using starches with different amylose contents, i.e. waxy (WCS), normal (NCS) and high amylose (HACS) corn starches and their impact on the release and bioaccessibility of curcumin. Curcumin nanoemulsion (CNE) loading significantly increased the storage modulus of the WCS and NCS gels by interspersing in the gelatinized continuous phase, whereas it decreased in the HACS gel due to the formation of a weak network structure as a result of the incomplete gelatinized amylose granules. During the gastric digestion, the disintegration and emptying of the WCS + CNE gel from the stomach was the slowest compared to the other two gels. The changes in the stomach, influenced the emptying of total solids (HACS + CNE > NCS + CNE > WCS + CNE) into the gastric digesta, which further affected the rate of starch and lipid digestion during the intestinal phase. The HACS + CNE and NCS + CNE gels showed a higher and faster release of curcumin compared to the WCS + CNE gel that showed a slower and sustained release during the intestinal digestion. This study demonstrated that the oral-gastric digestion of these starch gels was more dependent on the gel structures rather than on the molecular properties of the starches. The dynamic gastric environment resulted in the formation of distinct gel structures, which significantly influenced the composition and microstructure of the emptied digesta, further affecting starch hydrolysis and curcumin bioaccessibility in the small intestine.
Collapse
Affiliation(s)
- Haroon Jamshaid Qazi
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani Road, Lahore, Punjab 54000, Pakistan
| | - Aiqian Ye
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Alejandra Acevedo-Fani
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Harjinder Singh
- Riddet Institute (PN 445), Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| |
Collapse
|
10
|
Characterization, immunomodulatory activity and digestibility in vitro of a novel floridean starch from Grateloupia filicina. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Lin F, Lin S, Zhang Z, Lin W, Rensing C, Xie D. GF14f gene is negatively associated with yield and grain chalkiness under rice ratooning. FRONTIERS IN PLANT SCIENCE 2023; 14:1112146. [PMID: 36875569 PMCID: PMC9976807 DOI: 10.3389/fpls.2023.1112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ratoon rice cropping has been shown to provide new insights into overcoming the current challenges of rice production in southern China. However, the potential mechanisms impacting yield and grain quality under rice ratooning remain unclear. METHODS In this study, changes in yield performance and distinct improvements in grain chalkiness in ratoon rice were thoroughly investigated, using physiological, molecular and transcriptomic analysis. RESULTS Rice ratooning induced an extensive carbon reserve remobilization in combination with an impact on grain filling, starch biosynthesis, and ultimately, an optimization in starch composition and structure in the endosperm. Furthermore, these variations were shown to be associated with a protein-coding gene: GF14f (encoding GF14f isoform of 14-3-3 proteins) and such gene negatively impacts oxidative and environmental resistance in ratoon rice. CONCLUSION Our findings suggested that this genetic regulation by GF14f gene was the main cause leading to changes in rice yield and grain chalkiness improvement of ratoon rice, irrespective of seasonal or environmental effects. A further significance was to see how yield performance and grain quality of ratoon rice were able to be achieved at higher levels via suppression of GF14f.
Collapse
Affiliation(s)
- Feifan Lin
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Zhixing Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Fan P, Xu J, Wang Z, Liu G, Zhang Z, Tian J, Wei H, Zhang H. Phenotypic differences in the appearance of soft rice and its endosperm structural basis. FRONTIERS IN PLANT SCIENCE 2023; 14:1074148. [PMID: 36818874 PMCID: PMC9929301 DOI: 10.3389/fpls.2023.1074148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In view of the significant differences among genotypes in the appearance of soft rice, it is necessary to conduct research on the differences in the appearance quality of soft rice and their mechanisms. It can provide a theoretical basis for the selection and breeding of superior appearance varieties at a later stage. In order to clarify the differences in appearance phenotypes between different soft rice genotypes and structural basis of endosperm structures behind the differences, four soft rice varieties were selected in this study, including two varieties with good-appearance and two varieties with cloudy appearance. The differences in appearance phenotypes and endosperm structure in mature grains of soft rice with different appearance phenotypes were scientifically analyzed. The development process of their endosperm differences at the filling stage was investigated. The results show that the difference in the rice appearance of soft rice varieties mainly lay in the chalk-free seed transparency and chalkiness. These differences were caused by two completely different types of endosperm structure. Fewer and smaller starch grain cavities were responsible for higher chalk-free transparency of soft rice grains, denser starch granules arrangement caused lower chalkiness of soft rice grains. Ten days after flowering, the starch granules in the back and heart of good-appearance soft rice were already significantly fuller and more closely packed than those of cloudy soft rice. At the same time, the number and area of starch granule holes were significantly smaller than those of cloudy soft rice. This difference gradually increased until maturity. Therefore, based on appearance evaluation, soft rice with good-appearance should have higher transparency and lower chalkiness. The endosperm starch granules should be full and tightly arranged. The number of starch grain cavities and the area should be smaller. These differences develop in the early stages of grouting and gradually increase.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyan Wei
- *Correspondence: Haiyan Wei, ; Hongcheng Zhang,
| | | |
Collapse
|
13
|
Sahoo B, Roy A. Structure–function relationship of resistant starch formation: Enhancement technologies and need for more viable alternatives for whole rice grains. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering Birla Institute of Technology Ranchi Jharkhand India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering Birla Institute of Technology Ranchi Jharkhand India
| |
Collapse
|
14
|
Yu Y, Han F, Huang Y, Xiao L, Cao S, Liu Z, Thakur K, Han L. Physicochemical properties and molecular structure of starches from potato cultivars of different tuber colors. STARCH-STARKE 2022. [DOI: 10.1002/star.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingtao Yu
- Collaborative Innovation Center for Food Production and Safety College of Biological Science and Engineering North Minzu University Yinchuan Ningxia 750021 China
| | - Fujuan Han
- Collaborative Innovation Center for Food Production and Safety College of Biological Science and Engineering North Minzu University Yinchuan Ningxia 750021 China
| | - Yumin Huang
- Collaborative Innovation Center for Food Production and Safety College of Biological Science and Engineering North Minzu University Yinchuan Ningxia 750021 China
| | - Liuyang Xiao
- Collaborative Innovation Center for Food Production and Safety College of Biological Science and Engineering North Minzu University Yinchuan Ningxia 750021 China
| | - Shaopan Cao
- Collaborative Innovation Center for Food Production and Safety College of Biological Science and Engineering North Minzu University Yinchuan Ningxia 750021 China
| | - Zhenya Liu
- Collaborative Innovation Center for Food Production and Safety College of Biological Science and Engineering North Minzu University Yinchuan Ningxia 750021 China
| | - Kiran Thakur
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 People's Republic of China
| | - Lihong Han
- Collaborative Innovation Center for Food Production and Safety College of Biological Science and Engineering North Minzu University Yinchuan Ningxia 750021 China
| |
Collapse
|
15
|
Wang Y, Kansou K, Pritchard J, Zwart AB, Saulnier L, Ral JP. Beyond amylose content, selecting starch traits impacting in vitro α-amylase degradability in a wheat MAGIC population. Carbohydr Polym 2022; 291:119652. [DOI: 10.1016/j.carbpol.2022.119652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
|
16
|
In-vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydr Polym 2022; 291:119600. [DOI: 10.1016/j.carbpol.2022.119600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
17
|
Srikaeo K, Saeva K, Sopade PA. Understanding starch digestibility of rice: A study in brown rice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khongsak Srikaeo
- Faculty of Food and Agricultural Technology Pibulsongkram Rajabhat University Muang Phitsanulok 65000 Thailand
| | - Kanyarin Saeva
- Faculty of Food and Agricultural Technology Pibulsongkram Rajabhat University Muang Phitsanulok 65000 Thailand
| | - Peter A Sopade
- Food Process Engineering Consultants, Abeokuta Cottage, Tia Lane, Forest Lake, QLD, 4078 Australia
| |
Collapse
|
18
|
Functional Characterization of Recombinant Raw Starch Degrading α-Amylase from Roseateles terrae HL11 and Its Application on Cassava Pulp Saccharification. Catalysts 2022. [DOI: 10.3390/catal12060647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exploring new raw starch-hydrolyzing α-amylases and understanding their biochemical characteristics are important for the utilization of starch-rich materials in bio-industry. In this work, the biochemical characteristics of a novel raw starch-degrading α-amylase (HL11 Amy) from Roseateles terrae HL11 was firstly reported. Evolutionary analysis revealed that HL11Amy was classified into glycoside hydrolase family 13 subfamily 32 (GH13_32). It contains four protein domains consisting of domain A, domain B, domain C and carbohydrate-binding module 20 (CMB20). The enzyme optimally worked at 50 °C, pH 4.0 with a specific activity of 6270 U/mg protein and 1030 raw starch-degrading (RSD) U/mg protein against soluble starch. Remarkably, HL11Amy exhibited activity toward both raw and gelatinized forms of various substrates, with the highest catalytic efficiency (kcat/Km) on starch from rice, followed by potato and cassava, respectively. HL11Amy effectively hydrolyzed cassava pulp (CP) hydrolysis, with a reducing sugar yield of 736 and 183 mg/g starch from gelatinized and raw CP, equivalent to 72% and 18% conversion based on starch content in the substrate, respectively. These demonstrated that HL11Amy represents a promising raw starch-degrading enzyme with potential applications in starch modification and cassava pulp saccharification.
Collapse
|
19
|
Lekakarn H, Bunterngsook B, Pajongpakdeekul N, Prongjit D, Champreda V. A novel low temperature active maltooligosaccharides-forming amylase from Bacillus koreensis HL12 as biocatalyst for maltooligosaccharide production. 3 Biotech 2022; 12:134. [PMID: 35615748 DOI: 10.1007/s13205-022-03188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Maltooligosaccharide-forming amylases (MFAses) are promising enzymes for a variety of industrial applications. In this study, a maltooligosaccharide-forming amylase (BkAmy) isolated from Bacillus koreensis HL12 was first heterologous expressed and characterized. According to structural-sequence alignment, BkAmy contained seven conserved regions which are the signature of a novel GH13 subfamily. The gene was expressed in Pichia pastoris KM71 as an extracellular protein with a volumetric activity of 3.38 U/mL culture medium after 72 h induction by 3% (w/v) of methanol. The recombinant BkAmy migrated as a single protein band with an expected size approximately of 55 kDa. BkAmy exhibited the highest catalytic activity on soluble starch with a specific activity of 42.2 U/mg at 40 °C, pH 7.0. The enzyme exhibited 65% relative activity at 30 °C, indicating its advantage on application at moderate reaction temperature desirable for energy saving and reduction of side unwanted reactions. The enzyme exhibited a specific cleavage pattern by releasing maltose (G2), maltotriose (G3) and maltotetraose (G4) from cassava starch with the highest yield of 363 mg/g substrate equivalent to 36% conversion using 40 U/g substrate at 60 min. The work demonstrates the potential of this enzyme on maltooligosaccharide production from starch to create high value-added products in starch processing industries. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03188-1.
Collapse
|
20
|
Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Wang Y, Ral JP, Saulnier L, Kansou K. How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods 2022; 11:foods11091223. [PMID: 35563947 PMCID: PMC9104245 DOI: 10.3390/foods11091223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
In vitro digestibility of starch is a common analysis in human nutrition research, and generally consists of performing the hydrolysis of starch by α-amylase in specific conditions. Similar in vitro assays are also used in other research fields, where different methods can be used. Overall, the in vitro hydrolysis of native starch is a bridge between all of these methods. In this literature review, we examine the use of amylolysis assays in recent publications investigating the complex starch structure-amylolysis relation. This review is divided in two parts: (1) a brief review of the factors influencing the hydrolysis of starch and (2) a systematic review of the experimental designs and methods used in publications for the period 2016–2020. The latter reports on starch materials, factors investigated, characterization of the starch hydrolysis kinetics and data analysis techniques. This review shows that the dominant research strategy favors the comparison between a few starch samples most frequently described through crystallinity, granule type, amylose and chain length distribution with marked characteristics. This strategy aims at circumventing the multifactorial aspect of the starch digestion mechanism by focusing on specific features. An alternative strategy relies on computational approaches such as multivariate statistical analysis and machine learning techniques to decipher the role of each factor on amylolysis. While promising to address complexity, the limited use of a computational approach can be explained by the small size of the experimental datasets in most publications. This review shows that key steps towards the production of larger datasets are already available, in particular the generalization of rapid hydrolysis assays and the development of quantification approaches for most analytical results.
Collapse
Affiliation(s)
- Yuzi Wang
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France; (Y.W.); (L.S.)
| | - Jean-Philippe Ral
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia;
| | - Luc Saulnier
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France; (Y.W.); (L.S.)
| | - Kamal Kansou
- INRAE, UR1268, Biopolymers, Interactions & Assemblies (BIA), 44316 Nantes, France; (Y.W.); (L.S.)
- Correspondence: ; Tel.: +33-02-40-67-51-49
| |
Collapse
|
22
|
Zhang X, Wang L, Xu J, Yuan J, Fan X. Effect of starch chain structure and non‐starch components on the hydrolysis of starch by α‐amylase. STARCH-STARKE 2022. [DOI: 10.1002/star.202100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xun Zhang
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Lili Wang
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
23
|
Zhang L, Li N, Zhang J, Zhao L, Qiu J, Wei C. The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. PLANT MOLECULAR BIOLOGY 2022; 108:343-361. [PMID: 34387795 DOI: 10.1007/s11103-021-01178-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
FLO6 is involved in starch synthesis by interacting with SSIVb and GBSS in rice. Starch synthesized and stored in plastids including chloroplasts and amyloplasts plays a vital role in plant growth and provides the major energy for human diet. However, the molecular mechanisms by which regulate starch synthesis remain largely unknown. In this study, we identified and characterized a rice floury endosperm mutant M39, which exhibited defective starch granule formation in pericarp and endosperm, accompanied by the decreased starch content and amylose content. The abnormal starch accumulation in M39 pollen grains caused a significant decrease in plant fertility. Chloroplasts in M39 leaves contained no or only one large starch granule. Positional cloning combined with complementary experiment demonstrated that the mutant phenotypes were restored by the FLOURY ENDOSPERM6 (FLO6). FLO6 was generally expressed in various tissues, including leaf, anther and developing endosperm. FLO6 is a chloroplast and amyloplast-localized protein that is able to bind to starch by its carbohydrate-binding module 48 (CBM48) domain. Interestingly, we found that FLO6 interacted with starch synthase IVb (SSIVb) and granule-bound starch synthase (GBSSI and GBSSII). Together, our results suggested that FLO6 plays a critical role in starch synthesis through cooperating with several starch synthesis enzymes throughout plant growth and development.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Ning Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jing Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Linglong Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jiajing Qiu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
24
|
Zhang X, Wang L, Xu J, Yuan J, Fan X. Effects of endogenous proteins on the hydrolysis of gelatinized starch and their mechanism of inhibition. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Zhao S, Wang H, Chen H, Lin L, Liu Q, Wei C. Screening and identification of rice non-floury endosperm mutants with different starch components. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Xiao Y, Wu X, Zhang B, Luo F, Lin Q, Ding Y. Understanding the aggregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. Int J Biol Macromol 2021; 189:1008-1019. [PMID: 34455004 DOI: 10.1016/j.ijbiomac.2021.08.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Corn starch (CS), potato starch (PtS), and pea starch (PS) were modified by ultrasonic frequency (codes as UFCS, UFPtS and UFPS), and changes in aggregation structure, digestibility and rheology were investigated. For UFCS, the apparent amylose content and gelatinization enthalpy (∆H) decreased, while the R1047/1022 values and relative crystallinity (RC) increased under lower ultrasonic frequencies (20 kHz and 25 kHz). For UFPtS, the apparent amylose content, R1047/1022 values and RC increased, while the ∆H decreased under a higher ultrasonic frequency (28 kHz). For UFPS, the apparent amylose content, R1047/1022 values, RC, ∆H decreased at 20 kHz, 25 kHz and 28 kHz. Cracks were observed on the surface of UFCS, UFPtS and UFPS. These aggregation structure changes increased the resistant starch content to 31.11% (20 kHz) and 26.45% (25 kHz) for UFCS and to 39.68% (28 kHz) for UFPtS, but decreased the resistant starch content to 18.46% (28 kHz) for UFPS. Consistency coefficient, storage modulus, and loss modulus of UFCS, UFPtS and UFPS increased, while the flow behavior index and damping factor decreased. Results indicated that CS, PtS and PS had diverse digestion and rheology behaviors after ultrasonic frequency modification, which fulfilled different demands in starch-based products.
Collapse
Affiliation(s)
- Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Biao Zhang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
27
|
Ouyang Q, Wang X, Xiao Y, Luo F, Lin Q, Ding Y. Structural changes of A-, B- and C-type starches of corn, potato and pea as influenced by sonication temperature and their relationships with digestibility. Food Chem 2021; 358:129858. [PMID: 33933983 DOI: 10.1016/j.foodchem.2021.129858] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
The effect of sonication temperature on the structures and digestion behaviour of corn starch (CS, A-type), potato starch (PtS, B-type), and pea starch (PS, C-type) was investigated. For CS, sonication temperature resulted in a rough surface, decreased apparent amylose content, gelatinization enthalpy and gelatinization degree, increased short-range orders, long-range orders, retrogradation degree and resistant starch content. For PtS, sonication temperature led to a coarser surface with scratches, increased apparent amylose content and gelatinization degree, decreased short-range orders, long-range orders, gelatinization enthalpy, retrogradation degree, and resistant starch content. For PS, sonication temperature showed partial disintegration on surface, increased gelatinization degree, decreased apparent amylose content, short-range orders, long-range orders, gelatinization enthalpy, retrogradation degree and resistant starch content. This study suggested that starch digestion features could be controlled by the crystalline pattern of starch used and the extent of sonication temperature, and thus were of value for rational control of starch digestion features.
Collapse
Affiliation(s)
- Qunfu Ouyang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoyan Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
28
|
|
29
|
The in vitro digestion of differently structured starch gels with different amylose contents. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Yang Y, Chen Q, Yu A, Tong S, Gu Z. Study on structural characterization, physicochemical properties and digestive properties of euryale ferox resistant starch. Food Chem 2021; 359:129924. [PMID: 33964663 DOI: 10.1016/j.foodchem.2021.129924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
At present, the raw materials for industrialized RS3 products are relatively simple and its purity is low. In addition, the correlation between structure and digestion characteristics of RS3 are rarely studied. In this study, euryale ferox, a kind of annual aquatic herb crop with high content of starch was used as a raw material to prepare RS3 by different methods, including autoclaving, enzymolysis-autoclaving and dual enzymolysis, respectively. The results showed that there were significant differences in the structure and physicochemical properties of the different euryale ferox resistant-enhanced and purified resistant starches (p < 0.05). Purified euryale ferox resistant starches belonged to B + V type crystal and had high thermal stability. After digestion, the structure and thermal properties of euryale ferox resistant-enhanced starches changed a lot. The digestion rate and estimated glycemic index (eGI) of the three kinds of purified euryale ferox RS3 were lower than 20% and 50%, respectively.
Collapse
Affiliation(s)
- Yuexi Yang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Qing Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Anzhen Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shu Tong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhenyu Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
31
|
Insights into the structural characteristics and in vitro starch digestibility on steamed rice bread as affected by the addition of okara. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106533] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Chi C, Li X, Huang S, Chen L, Zhang Y, Li L, Miao S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Sivakamasundari SK, Priyanga S, Moses JA, Anandharamakrishnan C. Impact of processing techniques on the glycemic index of rice. Crit Rev Food Sci Nutr 2021; 62:3323-3344. [PMID: 33499662 DOI: 10.1080/10408398.2020.1865259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rice is an important starchy staple food and generally, rice varieties are known to have a higher glycemic index (GI). Over the years, the significance of GI on human health is being better understood and is known to be associated with several lifestyle disorders. Apart from the intrinsic characteristics of rice, different food processing techniques are known to have implications on the GI of rice. This work details the effect of domestic and industrial-level processing techniques on the GI of rice by providing an understanding of the resulting physicochemical changes. An attempt has been made to relate the process-dependent digestion behavior, which in turn reflects on the GI. The role of food constituents is elaborated and the various in vitro and in vivo approaches that have been used to determine the GI of foods are summarized. Considering the broader perspective, the effect of cooking methods and additives is explained. Given the significance of the cereal grain, this work concludes with the challenges and key thrust areas for future research.
Collapse
Affiliation(s)
- S K Sivakamasundari
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - S Priyanga
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
34
|
Faizal A, Sembada AA, Priharto N. Production of bioethanol from four species of duckweeds ( Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza) through optimization of saccharification process and fermentation with Saccharomyces cerevisiae. Saudi J Biol Sci 2021; 28:294-301. [PMID: 33424309 PMCID: PMC7785427 DOI: 10.1016/j.sjbs.2020.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 11/17/2022] Open
Abstract
Duckweeds are promising potential sources for bioethanol production due to their high starch content and fast growth rate. We assessed the potential for four species, Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza, for bioethanol production. We also optimized a possible production procedure, which must include saccharification to convert starch to soluble sugars that can serve as a substrate for fermentation. Duckweeds were cultivated on 10% Hoagland solution for 12 days, harvested, dried, homogenized, and dissolved in solutions that were tested as substrates for bioethanol production by the yeast Saccharomyces cerevisiae. First, we optimized the saccharification process, including the ideal ratio of the enzyme used to convert starch into simple sugars. The greatest starch-to-sugar conversion was obtained when the α-amylase and amyloglucosidase was 2:1 (v/v) and with a 24 h incubation period at 50 °C. After saccharification, the solutions were incubated with the yeast, S. cerevisiae. The fermentation process was carried out for 48 h with 10% (v/v) yeast inoculum. The ethanol content was maximal approximately 24 h after the start of incubation, and the sugars and protein were minimal, with little change over the next 24 h. The final ethanol concentration obtained were 0.19, 0.17, 0.19, and 0.16 g ethanol/g dry biomass for L. punctata, L. aequinoctialis, S. polyrrhiza, and W. arrhiza respectively. We suggest that these four species of duckweed have the potential to serve sources of bioethanol and hope that the procedure we have optimized proves useful in the endeavour.
Collapse
Affiliation(s)
- Ahmad Faizal
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132, Indonesia
- Corresponding author.
| | - Anca Awal Sembada
- Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132, Indonesia
| | - Neil Priharto
- Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132, Indonesia
| |
Collapse
|
35
|
Zhang C, Zhou L, Lu Y, Yang Y, Feng L, Hao W, Li Q, Fan X, Zhao D, Liu Q. Changes in the physicochemical properties and starch structures of rice grains upon pre-harvest sprouting. Carbohydr Polym 2020; 234:115893. [DOI: 10.1016/j.carbpol.2020.115893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 11/29/2022]
|
36
|
Chen X, Shao S, Chen M, Hou C, Yu X, Xiong F. Morphology and Physicochemical Properties of Starch from Waxy and Non‐Waxy Barley. STARCH-STARKE 2020. [DOI: 10.1002/star.201900206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinyu Chen
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou University Yangzhou 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou University Yangzhou 225009 China
- College of Biological Science and TechnologyYangzhou University Yangzhou 225009 China
| | - Shanshan Shao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou University Yangzhou 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou University Yangzhou 225009 China
- College of Biological Science and TechnologyYangzhou University Yangzhou 225009 China
| | - Mingxin Chen
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou University Yangzhou 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou University Yangzhou 225009 China
- College of Biological Science and TechnologyYangzhou University Yangzhou 225009 China
| | - Chunpu Hou
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou University Yangzhou 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou University Yangzhou 225009 China
- College of Biological Science and TechnologyYangzhou University Yangzhou 225009 China
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou University Yangzhou 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou University Yangzhou 225009 China
- College of Biological Science and TechnologyYangzhou University Yangzhou 225009 China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou University Yangzhou 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou University Yangzhou 225009 China
- College of Biological Science and TechnologyYangzhou University Yangzhou 225009 China
| |
Collapse
|
37
|
Cao C, Shen M, Hu J, Qi J, Xie P, Zhou Y. Comparative study on the structure-properties relationships of native and debranched rice starch. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2019.1710261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chuan Cao
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
- Department of Food Engineering, Anhui Vocational College of Grain Engineering, Hefei, China
| | - Mingyu Shen
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jinwei Hu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Peng Xie
- Institute of Food Economics of NJUE, Nanjing University of Finance & Economics, NanJing, China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| |
Collapse
|
38
|
Li N, Guo Y, Zhao S, Kong J, Qiao D, Lin L, Lin Q, Zhang B. Amylose content and molecular-order stability synergistically affect the digestion rate of indica rice starches. Int J Biol Macromol 2020; 144:373-379. [DOI: 10.1016/j.ijbiomac.2019.12.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023]
|
39
|
Zhang YF, Tang YL, Jiang MJ, Ji Q. Effect of glgB/GASBD fusion gene expression on increased branching degree of potato starch and changes in physicochemical properties of starch. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1734614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yun-Feng Zhang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Yu-Ling Tang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Meng-Jun Jiang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| | - Qin Ji
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
40
|
Zhang L, Zhao L, Zhang J, Cai X, Liu Q, Wei C. Relationships between transparency, amylose content, starch cavity, and moisture of brown rice kernels. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Yang X, Chi C, Liu X, Zhang Y, Zhang H, Wang H. Understanding the structural and digestion changes of starch in heat-moisture treated polished rice grains with varying amylose content. Int J Biol Macromol 2019; 139:785-792. [DOI: 10.1016/j.ijbiomac.2019.08.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/21/2023]
|
42
|
Toutounji MR, Farahnaky A, Santhakumar AB, Oli P, Butardo VM, Blanchard CL. Intrinsic and extrinsic factors affecting rice starch digestibility. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Guo K, Liu T, Xu A, Zhang L, Bian X, Wei C. Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Teng B, Zhang C, Zhang Y, Du S, Xi M, Song F, Ni J, Luo Z, Ni D. Effects of different Wx alleles on amylopectin molecular structure and enzymatic hydrolysis properties of rice starch. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2018.1561464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bin Teng
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Chen Zhang
- College of Life Science, Anhui Agricultural University, Hefei, P. R. China
| | - Ying Zhang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Shiyun Du
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Min Xi
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Fengshun Song
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Jinlong Ni
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Zhixiang Luo
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Dahu Ni
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| |
Collapse
|